
Citation: Li, J.; Jin, L.; Zheng, Z.

A 278-Year Summer Minimum

Temperature Reconstruction Based

on Tree-Ring Data in the Upper

Reaches of Dadu River. Forests 2023,

14, 832. https://doi.org/

10.3390/f14040832

Academic Editors: Li Qin,

Lushuang Gao, Vladimir V. Shishov

and Ruibo Zhang

Received: 17 March 2023

Revised: 9 April 2023

Accepted: 16 April 2023

Published: 18 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

A 278-Year Summer Minimum Temperature Reconstruction
Based on Tree-Ring Data in the Upper Reaches of Dadu River
Jinjian Li 1,2 , Liya Jin 1,2,* and Zeyu Zheng 1

1 MOE Key Laboratory of Western China’s Environmental System, College of Earth and Environmental
Sciences, Lanzhou University, Lanzhou 730000, China; ljj@cuit.edu.cn (J.L.); zhengzy17@lzu.edu.cn (Z.Z.)

2 Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, School of Atmospheric Sciences,
Chengdu University of Information Technology, Chengdu 610225, China

* Correspondence: jinly@lzu.edu.cn

Abstract: In the context of global warming, climate change in river headwater regions and its
drivers have attracted increasing attention. In this study, tree-ring width (TRW) chronology was
constructed using tree-ring samples of fir (Abies faxoniana) in Dadu River Basin in the central part
of the western Sichuan Plateau, China. Correlation analysis with climatic factors implies that the
radial growth of trees in the region is mainly limited by temperature and has the highest correlation
with the mean minimum temperature in summer (June and July) (R = 0.602, p < 0.001). On this basis,
the TRW chronology was adopted to reconstruct variations in the mean minimum temperatures
in summer from 1733 to 2010 in the upper reaches of Dadu River. The reconstruction equation
was stable and reliable and offered a variance explanation rate of 36.2% in the observed period
(1962~2010). In the past 278 years, the region experienced nine warm periods and ten cold periods.
The warmest and coldest years occurred in 2010 and 1798, respectively, with values of 13.6 ◦C and
11.0 ◦C. The reconstruction was highly spatiotemporally representative and verified by temperatures
reconstructed using other tree-ring data in surrounding areas. A significant warming trend was
found in the last few decades. Moreover, the multi-taper method (MTM) analysis indicated significant
periodic changes in quasi-2-year and 21–35-year periods, for which the El Niño Southern Oscillation
(ENSO) and the Pacific decadal oscillation (PDO) could be the key controlling factors.

Keywords: tree ring; temperature reconstruction; up catch of river; climate change; China

1. Introduction

The short-term instrument measurements and sparse distribution of meteorological
stations are the main factors that limit our understanding of regional climate change, par-
ticularly in alpine and plateau regions [1,2]. Additionally, to reveal the characteristics,
causes, and trends of climate change at various temporal and spatial scales and forecast
future climate change and its impacts, long-term climate records are needed [3,4]. Existing
research and analysis of historical climate change generally rely on climate proxy data, par-
ticularly high-resolution climate proxy data. These data not only provide important basic
information for verifying climate modes but also play a crucial role in understanding the
characteristics and causes of climate and environmental changes, performing climatic pre-
dictions, and analyzing the relationship between human activities and climate change [5–7].
Numerous scholars have used climate proxy data such as ice cores, lacustrine sedimentary
records, and historical literature to reconstruct climate change over the past several cen-
turies and millennia [8–10]. Among diverse climate proxy data, tree-ring data are highly
regarded due to their accurate dating and high time resolution. By using tree-ring data,
multiple climate series were reconstructed, which revealed the trends and characteristics of
historical climate change [11–14].

Recent research has shown that the Qinghai–Tibet Plateau (QTP) is the driver of climate
change in China and the whole of East Asia [15,16]; as such, this area’s climate-change
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characteristics have attracted increasing attention. Located between the main part of QTP
and the Sichuan Basin, the Western Sichuan Plateau (WSP), which is scarcely populated
and covered by rich vegetation, is a transition zone from the alpine climate zone of the QTP
to the subtropical climate prevailing in the Sichuan Basin [17,18]. Climate characteristics
are of important scientific significance for determining climate change in the QTP, the
nearby Sichuan Basin, and even the entirety of southwestern China. Since the 1990s, many
tree-ring researchers have sampled tree rings in the WSP to reconstruct the climate changes
at numerous locations in the plateau using the tree-ring width (TRW), maximum density,
isotopes, etc. These researchers have made great efforts to reveal the historical climate
changes over the past 100~500 years on the WSP [18–23]. Rivers are densely distributed over
the WSP and breed important tributaries of the Yangtze River, including the Minjiang River,
Dadu River, and Yalong River. However, existing tree-ring-based climatological research in
the WSP mainly focuses on alpine timberline with old trees and mainly represents plateau
climates, while attention to climate change in river regions remains to be improved [3].
Against this background, Abies faxoniana samples were collected by setting sampling points
on slopes along banks of the main tributaries upstream of Dadu River in the central part
of the WSP to construct the TRW’s chronology. Based on an analysis of the relationship
between the TRW and climatic factors, temperature variations in the last several hundred in
the upper reaches of Dadu River were reconstructed, thus revealing temperature variations
and enabling us to explore the possible drivers. This research expands our understanding
of long-term climate change in river headwater regions and provides a scientific basis for
ecological conservation in these regions.

