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Abstract: Forest vegetation and soils in headwaters can control runoff and surface erosion. However,
it remains unclear how vegetation affects nutrient exports from cool-temperate forest headwaters
during intense rain events that transport sediment-associated nutrients, such as phosphorus (P). To
clarify this, we targeted an upstream landslide area and analyzed P contents in surface soils and total
P (TP) in stream water of the undisturbed (UF) and landslide-bearing forest (LB) catchments. The soil
P content was higher in the UF catchment than in the LB catchment, but differences in the average TP
concentration and load during low flows between these catchments were not significant. Conversely,
the overall runoff and the TP load were three and ten times higher in the LB catchment than in the
UF catchment, respectively, during a rain event with daily precipitation of 49 mm, despite the soil P
content being much lower in the LB catchment. Particulate P (PP) accounted for more than 90% of
the TP load during the rain event in the LB catchment, whereas dissolved P accounted for more than
80% of the TP load in the UF catchment. Therefore, soil surface mobility strongly affected P transport
in the forest catchments. Our study suggests that vegetation not only reduces PP loads by controlling
runoff, but also influences stream P forms in cool-temperate forests.

Keywords: Atsuma; dissolved organic phosphorus; dissolved organic matter; fine sediment particle;
natural disaster; surface erosion

1. Introduction

The increasing magnitude and frequency of heavy rainfalls can transport large amounts
of nutrients from terrestrial to aquatic ecosystems owing to the increasing volume of stream
water [1–4]. Especially, landslide areas caused by natural disasters, such as earthquakes
and heavy rainfall, drain large amounts of sediment-associated nutrients, i.e., particulate
nutrients, via surface erosion because of the absence of vegetation [5,6]. Because bare soil
surfaces in the landslide areas have little capacity to moderate surface water infiltration,
rainfall directly removes soil nutrients, and surface runoff often transports particulate
nutrients from soils to water courses. These particulate nutrients may then reach enclosed
waters, such as lakes and coastal seas, where they can cause water degradation and severely
affect primary production [7].

In Japan, forests occupy approximately two-thirds of the land cover. Unlike landslide
areas, forests in Japan are expected to mitigate storm runoff and soil erosion [8]. This
is because forest vegetation and litter intercept part of the rainfall, thereby reducing the
raindrop impact on soil surfaces [9]. Additionally, an aggregate structure develops in
forest soils; thus the infiltration capacity is high, which reduces peak runoff and the rate
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of soil erosion more effectively than other land cover types [10,11]. Therefore, nutrient
concentrations in forest streams are generally low [12,13]. Ide et al. [14] indicated that large
volumes of drainage water from forests should flow into downstream rivers and dilute
nutrient concentrations during storms in a river basin with several land cover types in
western Japan. They also suggested that the effectiveness of forest buffers against increased
nutrient concentrations during storms was little different between coniferous and broad-
leaved forests, while forest coverage has been recognized as one of the important factors
influencing nutrient concentrations in river basins (e.g., [15–21]).

Phosphorus (P) is a limiting factor controlling primary production in aquatic ecosys-
tems and is often transported from land to downstream lakes and coastal waters [22]. The
P exported from forests influences the productivity of freshwater bacterioplankton, algae,
and macrophytes, although the P concentration in forest streams is generally low [23,24].
Because forests occupy much of the land cover in Japan, the total amount of P exported
from forests can critically affect nutrient levels in downstream rivers and waters [14]. A
dissolved form of P in a forest stream can be sorbed onto the bed sediment surfaces, and
some of the bioavailable dissolved P is assimilated into biomass during low flows; thus,
sediment loads can act as a sink of P within the stream channel [25]. On the other hand,
most P draining from forests is associated with sediment loads and exported in a particu-
late form during raid increases in runoff in response to intensive rainfalls [26–28]. Several
studies have implicated that both the magnitude and frequency of precipitation change
in response to climate change in cold-region forests [29–31]. Fujibe et al. [32,33] showed
that the frequency of intensive rainfall and dry weather has been increasing in Japan.
Ide et al. [26] showed that intensive rainfall following dry conditions caused a rapid in-
crease in particulate P load from a temperate forested catchment. The total amount of
particulate P exported from forests is predicted to increase in northern Japan under climate
change conditions [34].

