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Abstract: Fifth-generation (5G) networks provide network slicing capabilities, enabling the deploy-
ment of multiple logically isolated network slices on a single infrastructure platform to meet specific
requirements of users. This paper focuses on modeling and analyzing resource capacity planning
and reallocation for network slicing, specifically between two providers transmitting elastic traffic,
such during as web browsing. A controller determines the need for resource reallocation and plans
new resource capacity accordingly. A Markov decision process is employed in a controllable queuing
system to find the optimal resource capacity for each provider. The reward function incorporates
three network slicing principles: maximum matching for equal resource partitioning, maximum
share of signals resulting in resource reallocation, and maximum resource utilization. To efficiently
compute the optimal resource capacity planning policy, we developed an iterative algorithm that
begins with maximum resource utilization as the starting point. Through numerical demonstrations,
we show the optimal policy and metrics of resource reallocation for two services: web browsing and
bulk data transfer. The results highlight fast convergence within three iterations and the effectiveness
of the balanced three-principle approach in resource capacity planning for 5G network slicing.

Keywords: 5G; network slicing; capacity planning; resource reallocation; controller; elastic traffic;
Markov decision process (MDP); queuing system; signal; continuous-time Markov chain (CTMC)

1. Introduction

Fifth-generation (5G) networks allow for high-speed data transmission and a wide
range of services for numerous users, ensuring high quality of service (QoS) [1–3]. The
three main scenarios considered are enhanced mobile broadband (eMBB), massive machine-
type communication (mMTC), and ultra-reliable low-latency communication (URLLC) [4].
Beyond 2030, the sixth-generation (6G) network is anticipated to address the need for global
coverage; improved spectral, energy, economic efficiency; and enhanced security. To meet
these requirements, novel technologies and systems need to be supported on the radio
interface and core network, incorporating multiple access, channel-coding schemes, multi-
antenna technology, cell-less architecture, cloud/fog computing, and network slicing [5,6].

Network slicing is a comprehensive concept that encompasses both network and
cloud slices, including radio access, transport, and edge computing network [7,8]. It allows
for the deployment of multiple logical, autonomous, and independent network resources,
as well as network and service functions, on a single infrastructure platform. Through
this management mechanism, resource providers can allocate logically isolated network
slices to users, each designed and optimized for specific requirements (e.g., one for cellular
communication, another for the Internet of Things (IoT)).
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Network slicing assumes three business roles: (i) network slice provider (network
operator), which is the resource owner and provides the network slice instance; (ii) network
slice service provider (communication service provider), which is responsible for providing
services to its users; (iii) network slice service user (communication service customer),
which uses the provided services [9]. The interactions between two business roles are
handled through service-level agreements (SLAs), as shown in Figure 1.

Figure 1. Business roles related to network slicing.

The question of organizing resource reallocation in 5G network slicing has been
addressed in recent research papers. For a review of these works, please refer to Section 2.
This paper focuses on modeling and analyzing resource capacity planning and reallocation
for network slicing between two providers transmitting elastic traffic, such as during web
browsing. The controller sends signals to determine the need for resource reallocation and
to plan new resource capacity. A Markov decision process (MDP) is utilized in a controllable
queuing system to find the optimal resource capacity for each provider. The reward
function incorporates three network slicing principles, including maximum matching for
equal resource partitioning, maximum share of signals resulting in resource reallocation,
and maximum resource utilization. An iterative algorithm is used to find the optimal
resource reallocation policy, and the results are numerically illustrated for two services:
web browsing and bulk data transfer.

The main contributions of our study are as follows:

• Innovative mathematical framework. We propose a mathematical framework based
on queuing theory and MDP. This framework incorporates three weighted principles:
maximum matching for equal resource partitioning, maximum share of signals for re-
source reallocation, and maximum resource utilization. This multi-principle approach
is novel in the context of 5G network slicing, providing a comprehensive and flexible
foundation for resource capacity planning.

• Efficient algorithm development. An algorithm was developed to efficiently compute
the optimal resource capacity planning policy. This algorithm leverages R. Howard’s
iteration, starting with maximum resource utilization as the initial point. The efficiency
and effectiveness of this algorithm contribute to the novelty of our work, ensuring
practical applicability in the dynamic environment of 5G network slicing.

• Numerical analysis and insights. Our study includes a detailed numerical analysis
that not only illustrates the optimal policy but also provides key metrics related to
resource utilization and the probability of a signal triggering resource reallocation. The
numerical results demonstrate rapid convergence within three iterations, highlighting
the efficiency of our proposed approach. This insight is a unique contribution to
the field, showcasing the advancements of our balanced three-principle approach to
resource capacity planning in 5G network slicing.
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The rest of the paper is organized as follows: Section 2 provides an overview of
related work in the field of network slicing. Section 3 details the system model, while
Section 4 presents the queuing model for the baseline algorithm for resource reallocation.
Section 5 constructs a controllable queuing model to solve the problem of optimal resource
reallocation. Illustrative numerical results are presented in Section 6, and conclusions are
drawn in the final section.

2. Fifth-Generation Network Slicing and Related Work

In this section, we review some selected papers on network slice service planning and
resource capacity planning.

2.1. Network Slice Service Planning

The most frequently cited use case for network slicing is presented in [10] and is
based on three 5G scenarios: eMBB for high data rates, high user density, and high user
mobility; mMTC for a small number of latency-insensitive data; and URLLC for strict
requirements for throughput, latency, and reliability. For example, in a self-driving car, a
user could simultaneously access different network slices. A self-driving car is connected
to the network through vehicle-to-everything (V2X) communication. The user sitting in the
car initiates a service for HD video streaming using the system available in the car. V2X
communication requires low latency but not necessarily a high data rate, while HD video
streaming requires a high data rate but is latency-tolerant. Thus, the V2X communication
service and HD video streaming service connect to different network slices, such as a
URLLC slice and an eMBB slice.