2. Materials and Methods
2.1. Study Area and Tree-Ring Data

The tree-ring samples used in this research were collected from the Lover Sea scenic
area in Maori Township, Aba Tibetan, and Qiang Autonomous Prefecture, Sichuan Province,
China (101◦42′ E, 31◦31′ N, Figure 1). Abies faxoniana tree rings were collected at sampling
points established on the slope of main tributaries upstream of Dadu River at an altitude
of 3000 m. This region is within the range of the QTP climate zone. Under joint action of
the jet stream in the Southern Branch of the westerlies, southeast monsoon, and southwest
monsoon, a mountain climate affording a cold winter, cool summer, and moderate rainfall
is formed in the region [17]. The annual mean temperature (1961~2010) is 10.6 ◦C, and the
monthly mean temperature changes during the year are single-peaked, with the lowest
temperature (0.9 ◦C) in January and the highest temperature (18.5 ◦C) in July. The annual
mean precipitation (1961~2010) is 634.5 mm, and the monthly precipitation distribution
shows a bimodal pattern, with peaks, respectively, in June and September. Tree cores
were collected within several square kilometers (not exceeding 0.2 square kilometers) in
the sampling points where the difference in elevation did not exceed 100 m. The forest
depression of the sampling site was up to about 0.4. The trees were mostly healthy living
trees, and the understory vegetation was rich, with common plants, such as rhododendron
and lonicera, a denser grass cover layer, and scattered mosses of 10~30 mm. An increment
borer was used to collect two tree cores (three from some trees) at breast height. A total of
59 cores were collected from 24 old trees.

All core samples were pre-processed following the basic international procedures for
tree-ring analysis [24,25]. A Lintab system with a precision of 0.01 mm was used to measure
the TRW, and the COFECHA software [26] was adopted for cross-dating. Afterward, the
ARSTAN program [27] was used for detrending to eliminate non-climatic information
contained in the original TRW and retain as much climatic information as possible. By
repeatedly fitting the growth trend using different methods, the spline function with a step
of 50 years was found to perform best in fitting the growth trend. Finally, we obtained three
tree-ring chronologies: standard (STD), residual (RES), and autoregressive standard (ARS)
chronologies [27]. Several core samples with large differences from the main series were
eliminated in the process of constructing the chronologies. STD chronology was mainly
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adopted for the analysis. The total length of the chronology was 336 years (1675~2010),
and the average sensitivity was 0.158. In the common period of 1900~2000, the intra-tree
and inter-tree correlation coefficients were, respectively, 0.604 and 0.208, and the expressed
population signal (EPS), signal-to-noise ratio (SNR), and variance explained by the first
principal component were, respectively, 0.943, 16.518, and 29.7%. These statistical character-
istics of the chronologies indicate that the chronology has the potential to reflect past climate
change. EPS > 0.85 was used to determine the reliable interval of the chronology [21,28].
After reaching 21 tree rings, the EPS exceeded 0.85, so the reliable period was deemed to be
1733~2010 (Table 1 and Figure 2).
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Figure 1. Locations of the sampling site, meteorological stations, (a) and monthly mean temperatures
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(Danba, Luhuo, Jinchuan, Xiaojin, and Daofu) during the period of 1962~2010 (b).

Table 1. Statistical characteristics of the chronology.

Statistical Characteristic Values

Period 1675–2010
Common period 1900–2000

First-order autocorrelation (AC1) 0.773
Signal-to-noise ratio (SNR) 16.518

Mean sensitivity (MS) 0.158
Mean correlations within trees 0.604

Mean correlations between trees 0.208
Expressed population signal (EPS) 0.943

Period with EPS > 0.85 (minimum number of trees) 1733 (21)
Variance of first eigenvector (PC1) 29.7%

2.2. Meteorological Data

Meteorological data used in this study included monthly mean temperature, maximum
temperature, minimum temperature, and precipitation from 1961 to 2010 recorded at five
stations: Danba County (101◦88′ E, 30◦88′ N, at an altitude of 1950 m), Luhuo County
(100◦67′ E, 31◦40′ N, at an altitude of 3250 m), Daofu County (101◦12′ E, 30◦98′ N, at an
altitude of 2957 m), Jinchuan County (102◦07′ E, 31◦53′ N, at an altitude of 2169 m), and
Xiaojin County (102◦35′ E, 31◦ N, at an altitude of 2369 m). The mean values of climatic
factors at the five stations were used to characterize the climatic characteristics of the study
area. Sea surface temperatures were taken from the Extended Reconstructed Sea Surface
Temperature V5 (ERSST V5) dataset with a spatial resolution of 2◦ × 2◦ provided by the
National Oceanic and Atmospheric Administration (NOAA).
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2.3. Methods