On the other hand, in cold-region forests, such as boreal forests, deciduous forest
stands supply much of the leaf litter to soils, and a large amount of organic matter is
accumulated in forest soils; consequently, dissolved organic matter (DOM) in soil solutions
plays a critical role in nutrient transport [35,36]. This is attributable to the slow decom-
position of soil organic matter, such as litter leaf; thus, large carbon pools exist in soil
solids and solutions, which provide high concentrations and molecular weights of DOM
in stream water [37,38]. Since terrigenous DOM forms a complex with nutrients, much P
can be transported in a dissolved form from soils to watercourses in cold-region forests.
Kortelainen et al. [36] observed that 70%–90% of P was exported in a dissolved form in
21 unmanaged boreal streams. However, little information is available regarding how the
existence of forest vegetation affects P transport processes, including P forms in stream
water, in cool-temperate forests.

This study aimed to examine how the existence of the forest vegetation affects P ex-
ported from a cool-temperate forest in northern Japan in response to an intensive rain event.
To achieve this, we targeted an upstream landslide area induced by a massive earthquake,
observed rainfall and stream runoff, and analyzed the soil and water chemistry in the
undisturbed and landslide-bearing forest catchments in the region. We first compared soil
P content and stream P concentrations and loads during low flows between the catchments.
Then we examined vegetation effects on P runoff characteristics in a cool-temperate forest
by comparing changes in stream P concentrations and loads during an intensive rain event
between the catchments.

2. Materials and Methods
2.1. Site Description

This study was conducted in an upstream area of the Habiu River Basin, which was a
headwater part of the Atsuma River Basin in Iburi Subprefecture, northern Japan (42◦46′N,
141◦58′E; 120–200 m a.s.l.; Figure 1). This region was severely affected by the 2018 Hokkaido
Eastern Iburi earthquake [39]. The underlying bedrock consists of Neogene sedimentary
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rock. Soils in our study catchments were composed of humus layers (i.e., andosol, 0–0.5 m
deep), pyroclastic deposits (i.e., tephra, 0.5–2.0 m deep), and weathered bedrock layers
(2.0–2.6 m deep). According to Istiyanti and Goto [40], physical properties of these soils
were as follows: bulk density of ca. 0.5–1.0 g cm–3, soil particle density of 2.4–2.8 g cm–3, and
void ratio of ca. 2–4. The climate is classified as cool temperate [41], and the dominant forest
vegetation is a mixture of secondary deciduous forest, which consists mainly of Betulaceae
and Fagaceae, such as Japanese white birch (Betula platyphylla) and mizunara (Quercus
crispula), and coniferous forest, such as Japanese larch (Larix kaempferi) and Sakhalin fir
(Abies sachalinensis). The average annual precipitation and air temperature from 1992 to
2021 were 1040 mm y–1 and 7 °C, respectively [42].

Landslide area

UF
LB

30  N

35  N

40  N

45  N

125  E 130  E 135  E 140  E 145  E

Weir

Figure 1 Ide et al.

Figure 1. Location and map of the undisturbed (UF) and landslide-bearing forest (LB) catchments.

We targeted two neighboring, forested headwater catchments (distance between the
catchments: 370 m). One catchment included the landslide area, which was located
mainly on the left bank, and was thus called the landslide-bearing forest (LB) catchment
in this study. The failure depth of the landslide area ranged from 0.4 to 1.6 m in this
catchment, causing the absence of the humus layer and exposure of the weathered soils on
the landslide scars. The area and the landslide coverage of the catchment were 0.7 ha and
52%, respectively. Approximately 35% of the catchment was covered by forest canopy, and
the remaining 13% surfaces were covered by herbaceous vegetation. The other catchment
was little damaged by the earthquake, covered by cool-temperate forests, and thus called
the undisturbed forest (UF) catchment in this study. The area and the landslide coverage of
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this catchment were 1.1 ha and 0%, respectively. The average slope gradients of the LB and
UF catchments were 25◦ and 33◦, respectively. Each catchment has a perennial stream.