Network slices could be organized for mobile virtual network operators (MVNOs).
This is the use case where a mobile network operator (MNO), as a network slice provider,
leases its radio resources to MVNOs as network slice service providers who do not own
wireless network infrastructure. MNO and MVNOs conclude SLAs that define the bound-
aries of slices depending on the requirements of services. Another often used case is
organizing network slices for different traffic types, for example, for guaranteed bit rate
(GBR) traffic with a minimum-bit-rate guarantee and for non-GBR traffic without such
guarantees. Traffic could be viewed as streaming traffic when a service generated it and is
characterized by its duration, while elastic traffic services are characterized by the size of
the transmitted data.

Table 1 provides references with the above-mentioned examples of network slice
service planning mechanisms.

Table 1. Summary of selected works on network slicing mechanisms.

Mechanism Ref.

Network slice service planning mechanisms

eMBB, mMTC, and URLLC [4,11,12]
Mobile virtual network operators (MVNOs) [13]
Traffic type: guaranteed bit rate (GBR), non-GBR, streaming, elastic [14]

Resource capacity planning mechanisms

Weights for services according to bit-rate or latency requirements [12,15–21]
Service-level agreement (SLA) [22]
Slice priorities [18,23–25]
Auction model [26–28]
Isolation to guarantee the minimum and/or maximum bit rate [16,18,29–33]
QoS degradation [34]
Three equally weighed criteria: (i) ratio of the average throughput to average
delay of one user/slice; (ii) average network throughput subject to average delay
constraints; (iii) barrier function

[35]

Three equally weighed criteria: (i) co-occurrence rate; (ii) maximum deviation;
(iii) the time interval within which the deviation is possible

[36]
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2.2. Resource Capacity Planning

Resource capacity planning can be achieved through either static resource partitioning
or dynamic resource reallocation. Static resource partitioning involves allocating resources
to network slices that do not change over time. On the other hand, dynamic resource
reallocation involves changing resource allocation among slices over time, as determined
by the controller, which periodically checks the need for change. Various mechanisms
and criteria are considered during resource capacity planning, including slice priorities,
weights, resource utilization, fairness, availability, and isolation (see Table 1).

Network slice isolation is a crucial factor in resource capacity planning. Although not
yet fully formalized in specifications, it is generally understood as minimizing the impact of
one slice on the performance of other slices. Isolation is often provided until the number of
users exceeds a given threshold. In cases where there is a shortage of resources, users who
violate isolation may be interrupted by users from other slices. Slice degradation, defined
as a state where one or more active users are not provided with the necessary resources to
fulfill bit-rate guarantees, is closely related to isolation.

The efficiency of resource capacity planning depends on the resource reallocation
policy among network slices. Mathematical methods commonly used to solve correspond-
ing optimization problems include optimization theory for linear and nonlinear problems,
game theory, cooperative game theory (Nash equilibrium), machine learning [37], MDP,
continuous-time Markov chain (CTMC), and queuing theory. A retrial queuing system
with an infinite orbit was proposed for analyzing prioritization schemes and resource
reservation [38]. In another study [39], a resource queuing system with signals, where
upon arrival, the signal interrupts a user to try again with a new bit-rate requirement,
was analyzed.

2.3. Related Work Employing Markov Decision Process

Efficient resource allocation policies among network slices have a direct impact on
resource utilization. Active research efforts are currently focused on the effective manage-
ment of network resources using the network slicing technique. MDP, a widely utilized
mathematical approach to optimization issues, is also employed in our study. The Table 2
summarizes various recent studies that have applied this method.

Table 2. Summary of selected works employing a Markov decision process (MDP) for resource
capacity planning in network slicing.

Ref. Approaches Involving MDP Reward Function Action

[40] Deep reinforcement learning (DRL)
Resource efficiency, edge computing
performance assessment, QoS mainte-
nance

Service request arrivals within a clus-
ter of fog nodes overseen by an edge
controller

[41] Federated DRL QoS satisfaction, network load for each
MVNO Coordinated by the InP controller

[42] Multi-agent dueling deep Q-network
(DQN)

Income from one transaction, net in-
come from all transactions, benefits
achieved by a user in each transac-
tion, transaction cost generated by each
transaction

An economic model initiates dynamic
pricing interactions, leading to the re-
distribution of resources

[43] Double DQN, Dijkstra algorithm, bi-
nary search-assisted gradient descent

Minimization of the number of ac-
cepted service requests with higher pri-
ority and minimization of the total cost

A double DQN-agent chooses the loca-
tion for VNFs of an incoming request

[44] RL, proximal policy optimization Resource utilization, QoS violation
penalty

A resource management agent monitors
the status of network slices and MEC
nodes and makes decisions on adjusting
the allocated resources
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Table 2. Cont.

Ref. Approaches Involving MDP Reward Function Action

[45]
Exponential weight algorithm for ex-
ploration and exploitation, multi-agent
DQN

Two reward functions: (i) total achiev-
able bit rate of URLLC and eMBB users;
(ii) whether or not the agent has suc-
cessfully allocated the needed resource
blocks to its associated user

Every gNodeB schedules pre-allocated
resource blocks assigned by the SDN
controller to its associated end-users

[46] DQN, RL Maximization of slice tenant’s profit

Tenants autonomously control resource
allocation and engage in negotiations
with the provider to effectively manage
and optimize resource utilization

[47] Dynamic mixed-integer linear program-
ming, DRL

Minimization of the total cost for VNF
orchestration, backup, and mapping
with delay constraints, reliability re-
quirements, and limited resources

The resource management agent selects
a random action with a certain probabil-
ity for exploration and selects the best
action that follows the greedy policy

2.4. Our Previous Work

This paper focuses on a service generating impatient elastic traffic and is a continuation
of our previous research, which analyzed the process of elastic traffic transmission [48]. We
expanded the model to two network slices with dynamic resource reallocation initiated not
by the controller but by all events that could influence the need for resource reallocation [49].
To assess the effectiveness of resource reallocation, we proposed three criteria that are also
used in this paper [50]. This paper proposes a more flexible system that allows for the
selection of a new number of allocated resources depending on the network load. To
address this issue, we utilized controllable queuing systems [51–53].