2.2. Hydrological Surveys and Soil and Water Samplings

A triangular-notch weir was installed at the end of each catchment (Figure 1). Wa-
ter levels were recorded at 10-min intervals using a capacitance water level gauge (SE-
TR/WT500, TruTrack, Christchurch, New Zealand) at each weir. The actual water level
and the runoff volume at each weir were also measured monthly using a metal measure
and a measuring cylinder, respectively. Rainfall was recorded at 10-min intervals using a
tipping-bucket rain gauge (7852, Davis Instruments, Hayward, CA, USA) installed at the
exposed area near the LB catchment.

Soil samples were collected from a soil depth of 0–5 cm in each catchment on 15
September 2022. The samples were collected at nine locations from the lower to the
upper positions on each of the left and right banks, which totaled 18 locations within
each catchment. Litter leaves were removed from the soil surface when collecting soil
samples derived from the humus layer in the UF catchment and some undefined mixture
of humus and weathered soils in the LB catchment. Stream water between rain events was
manually sampled once a month from April to November 2022. Intensive sampling was
also conducted at hourly intervals for 24 h using an automatic sampler (Sigma 900, Hach
Company, Loveland, CO, USA) installed at the end of each catchment during a rain event
that occurred on 24 June 2022. The total rainfall and the 10-day antecedent rainfall of the
rain event were 49 mm and 23.4 mm, respectively. The stream water samples were stored
at a temperature of 5 °C in the dark until analysis.

2.3. Chemical Analyses

The soil samples were oven-dried at 105 °C for three hours, sieved through a 1-mm
mesh, and then ground to powder using a mortar. An amount of 0.5–1 g of the ground
soil sample was digested with concentrated nitric acid and hydrogen peroxide using an
acid-circulating decomposition system (ECOPRE system, ACTAC, Tokyo, Japan), and then
soil phosphorus content was measured using inductively coupled plasma optical emission
spectroscopy (IRIS Advantage ICP-OES, Thermo Fisher Scientific, Whatman, MA, USA).
The carbon content of the ground soil samples was determined using an elemental analyzer
(vario MAX CNS, Elementar, Langenselbold, Germany).

The total phosphorus (TP) in the water samples was measured using the molybdenum
blue (ascorbic acid) absorptiometry after the water samples were digested with potassium
peroxydisulfate (JIS K 0102 [43]). Dissolved phosphorus (DP) was measured using the
same method as TP after the water samples were filtered through glass-fiber filters with
a nominal pore size of 0.7 µm (GF/F, Whatman, MA, USA). Particulate phosphorus (PP)
was calculated by subtracting DP from TP. Dissolved organic carbon (DOC) and dissolved
silica (SiO2) were analyzed using the combustion catalytic oxidation method (TOC-L, SHI-
MADZU Corp., Kyoto, Japan) and the molybdenum yellow absorptiometry, respectively,
after the water samples were filtered through glass-fiber filters. For the analysis of sus-
pended sediment (SS), the water samples were filtered through glass-fiber filters, and the
residues were then oven-dried at 105 °C for two hours and weighed.

Statistical analyses were performed using R (version 4.1.3), which is an open-source
environment for statistical computing (R Foundation for Statistical Computing, Vienna).

3. Results
3.1. Soil Phosphorus and Carbon

The soil phosphorus (P) content was significantly higher in the undisturbed forest (UF)
catchment than in the landslide-bearing forest (LB) catchment (U-test, p < 0.05; Figure 2).
There was no significant difference in the soil P content between the left and right banks
in the UF catchment (U-test, p = 0.537). On the other hand, the soil P content in the LB
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catchment was clearly higher on the right bank than on the left bank, as it was below the
detection limit on the left bank.
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Figure 2. Soil phosphorus (P) and carbon (C) contents on the left and right banks of the undisturbed
(UF) and landslide-bearing forest (LB) catchments. Error bars represent standard deviations. An
asterisk represents a significant difference in the soil C content between the left and right banks
(U-test, p < 0.05).

The soil carbon (C) content was significantly higher in the UF catchment than in the
LB catchment (U-test, p < 0.001; Figure 2). There was no significant difference in the soil C
content between the left and right banks in the UF catchment (U-test, p = 0.251). On the
other hand, the soil C content in the LB catchment was significantly higher on the right
bank than on the left bank (U-test, p < 0.01).