3. System Model

In this section, we discuss the considered system model, emphasizing the role of the
controller in resource reallocation. Then, we describe an algorithm for resource reallocation
oriented towards maximum resource utilization. This algorithm serves as a baseline “fixed”
algorithm, meaning that it is a function assigning a new resource partitioning to each
system state. Additionally, we introduce two other principles that will be taken into
account in the model for the construction of a “flexible” algorithm, considering not only
resource utilization.

3.1. Preliminary Considerations

Our system model is predicated on a set of simplifying assumptions. We focus on a
scenario involving just two network slice service providers, between whom resources are
dynamically reallocated. The arrival patterns of both controller signals and user requests
are inherently stochastic. Resource reallocation is contingent upon the receipt of a signal
from the controller. Within each slice, we posit an egalitarian distribution of resources
among all users, irrespective of their remaining service duration, adhering to what is known
as the Egalitarian Process Sharing discipline in queueing theory. All system events are
assumed to follow an exponential distribution. For our numerical analysis, we chose to
examine two distinct services: web browsing and bulk data transfer.

The controller is the pivotal element in our network slicing model, dictating when
resource reallocation should occur. The output of the controller’s operation is the allocation
of resources to the first slice—knowing that this allows us to deduce the resource allocation
for the second slice, given that the total resource pool remains constant. This allocation is
part of what we refer to as the control strategy. The controller’s signal rate is a critical factor
influencing system performance and resource reallocation; hence, it is incorporated into
the reward function discussed in Section 5.4.

Our system’s self-optimization mechanisms operate by adjusting weights across three
key components that collectively enhance system efficiency. This self-optimization entails



Future Internet 2024, 16, 18 6 of 23

fine-tuning policy computation based on the reward function’s configuration, thereby
directly influencing the selection and nature of the optimal policy. During the optimiza-
tion process, we determine new resource allocation operations in response to the reward
function, ensuring that the optimal policy is shaped by this function. In scenarios where
only a baseline algorithm exists, we establish the policy analytically. Policies influenced
by the reward function are presented in tabular form. We identify three primary risks:
underutilization of resources, non-impactful controller signals, and deviations from QoS
allocation. These risks are integrated into the reward function, and by modulating their
respective weights, we can prioritize certain risks over others according to their significance
within our framework.

3.2. General Assumptions

We consider a network slice provider (network operator) with a total capacity (bit rate)
of C bps, which is shared between two network slice service providers (communication
service providers), denoted by K = 2. Each service provider has its own network slice
service users (communication service customers). The resource reallocation between the
service providers is managed by the network slice provider’s controller, which sends signals
to determine the need for resource reallocation. The time between signal arrivals follows an
exponential distribution with parameter δ. The decision-making process is based on three
principles: maximum matching for equal resource partitioning, maximum share of signals
resulting in resource reallocation, and maximum resource utilization. Each principle is
assigned a weight, denoted by w1, w2, and w3, respectively. The motivations behind these
weights will be discussed in Section 3.5. The general scenario is illustrated in Figure 2.

Figure 2. Considered scenario.

The network slice service provider offers its users a service for transmitting elastic
traffic with a minimum-bit-rate guarantee of b. This means that the maximum number of
all providers’ users jointly transmitting elastic traffic is equal to N = ⌊C

b ⌋. The delay in
transmission is acceptable, but the maximum number of users for each provider waiting for
delayed elastic traffic transmission is limited to Rk (size of the provider’s buffer). Requests
for elastic traffic transmission from users arrive at a rate of λk according to a Poisson process.
The volume of elastic traffic transmitted by each user is exponentially distributed with
an average of µ−1

k . Each user is also impatient and spends an exponentially distributed
amount of time in their provider’s buffer with a parameter of εk (abandonment rate).

The system employs the Egalitarian Process Sharing discipline to manage traffic
fluctuations. This approach ensures equitable allocation of resources. Resources within
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each slice are distributed equally, fostering a just and effective use of the system’s capacities.
It is crucial to note that requests are received independently. All of the aforementioned
parameters are presented in Figure 3 and listed in Table 3.

Figure 3. Network slicing business roles in the considered scenario.

Table 3. Main notation.

Parameter Description

Network slice provider (network operator) parameters

C Total bit rate (capacity) for all network slice resources, bps
K = 2 Number of service providers, i.e., network slices

δ
Arrival rate of signals from the controller for resource reallocation between
service providers, 1/s

w1 Weight for maximum matching for equal resource partitioning
w2 Weight for maximum share of the signals resulting in resource reallocation
w3 Weight for maximum resource utilization
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Table 3. Cont.