3.2. Stream Phosphorus during Low Flows

The variability in the TP concentration was significantly higher in the LB catchment
than in the UF catchment (test of homogeneity of variance, p < 0.001; Figure 3). However,
there was no significant difference in the average TP concentration during low flows
between the two catchments (U-test, p = 0.148). Similarly, there was no significant difference
in the average TP load between the two catchments (U-test, p = 0.272). The TP load during
low flows greatly varied depending on runoff in both catchments (Figure A1).
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Figure 3. Boxplots for the total phosphorus (TP) concentration and load obtained monthly during the
observation period in the undisturbed (UF) and landslide-bearing forest (LB) catchments. Closed
diamonds and open circles represent mean and outlier values, respectively. Whiskers represent
highest and lowest values within 1.5 times the interquartile range.

3.3. Stream Phosphorus during a Rain Event

The maximum peak runoff was delayed by just 10 min from the maximum peak
rainfall during a rain event in the LB catchment (Figure 4), indicating that runoff rapidly
increased in response to rainfall. On the other hand, the maximum peak runoff was delayed
by an hour from the maximum peak rainfall in the UF catchment. Additionally, the total
amount of runoff during the rain event in the UF catchment was approximately one-third of
that in the LB catchment (Table 1). Reflecting these runoff characteristics, TP concentrations
in stream water were higher in the LB catchment than in the UF catchment during the rain
event, excluding the first water samples (Figure 4). Similarly, PP concentrations were higher
in the LB catchment than in the UF catchment, excluding the first water samples, although
DP concentrations were generally higher in the UF catchment. The average TP and PP
concentrations were significantly higher in the LB catchment than in the UF catchment,
whereas the average DP concentration was significantly higher in the UF catchment (U-test,
p < 0.001 in all cases; Figure 5). The total TP and PP loads during the rain event were higher
by an order of magnitude or more in the LB catchment than in the UF catchment, whereas
the total DP load differed little between the two catchments (Table 1). The total DP load
accounted for more than 80% of the total TP load in the UF catchment.
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Figure 4. Hyeto-hydrograph and temporal variations in concentrations of total phosphorus (TP),
dissolved phosphorus (DP), particulate phosphorus (PP), dissolved organic carbon (DOC), and
dissolved silica (SiO2) during a rain event in the undisturbed (UF) and landslide-bearing forest
(LB) catchments.

Table 1. Rainfall, runoff, runoff coefficient, and the total load of total phosphorus (TP), dissolved
phosphorus (DP), particulate phosphorus (PP), and suspended sediment (SS) during an intensive
rain event in the undisturbed (UF) and landslide-bearing forest (LB) catchments.

UF Catchment LB Catchment

Rainfall (mm d−1) 49.0
Runoff (mm d−1) 5.7 15.7
Runoff coefficient 0.1 0.3

TP load (g ha−1 d−1) 2.7 23.6
DP load (g ha−1 d−1) 2.3 1.3
PP load (g ha−1 d−1) 0.4 22.4
SS load (g ha−1 d−1) 10.3 32.4
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Figure 5. Boxplots for total phosphorus (TP), dissolved phosphorus (DP), and particulate phosphorus
(PP) concentrations during a rain event in the undisturbed (UF) and landslide-bearing forest (LB)
catchments. Closed diamonds and open circles represent mean and outlier values, respectively.
Whiskers represent highest and lowest values within 1.5 times the interquartile range. Asterisks
represent significant differences in the concentrations between the two catchments (U-test, p < 0.001).

DOC concentrations were higher in the UF catchment than in the LB catchment during
the rain event (Figure 4). They were slightly higher during the former half of the event
than during the latter half in the UF catchment, whereas they changed little during the rain
event in the LB catchment. SiO2 concentrations were also higher in the UF catchment than
in the LB catchment during the rain event (Figure 4). They slightly increased during the
falling (recession) limb of hydrograph in the UF catchment.

The TP, DP, PP, and SS loads were positively proportional to runoff during the rain
event in the UF and LB catchments (Figure 6a,b,d–h). However, the slope of the regression
line between the PP load and runoff was not statistically significant in the UF catchment
(Figure 6c; test for regression slope, p = 0.054). Similarly, the determination coefficient of
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the regression line between the load and runoff for SS was smaller than those for TP and
DP in the UF catchment.
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Figure 6. Relationships between the load and runoff for total phosphorus (TP), dissolved phosphorus
(DP), particulate phosphorus (PP), and suspended sediment (SS) during a rain event in the undis-
turbed (UF) and landslide-bearing forest (LB) catchments. Broken lines represent regression lines
((a) y = 41.68x + 0.22, R2 = 0.97; (b) y = 38.75x + 0.04, R2 = 0.99; (d) y = 97.01x + 3.22, R2 = 0.49;
(e) y = 15.94x–0.22, R2 = 0.98; (f) y = 0.79x, R2 = 0.99; (g) y = 15.15x–0.20, R2 = 0.98; (h) y = 22.3x–0.33,
R2 = 0.97). Note that the slope of the regression line between the PP load and runoff in the UF
catchment was not statistically significant (p = 0.054); hence, no line is shown in (c).

PP concentrations were significantly correlated with SS concentrations during the rain
event in the UF and LB catchments (t-test, p < 0.001; Figure 7). The slope of the regression
line between the PP and SS concentrations was significantly larger in the LB catchment
than in the UF catchment (test of homogeneity of regression, p < 0.001). This represented
the larger PP-to-SS ratio in the LB catchment than in the UF catchment. Based on the slopes
of the regression lines (Figure 7), approximately 51% and 6% of SS, on average, were made
up of PP in the LB and UF catchments, respectively.
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4. Discussion

The much higher soil P content in the undisturbed forest (UF) catchment than in the
landslide-bearing forest (LB) catchment (Figure 2) indicated that P was accumulated in
the surface soils presumably due to litter accumulation, decomposition, and thereby the
supply of organic matter and nutrients to the soil surfaces in the cool-temperate forest.
This was also supported by the much higher soil C content in the UF catchment than in
the LB catchment. Conversely, the LB catchment lacked many sources of litter because the
landslide area accounted for more than half of the catchment. The remaining vegetation and
soils on the right bank could be sources of stream P in the LB catchment (Figures 1 and 2).

The average TP concentration during low flows was little different between the two
catchments (Figure 3). However, the average TP concentration and the total amount of
the TP load during the rain event were approximately two and ten times higher in the
LB catchment than in the UF catchment, respectively (Figure 5 and Table 1). This was
attributable to the absence of forest vegetation and soils in the landslide area of the LB
catchment (Figure 1). A much larger amount of runoff and the SS load in the LB catchment
than in the UF catchment (Table 1) suggests that surface runoff occurred in the landslide
area and contributed to the rapidly increased stream water and the surface erosion during
the rain event. This was also supported by the fact that most of the TP was exported in a
particulate form, i.e., PP, during the rain event in the LB catchment (Figure 4 and Table 1),
although high levels of TP and PP were observed on the first sampling data in the UF
catchment possibly due to the collection of P attached to sediments accumulated in the
weir during the antecedent period by an automatic sampler. Because the soil P content was
undetectable on the left bank in the LB catchment, the remaining forest vegetation on the
right bank could supply P to the surface soils. The low coverage of forest vegetation in the
LB catchment suggests that canopy and litter interception was insufficient to prevent P-
bearing soil surfaces from being impacted by raindrops; thus, a large amount of P attached
to surface soils was transported to the stream channel. This was also supported by the
strong positive relationships between runoff and the PP and SS loads during the rain event
in the LB catchment (Figure 6g,h).

SS has been recognized as a carrier of nutrients in forest streams and particularly tends
to adsorb and bond with P [26,44,45]. In the present study, the PP-to-SS ratio during the
rain event was, on average, tenfold higher in the LB catchment than in the UF catchment,
whereas the SS concentration was much lower in the LB catchment (Figure 7). This was
attributable to the fact that finer sediment particles were transported from the LB catchment
than from the UF catchment because many substances including nutrients are preferentially
associated with a finer fraction of the soil, which has a larger specific surface area [46]. Soil
disturbances, such as landslides, break the structure of soil aggregates and thus the fine
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fraction would become enriched in the sediment particles transported from the landslide
area during rain events [47–49]. Kyuka et al. [50] reported that the SS yield accounted for
approximately 90% of the total sediment yield in the downstream river of our study site,
i.e., the Atsuma River. It is therefore plausible that a large amount of P attached to fine
sediment particles during rain events was transported from the landslide-bearing forest
headwaters in the Eastern Iburi region to the outlet of the Atsuma River.