Parameter Description

Network slice service provider (communication service provider) parameters

b Minimum-bit-rate guarantee for transmitting elastic traffic, bps
N = ⌊C

b ⌋ Maximum number of all providers users jointly transmitting elastic traffic

Rk
Maximum number of the k-provider users (k-users) waiting for delayed
elastic traffic transmission (size of k-buffer)

Network slice service user (communication service customer) parameters

λk Arrival rate of requests for elastic traffic transmission from k-users, 1/s
µ−1

k Average volume of elastic traffic transmitted by k-users, bit
εk Abandonment rate due to impatience of k-users in k-buffer, 1/s

Markov decision process (MDP)

m Maximum number of 1-users jointly transmitting elastic traffic (size of 1-slice)
n1 Number of 1-users transmitting elastic traffic and waiting in 1-buffer
n2 Number of 2-users transmitting elastic traffic and waiting in 2-buffer
s = (m, n1, n2) State of the system
S Set of states
a = m Action, i.e., size of 1-slice
As Set of actions available from state s
q(s′|s, a) Transition rate that action a in state s leads to state s′

R(s) Reward received while in state s, i.e., the weighted objective with w1, w2,
and w3

(S ,As, Qa, R) Markov decision process (MDP)

3.3. Resource Reallocation by Controller

The controller plays a crucial role in implementing resource capacity planning by
periodically sending signals to assess the need for resource reallocation. The main responsi-
bility of the controller is to determine the most effective method for scheduling resources,
guided by three principles: maximum matching for equal resource partitioning, maximum
share of signals resulting in resource reallocation, and maximum resource utilization.

Resource reallocation is triggered when the controller sends a signal and there are
unused resources in one slice while there are pending requests from another slice. This
type of signal is referred to as “resulting” and leads to resource reallocation. However,
if all buffers are empty or all resources are currently in use when a signal is received, no
reallocation occurs. Please refer to Figure 4 for a visual representation. Furthermore,
during reallocation, the controller takes into account the average volume of elastic traffic
conveyed by k-users µ−1

k .

3.4. Baseline Algorithm for Resource Reallocation

Let us present a detailed description of a baseline algorithm for resource reallocation
that is designed to maximize resource utilization. Resource reallocation may occur when a
signal is received from the controller.

Resource reallocation is triggered under the following conditions:

• The resources in the 1-slice are fully occupied, while there are still users waiting for
service. However, there are available resources in the 2-slice. In this case, some of the
idle resources in the 2-slice are reassigned to the 1-slice.

• Similarly, if the resources in the 2-slice are fully occupied and there are users waiting
for service, but there are available resources in the 1-slice, some of the idle resources
in the 1-slice are reassigned to the 2-slice.
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Figure 4. General scheme of cases of resource reallocation between the service providers performed
by the controller.

On the other hand, resource reallocation does not take place if any of the following
conditions occur:

• The system is empty.
• Not all resources are occupied (i.e., there are available resources in both the 1-slice and

2-slice).
• All resources are occupied, but there are no users waiting for service.
• All resources are occupied, and there are users waiting for service from only one slice.
• All resources are occupied, and there are users waiting for service from both the 1-slice

and 2-slice.

3.5. Three Principles for Resource Reallocation

Note that frequent signals allow for more flexible resource allocation but also increase
the load on the system. This poses a problem of how to adjust the rate of controller signals
in order to balance compliance with equal resource partition, maximize resource utilization,
and increase the number of signals that result in resource reallocation. Additionally, it
is important to consider the extent to which the boundaries of resource slices should
be adjusted.

The controller manages resource reallocation based on three principles, each with a
weight wi, where i = 1, 2, 3:

1. The first principle takes into account the deviation from equal resource partition,
specifically the number of requests that could be served but are waiting due to
unequal resource partition. This is significant because the optimal policy should align
with the initial partition outlined in the service-level agreement (SLA) between the
network slice provider and network slice service providers.
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2. The second principle considers the frequency of cases where resource reallocation
does not occur when a signal arrives. It is crucial that signals from the controller
result in real resource reallocation. Frequent arrival of “non-resulting” signals is
deemed unacceptable, as it incurs unnecessary signaling messages. This aspect is also
relevant in radio resource management strategies, as it can affect resource efficiency
and utilization. An example is shown in Figure 5.

3. The third principle evaluates the number of free resources while users are waiting. In
this case, maximizing resource utilization is important. Idle resources, representing
the situation where a user is waiting for a slice that is currently occupied and another
slice is available to serve the user’s request, are undesirable.

Figure 5. Signals resulting and not resulting in resource reallocation between the service providers.

4. Queuing Model for Baseline Algorithm

In this section, we will introduce a queuing model for the baseline algorithm dis-
cussed previously.

4.1. Continuous-Time Markov Chain

Let us describe the system model using a corresponding queuing system, as shown
in Figure 6. Continuous-time Markov chain (CTMC) S(t) has states s = (m, n1, n2), where
m represents the maximum number of 1-users jointly transmitting elastic traffic (size of
1-slice), and nk represents the number of k-users transmitting elastic traffic and waiting in
k-buffer. The state space is presented as follows:

S =
{

s = (m, n1, n2) : m = 0, . . . , N, n1 = 0, . . . , m+R1, n2 = 0, . . . , N−m+R2

}
. (1)

4.2. State-Space Decomposition

Let us decompose system state space (1) into smaller subsets for better analysis. Note
that N − m represents the maximum number of 2-users that can jointly transmit elastic
traffic. The partitioning of set S into subsets is based on two factors: the possibility of
resource reallocation and the ratio of users transmitting traffic to those waiting in buffers.
We define Sδ as the states where resource reallocation occurs upon receiving a signal and
Sδ as the states in which it does not occur. Hence, S can be represented as a union of these
two disjoint subsets:
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S =Sδ ∪ Sδ,

Sδ =
{
(i, n1, n2) ∈ S : n1 > i, n2 < N − i ∨ n1 < i, n2 > N − i

}
,

Sδ = S \ Sδ.

Figure 6. Queueing system.

Moreover, we know that m is the parameter used in the reallocation management
policy to determine the size of the 1-slice. Thus, we can express S as a union of subsets
corresponding to different values of m:

S =
N⋃

m=0
S(m), S(m) =

{
(i, n1, n2) ∈ S : i = m

}
,

S =
N⋃

m=0
Sδ(m) ∪ Sδ(m).

Furthermore, we can divide subset Sδ(m) into two more subsets: S1
δ (m) and S2

δ (m),
where S1

δ (m) represents states in which the size of the 1-slice is increased upon receiving
a signal and S2

δ (m) represents states in which the size of the 2-slice is increased upon
receiving a signal.

Sδ(m) =S1
δ (m) ∪ S2

δ (m),

S1
δ (m) =

{
(i, n1, n2) ∈ S(m) : n1 > i, n2 < N − i

}
,

S2
δ (m) =

{
(i, n1, n2) ∈ S(m) : n1 < i, n2 > N − i

}
.

Finally, in the case where there are enough free resources to serve waiting users, the
slices are increased either by the number of waiting users or by all free resources. Thus, the
subset of Sk

δ (m) can be represented as the following union:

Sk
δ (m) =Sk1

δ (m) ∪ Sk2
δ (m),

Sk1
δ (m) =

{
(i, n1, n2) ∈ Sk

δ (m) : n1 + n2 ≤ N
}

,

Sk2
δ (m) =

{
(i, n1, n2) ∈ Sk

δ (m) : n1 + n2 > N
}

.
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4.3. Transition Rates between CTMC States

Table 4 displays the transition rates from current state s to s′. Only transition rates
pertaining to users are included in this table. When a signal arrives at rate δ, the system
transitions to state (m′, n1, n2), where

m′ =


n1, s ∈ S11

δ ,
N − n2, s ∈ S12

δ ,
m− n2 − N + m, s ∈ S21

δ ,
n1, s ∈ S22

δ .

(2)

Table 4. Transition rates related to users.

Description Transition Rate Condition on s State s′

Request from 1-user has arrived λ1 n1 + 1 ≤ R1 (m, n1 + 1, n2)
Request from 2-user has arrived λ2 n2 + 1 ≤ R2 (m, n1, n2 + 1)
Traffic from 1-user has been transmitted m

N Cµ1 m > 0, n1 > 0 (m, n1 − 1, n2)
Traffic from 2-user has been transmitted N−m

N Cµ2 N −m > 0, n2 > 0 (m, n1, n2 − 1)
1-User has abandoned 1-buffer (n1 −m)ε1 n1 ≥ m (m, n1 − 1, n2)
2-User has abandoned 2-buffer (n2 − N + m)ε2 n2 ≥ N −m (m, n1, n2 − 1)

5. Controllable Queuing Model

In this section, we discuss a more complex policy that not only maximizes resource
utilization but also maximizes the share of signals resulting in resource reallocation and
maximum matching for equal resource partitioning.

5.1. Continuous-Time Markov Decision Process

To address the issue of optimal resource reallocation, it is crucial to select the best
course of action for determining the volume of resources to be reallocated based on the
current state of the system. This problem can be defined as a continuous-time MDP. The
MDP model is represented by a four tuple (S ,As, Qa, R(s)):

1. Set S of states s = (m, n1, n2) ∈ S , defined by Formula (1);
2. Set As of actions a available from state s;
3. Matrix Qa of transition rates under action a;
4. Reward R(s) received while in state s.

5.2. Action Space for Resource Reallocation

The control policy for the two-slice model dictates the necessary actions to adjust
the size of the 1-slice in response to a signal from the controller. This adjustment is only
applicable to states within subset Sδ, where resource reallocation is required. The action
space can be divided into four cases, based on the ratio of users transmitting traffic and
waiting in buffers for each slice. If both buffers are either free or occupied, no reallocation
occurs upon receiving a signal. However, if one buffer is free while the other is occupied,
resource reallocation can be initiated. Therefore, the set of action space (As) can be defined
as follows:

As =



{m, . . . , n1}, s ∈ S11
δ (m),

{m, . . . , N − n2}, s ∈ S12
δ (m),

{N − n2, . . . , m}, s ∈ S21
δ (m),

{n1, . . . , m}, s ∈ S22
δ (m),

∅, s /∈ Sδ(m).

(3)
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5.3. Transition Rates between MDP States

Transition rates are determined by Tables 4 and 5 with an intensity of δ. Thus, rate
q(s′|s, a) for action a in state s leading to state s′ is calculated using the following formula:

q(s′|s, a) =



λ1, s′ = (m, n1 + 1, n2), n1 + 1 ≤ R1,
λ2, s′ = (m, n1, n2 + 1), n2 + 1 ≤ R2,
m
N Cµ1, s′ = (m, n1 − 1, n2), m > 0, n1 > 0,
N−m

N Cµ2, s′ = (m, n1, n2 − 1), N −m > 0, n2 > 0,
(n1 −m)ε1, s′ = (m, n1 − 1, n2), n1 ≥ m,
(n2 − N + m)ε2, s′ = (m, n1, n2 − 1), n2 ≥ N −m,
δ, s′ = (a, n1, n2), a ∈ As, s ∈ Sδ.

(4)

Table 5. Transition rates δ related to signals from the controller.

Description Condition on s Condition on a State s′

1-Slice is occupied with waiting 1-
users, and 2-slice is available for all
1-users in 1-buffer

n1 > m, n2 < N − m,
n1 −m ≤ N −m− n2

m ≤ a ≤ n1 (a, n1, n2)

1-Slice is occupied with waiting 1-
users, and 2-slice is not available for
all 1-users in 1-buffer

n1 > m, n2 < N − m,
n1 −m > N −m− n2

m ≤ a ≤ N − n2 (a, n1, n2)

2-Slice is occupied with waiting 2-
users, 1-slice is available for all 2-
users in 2-buffer

n2 > N − m, n1 < m,
n2 − N + m ≤ m− n1

N − n2 ≤ a ≤ m (a, n1, n2)

2-Slice is occupied with waiting 2-
users, 1-slice is not available for all
2-users in 2-buffer

n2 > N − m, n1 < m,
n2 − N + m > m− n1

n1 ≤ a ≤ m (a, n1, n2)

5.4. Reward Function to Consider Three Principles

In accordance with the previously described principles of reallocation, the reward
function received per unit time during the stay in state s ∈ S is defined by the follow-
ing formula:

R(s) = −
(

w1 · α(s) · 1(s ∈ S
1
δ(m)) ·

(
1(m <

N
2

, s ∈ S1
δ (m)) + 1(m >

N
2

, s ∈ S2
δ (m))

)
+ w2 · β(s) · 1(s ∈ Sδ) + w3 · γ(s) · 1(s ∈ Sδ)

)
.