The average TP concentration during the rain event was little different from that
during low flows in the UF catchment even though the total rainfall during the rain event
was intense (Figures 3 and 5). Higher levels of SiO2 during the rain event in the UF
catchment than in the LB catchment (Figure 4) imply that base flow and subsurface flow
made a larger contribution to runoff during the rain event in the UF catchment [51–53].
This is also supported by the fact that, during the rain event, the maximum peak runoff was
much lower and the lag time between the maximum peak rainfall and runoff was longer
in the UF catchment than in the LB catchment (Figure 4), indicating that runoff gradually
increased in response to rainfall in the UF catchment.

Most P was exported in a dissolved form (DP), and DP concentrations were generally
higher than PP concentrations during the rain event in the UF catchment (Figure 4 and
Table 1), suggesting that subsurface flow transported DP from soils to the stream channel.
Several studies have reported that most P was exported in a particulate form (PP) from
forest catchments [26,27,54–58]. Ide et al. [26,54,59] described that a large amount of PP
was intensively exported from a Japanese cypress (Chamaecyparis obtusa) plantation under
poor management practices during rain events. This was attributable to the fact that in
such plantations, poor management practices have resulted in bare soil surfaces and the
subsequent high mobility of soil particles by raindrops. Conversely, in the UF catchment,
litter was accumulated, and the organic layer was present because deciduous broad-leaved
forest stands were dominant, which was reflected in the higher levels of soil C content
and DOC concentration than in the LB catchment. Leaf litter is not only an important
source of soil nutrients but also a primary source of dissolved organic matter in forested
headwater streams [60–64], and some studies have shown that DOC load was greater
in deciduous broad-leaved forests than in other forests, such as coniferous and mixed
forests [65,66]. Bol et al. [67] reported that dissolved organic P (DOP) is the mobile form of
organic P, which principally derives from leaching of plant litter and microbial metabolites,
exudation by plant roots, and solubilization of soil organic matter during degradation. DP
should contain colloid-associated P and nanoparticle-associated P because the definitions
of colloidal and nanoparticulate size ranges overlap with that of the dissolved component
of P [68–70]. Gottselig et al. [71] showed that the binding of P to the nanoparticulate
medium-size fraction was strongly affected by the presence of organic matter. DP and
DOC concentrations in the UF catchment were slightly higher during the former half of
the rain event than during the latter half (Figure 4), implying that much DOP was leached
from subsurface soils to the stream channel with increasing runoff during the rising limb
of the hydrograph. This is also supported by the fact that changes in the DP load could
be explained mostly by runoff (Figure 6b; Ide et al. [54]). Missong et al. [72] showed that
colloids were important in facilitating P leaching from forest topsoils because 12%–91% of
the P leached was associated with colloids in soil solutions, depending on the soil types.
Taken together, our results suggest that the existence of forest stands plays an important
role not only in intercepting rainfall, controlling runoff, and preventing surface soil erosion,
but also in changing the chemical composition of stream P by supplying organic matter to
soil surfaces in cool-temperate forests.

5. Conclusions

This study investigated the effects of vegetation on phosphorus runoff in a cool-
temperate forest in northern Japan by comparing the soil P content and the stream TP
concentration and load between the undisturbed (UF) and the landslide-bearing small
forest (LB) catchments. We found that a much larger amount of TP was exported in the
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LB catchment than in the UF catchment during an intense rain event even though the
soil P content was much lower in the LB catchment. This indicates that low coverage of
forest vegetation and soils in the catchment increased runoff and thereby enhanced the
mobility of P attached to sediment particles, leading to a large P loss. In other words,
our results indicate that forest vegetation could control runoff and P transport processes
during an intensive rain event. Additionally, the higher proportion of DP than PP in
TP in the UF catchment suggests that the existence of forest vegetation and soils affects
the P forms in stream water in the cool-temperate forest. Because this study targeted
just one intensive rain event, further research is needed to more accurately understand P
transport processes in cool-temperate forest catchments by targeting multiple rain events
with different rainfall intensities.
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the undisturbed (UF) and landslide-bearing forest (LB) catchments during the observation period.
Note that rainfall data were missing during 11–22 November; runoff data in the UF catchment were
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missing during 1–11 April, 6–14 August, 6–19 September, and 4 October–10 November; and the TP
concentration data in the LB catchment was missing in June.
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