Let us describe each component in detail.
The principle of maximum matching for equal resource partitioning is determined

by the number of users waiting in the buffer due to unequal resource reallocation and is
defined as

α(s) =


N
2 −m, m < N

2 , n1 > m, n1 −m > N
2 −m,

n1 −m, m < N
2 , n1 > m, n1 −m ≤ N

2 −m,
N
2 − N + m, m > N

2 , n2 > N −m, n2 − N + m > N
2 − N + m,

n2 − N + m, m > N
2 , n2 > N −m, n2 − N + m ≤ N

2 − N + m.

The principle of maximum share of signals resulting in resource reallocation is deter-
mined by the probability of non-reallocation after a signal is received and is given by the
following formula:
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β(s) =δ
(

δ + λ1 · 1(n1 + 1 ≤ R1 + m) + λ2 · 1(n2 + 1 ≤ R2 + N −m)

+
m
N

Cµ1 · 1(m > 0, n1 > 0) +
N −m

N
Cµ2 · 1(N −m > 0, n2 > 0)

+ (n1 −m)ε1 · 1(n1 > m) + (n2 − N + m)ε2 · 1(n2 > N −m)
)−1

.

The principle of maximum resource utilization is determined by the number of users
waiting in the buffer due to idle resources, expressed as

γ(s) =


N −m− n2, s ∈ S12

δ (m),
n1 −m, s ∈ S11

δ (m),
m− n1, s ∈ S22

δ (m),
n2 − N + m, s ∈ S21

δ (m).

To elucidate this principle with greater clarity, consider the initial equation within
system S12

δ (m). This equation signifies that the 1-slice possesses a surplus of users in its
1-buffer (where n1 > m), and concurrently, the 2-slice has available resources (n2 < N −m).
Additionally, the combined total n1 + n2 > N, indicating that the quantity of users awaiting
the 1-slice surpasses the idle resources of the 2-slice, resulting in an inability to serve all
waiting users. Consequently, we allocate the utmost number of idle resources from the
2-slice to attend to the greatest possible number of waiting users. In this scenario, the
resource volume equates to the entirety of idle resources from the 2-slice, expressed as
N −m− n2 (where n2 represents the count of occupied resources in the 2-slice).

Moving on to the second equation, S11
δ (m) implies that there are users awaiting service

in the 1-buffer for the 1-slice (n1 > m), while there are unutilized resources in the 2-slice
(n2 < N − m), and n1 + n2 <= N. This situation indicates that the number of users
waiting for the 1-slice is either less than or equal to the idle resources available in the 2-slice,
ensuring all waiting users can be accommodated. Thus, we engage the precise number of
necessary idle resources from the 2-slice, which, in this case, corresponds to the count of
waiting users from the 1-slice, or n1 −m. The third and fourth equations present analogous
circumstances, yet they involve an augmentation in the volume of resources for the 2-slice.

Furthermore, the network slice provider has the ability to determine which of these
principles is the most important and can adjust their relative importance. Each principle is
assigned a weight (w1, w2, w3) to indicate its significance. The reward function is expressed
with a negative sign to represent a “penalty” for incorrect resource reallocation.

5.5. Policy Iteration by R. Howard

Let us define the average reward as

ga = ∑
s∈S

R(s)π(s),

where π(s) is the stationary probability distribution.
The system of equations for the average reward (ga) and estimates va(s), s ∈ S , for

the iterative solution method is given as

va(s) =

R(s) + ∑
s′∈S\s

q(s′|s, a)va(s′)− ga

∑
s′∈S\s

q(s′|s, a)
, s ∈ S . (5)

The objective function for improving the control policy is calculated using the formula

a(s) = arg max
a∈As

va(a, n1, n2), s ∈ S . (6)
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Thus, the iterative algorithm for calculating the optimal policy is summarized in
Algorithm 1. The primary benefit of this algorithm, when compared with a straightfor-
ward brute force approach, lies in its computational complexity and the reduced number of
iterations necessary to ascertain the optimal policy. The brute force technique’s computa-
tional complexity is contingent upon the dimensions of the set of admissible policies for
each state within the system. Moreover, the convergence rate of the iterative algorithm
is contingent upon the judicious selection of the initial solution. We adopt the baseline
algorithm, previously discussed, as this initial solution. This algorithm aligns with one of
the resource reallocation tenets, specifically the principle of maximum resource utilization.
Subsequent demonstration will reveal that by employing this approach, the optimal policy
can be achieved in merely three iterations.

Algorithm 1 Policy iteration algorithm.

1: n← 0
2: va(s)[0]← 0, s ∈ S
3: a(s)[0]← by Formula (2) ▷ Baseline algorithm
4: solve System (5)
5: a(s)[n + 1]← by Formula (6) ▷ Policy improvement
6: if a(s)[n + 1] = a(s)[n], s ∈ S then return a(s)[n + 1], va(s)[n], ga[n]
7: n← n + 1, go to step 5
8: end if

6. Numerical Results

In this section, we present various metrics of interest and analyze the impact of
weights on the optimal policy, as well as the relationship between reward and the number
of iterations in the policy iteration algorithm.

6.1. Considered Scenarios

We focus on evaluating the performance of two specific services, namely, web browsing
and bulk data transfer. The numerical parameters for each service can be found in Table 6.
The recommended delay time (trk) and allowable delay time (tak) for data transfer are
utilized to estimate the minimum-bit-rate guarantee (b) and the abandonment rate due
to impatience of users in buffers (εk). The total bit rate for all network slice resources is
calculated based on the chosen bandwidth, modulation and coding scheme (MCS), and
MIMO scheme.

Table 6. Parameters for numerical example.

Parameter Description Value (Case 1) Value (Case 2)

B Bandwidth 5 MHz 5 MHz
− MCS QPSK QPSK
− MIMO scheme 2 × 2 2 × 2
C Total bit rate for two network slices 10 Mbps 8.016 Mbps
δ Arrival rate of signals from the controller 0.000001 1/s 0.000001 1/s
(w1, w2, w3) Weights for the reallocation principles (1, 1, 1) (1, 1, 1)
tr1, tr2 Recommended delay time 15, 2 s 15, 2 s
ta1, ta2 Allowable delay time 60, 4 s 60, 4 s
b Minimum-bit-rate guarantee 1.067 Mbps 1.067 Mbps
R1, R2 Size of 1-buffer and 2-buffer 5, 5 2, 2

λ1, λ2
Arrival rate of requests from 1-users and 2-
users 0.03, 0.6 1/s 2–10, 26–50 1/s

µ1, µ2
Average volume of traffic transmitted by 1-
users and 2-users 0.125, 0.937 Mb 0.125, 0.937 Mb

ε1, ε2
Abandonment rate due to impatience of 1-
users in 1-buffer and of 2-users in 2-buffer 0.01, 0.25 1/s 0.01, 0.25 1/s
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6.2. Impact of Weights on Policy

Consider a fragment of the policy for different weights in the reward function. Figure 7
illustrates that for a fixed set of weights, and policy m (size of 1-slice) varies depending
on system states. Moreover, the policy is also influenced by the specific set of weights.
The provider modifies the weighting according to their prioritization. In scenarios where
all parameters are equivalent in value, uniform weights are allocated, exemplified by
(1, 1, 1). Conversely, should a particular criterion—such as one of three fundamental
principles—be deemed more pivotal, its associated weight is augmented. For example,
should the optimization of resource utilization take precedence, the weight distribution
might be adjusted to (1, 1, 1000).

Figure 7. Optimal policy depending on weights (w1, w2, w3) (different colors are associated with
different numbers).

Let us examine a specific state s = (6, 0, 3), assuming that C = 8. In this state, six units
of resources have been reallocated for the 1-slice; there are users in the 1-buffer; and the size
of the 2-slice is 2, with one user in the buffer. If all weights in the set are equal, there is no
change in the policy (no reallocation occurs). However, with set w = (1, 1, 1000), where the
weight corresponding to the principle of maximum resource utilization is given the highest
importance, reallocation does occur: the resource of the 1-slice is reduced by 1, and a user
from the 2-buffer is processed. This same scenario also applies to set w = (1, 1000, 1000).

6.3. Reward and Number of Iterations

The brute force method is not a suitable solution for finding the optimal policy. Instead,
the iterative algorithm developed by R.A. Howard can be used, which allows for the
determination of the optimal policy in fewer iterations. When using this algorithm, it is
necessary to set a termination condition, which, in this case, is the stabilization of both the
policy and the reward values. The baseline algorithm can be selected to start the algorithm,
as it maximizes resource utilization. The choice of the baseline algorithm affects the number
of iterations required to find a solution, as it aligns with one of the considered reallocation
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principles. The optimal policy should also correspond to the highest reward value. As
shown in Figure 8, the optimal policy was achieved after only three iterations, with the
reward increasing with each iteration.

Figure 8. Average reward vs. number of iterations to find the optimal policy.

In certain scenarios, the optimal policy may not be unique and may periodically
overlap. In such cases, any of these policies can be selected, as long as it results in the
maximum reward and stabilization. It is important to note that the chosen policy is also
influenced by the system’s parameters. Different parameter values lead to varying rewards,
iterations, and types of policies. As illustrated in Figure 9, we examined the impact of arrival
rate λ1 of requests from 1-users on a fixed set of reward function weights w = (1, 1, 1).

Figure 9. Average reward vs. arrival rate λ1 of requests from 1-users.
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6.4. Metrics of Interest

If a reward function is necessary for comparing policies, performance metrics are more
important for providers. We considered characteristics from the provider’s perspective
rather than the user’s perspective, such as the average number of requests in the buffer
and the average waiting time. These characteristics include the probability (β) of resource
reallocation if a signal arrives and the coefficient (γ) of resource utilization. These coeffi-
cients have the same meaning as the weights in the reward function (the second and third
terms, respectively).

β = ∑
s=(m,n1,n2)∈B

π(m, n1, n2),

where B =
{

s ∈ S : n1 > m, n2 < N −m ∨ n2 > N −m, n1 < m
}

,

γ =
γ1 + γ2

2
,

γ1 = ∑
s∈S : n1≥m

π(m, n1, n2) + ∑
s∈S : n1<m

n1

m
· π(m, n1, n2),

γ1 = ∑
s∈S : n2≥N−m

π(m, n1, n2) + ∑
s∈S : n2<N−m

n2

N −m
· π(m, n1, n2).

Figure 10 illustrates the graphs for the coefficient (β) of resource reallocation for a
fixed set of reward function weights w = (1, 1, 1). Since the baseline algorithm prioritizes
maximum resource utilization over the resulting reallocation, its coefficient is lower than
that of the optimal policy, which considers all principles equally. As the arrival rate of
requests increases, there are fewer vacancies in the buffer and fewer resources available for
data transfer. However, it is not possible to increase the total size of both slices; only the size
of the k-slice can be changed by “moving the boundary”. Therefore, in this scenario, the
resulting resource reallocation decreases due to fewer states where “moving the boundary”
is necessary.

Figure 10. Probability that if a signal arrives, this results in resource reallocation. (A) Baseline
algorithm. (B) Optimal policy.

Figure 11 displays the graphs for the resource utilization coefficient (γ) for a fixed set
of reward function weights w = (1, 1, 1). As the baseline algorithm aims for maximum
resource utilization, its coefficient is close to one. However, the optimal policy considers
multiple principles simultaneously, resulting in a coefficient of approximately half the size.
With an increase in the arrival rate of requests, a larger slice size is needed, causing the
coefficient to increase.
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Figure 11. Resource utilization coefficient. (A) Baseline algorithm. (B) Optimal policy.

Figure 12 illustrates the relationship between the coefficients in question and the rate
of signals (δ) from the controller in the context of the baseline algorithm. The graphical data
indicate that an increase in signal reception frequency correlates with a reduced necessity
for adjusting the boundary between slices. Concurrently, although there is a reduction in
the characteristic of resource utilization, its magnitude remains appreciably high.

Figure 12. Metrics for baseline algorithm. (A) Probability that if a signal arrives, this results in
resource reallocation. (B) Resource utilization coefficient.

6.5. Discussion and Future Research: Model Modifications

Expanding this model to encompass additional slices results in a stochastic process
characterized by states (m1, m2, . . . , mK−1, n1, n2, . . . , nK), with K denoting the total number
of slices. However, this expansion necessitates the derivation of the optimal policy to
manage resources effectively. The efficiency of resource allocation thus becomes a criti-
cal concern. The formulation of the optimal resource allocation strategy, represented by
(m1, m2, ..., mK−1), is essential to enhancing system performance. As the number of slices
grows, so does the complexity of the state space and the array of potential policies, poten-
tially leading to increased computational demands and iteration counts to reach a solution.
Moreover, selecting an appropriate initial policy becomes more challenging. It is crucial to
acknowledge that with a rising number of service providers, the foundational algorithm
previously discussed cannot be directly implemented. But the idea from paper [50] could
be used.

Addressing the limitations of our system model, we incorporate elastic traffic, which
assumes that data volume requirements are parameters, whereas real-time streaming traffic
relies on user-determined service durations. In such a case, the transition rate matrix,
q(s′|s, a), would require modification. Regarding IoT services, the applicability of our
model is contingent upon the specific service type. For instance, if the service involves
sensors transmitting data where volume—not transmission time—is important, then our
model is applicable.

Beyond the Poisson arrival process, alternative processes such as MAP and BMAP
offer more complex structures that enable queuing systems to adjust to variable traffic
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loads dynamically. It is pertinent to note that while Poisson processes represent a sim-
pler flow type, MAP can be viewed as a subset of BMAP; BMAP allows for multiple
simultaneous arrivals.

This model can also be examined under dynamic conditions within a stochastic
environment. For example, considering a controller’s operational status—functional or
non-functional—within the framework of an unreliable system is pertinent. To account for
factors such as communication channel conditions or the distance between a base station
and a user, one must employ resource queuing system methodologies.

6.6. Discussion and Future Research: Computing Optimal Policy

It is important to recognize that assigning uniform weights within the reward function
does not necessarily ensure the maximization of all three principles simultaneously, as
conflicts may arise among them. For instance, certain scenarios may preclude the possibility
of optimizing resource utilization while achieving equitable resource distribution across
slices. The dynamics of their interplay warrant closer examination in future research.

Beyond the brute force approach and Howard’s iterative algorithm, alternative meth-
ods exist for finding solutions, such as neural networks. Additional techniques include
linear and nonlinear programming, the asymptotic optimization method, and dynamic
programming. A comparative analysis of these methods against the iterative algorithm
could be beneficial in discerning their respective strengths and weaknesses.

The solutions derived with the MDP are inherently contingent on the initial parameters.
An area of ongoing investigation is the robustness of these solutions to variations in the
initial data. This could involve identifying parameter ranges associated with specific albeit
not necessarily optimal policies that remain satisfactory.

Furthermore, future studies will aim to broaden the numerical analysis by exploring
the determination of optimal policies using neural networks. This strategy would entail
using the system’s current state as input to generate the policy as output. When employing
neural networks, it is crucial to consider computational demands and model intricacy.
Selecting an appropriate optimizer and compiling a suitable training dataset may present
challenges. Nevertheless, it is hypothesized that neural networks could yield swifter
solutions for extensive datasets compared with iterative methods.

7. Conclusions

In this paper, we investigate the technology of network slicing using a controllable
queuing system with elastic traffic, motivated by the desire to utilize network resources
more efficiently. We construct a system model for one network slice provider and two
network slice service providers. An iterative algorithm is used to implement the required
model in order to find the optimal policy for resource reallocation. This method allows
for faster results compared with the brute force approach. Additionally, the principles
guiding resource reallocation are determined and include maximum matching for equal
resource partitioning, maximum share of the signals resulting in resource reallocation, and
maximum resource utilization.

The numerical results obtained indicate that the optimal policy depends on several
factors, including the current state of the system and the ratio between the weights in the
reward function. Furthermore, the choice of the initial reallocation based on one of the
principles is also significant. In our case, the initial reallocation was correctly chosen to
correspond to the maximum resource utilization, leading to a solution being found in fewer
iterations. We also explored the performance indicators, such as the coefficient of resulting
resource reallocation and the resource utilization coefficient. The obtained results indicate
that the optimal policy obtained using the constructed model is effective compared with
the initial one.
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