Pearson’s correlation analysis was used to identify the key climatic factors in this study.
The method of leave-one-out cross-validation (LOOCV) was used to assess the stability and
reliability of the reconstruction equation. The main statistic parameters were the correlation
coefficient (R), variance explanation (R2), sign tests, sign tests of first-order difference, F
value, mean product (t), and reduced error (RE) [24]. The standard deviation (SD) could
reflect the degree of the dispersion of a data set; it was used to identify extreme climate
events [18,21,29]. Here, a mean threshold of ± 1.5 times the standard deviation (SD) was
used to judge years with extremely high and low temperatures. A year with a reconstructed
temperature higher than the mean + 1.5SD was regarded as an extremely warm year; if the
reconstructed temperature was lower than the mean −1.5SD, the year was considered to
be an extremely cold year. To determine the decadal variations in cold and warm periods,
time periods lower and higher than the mean temperature for more than nine successive
years were defined as cold and warm periods, respectively, based on low-pass filtering
of the reconstructed series for 11 years. The multi-taper method (MTM), which is a low-
variance high-resolution spectral analysis method especially suitable for diagnostic analysis
of quasi-periodic signals with short sequences and high noise background [30,31], was
used to identify the cycle of reconstruction.

3. Results
3.1. Climate-Growth Response Analysis

Figure 3 illustrates correlations of the tree-ring index with regional climatic factors (includ-
ing the mean temperature, maximum temperature, minimum temperature, and precipitation).
Results showed that for correlations with precipitation, the radial growth of trees was signifi-
cantly negatively correlated in the previous December (R = −0.346, p < 0.05) and significantly
positively correlated with the current July (R = 0.321, p < 0.05). For correlations with the
temperature, the radial growth of trees was significantly positively correlated with the mean
and minimum temperatures in June and July of the current year (R = 0.528, 0.284, 0.503, and
0.489, respectively; p < 0.05) and the maximum temperatures in February and June of the
current year (R = 0.283 and 0.5, respectively; p < 0.05). Therein, radial growth was the most
significantly correlated with mean temperature in June, with a correlation coefficient of 0.528
(p < 0.01). Correlation analysis was also performed for climatic factors under different month
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combinations. The results indicated that the mean minimum temperatures in June and July
were most significantly correlated with the tree-ring index, with the correlation coefficient
reaching 0.601 (p < 0.01). Meanwhile, the 31-year moving correlations also showed that the
tree-ring index had a stable relationship with the climatic factors (Figure 4).
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3.2. Temperature Reconstruction

According to the above analysis, linear regression equation was established by taking
the tree-ring index as the independent variable and the July–June average minimum
temperature (TminJJ) as the dependent variables:

TJ J = 9.029 + 3.499× I

where TJJ is the reconstructed June–July mean minimum temperature, and I is the growth
index for the total period of calibration (1733–2010). The reconstruction equation explained
36.2% of the variance of the TminJJ series in the region, which was 34.9% after adjusting the
degree of freedom, and the correlation coefficient was 0.602 (n = 49, p < 0.001).

The equation was tested through leave-one-out cross-validation (LOOCV), and the
statistics in each test are summarized in Table 2. Here, the reduced error (RE = 0.36),
mean product (t = 3.07), correlation coefficient (r = 0.602), and F-test statistic (F = 26.733)
all reached a 0.01 significance level, indicating the stability of the reconstruction equation.
Meanwhile, the sign tests and sign tests of the first-order difference between the recon-
structed and measured values both reached a 0.01 significance level, suggesting a good
reconstruction effect when using the reconstruction equation on both low-frequency
and high-frequency variations. As shown in Figure 5a, the observed and reconstructed
TminJJ values were very consistent in the instrumental period (1962–2010).

Table 2. Test statistics in leave-one-out cross-validation of the regression equation.

Time
Period

Correlation
Coefficient

Variance
Explanation F-Value Sign Tests

Sign Tests of
First-Order
Difference

Mean
Product (t)

Reduced
Error (RE)

1962~2010 0.602 36.2% 26.733 36 (32 *, 34 **) 34 (32 *, 34 **) 3.07 0.36

Note: * and ** are the numbers of same signs needed for 0.05 and 0.01 significance levels, respectively.

3.3. Temperature Variation Characteristics

Figure 5b presents variations in the reconstructed TminJJ over 278 years (1733~2010).
Here, the mean value of the reconstructed temperature series is 12.5 ◦C; the highest and
lowest values of TminJJ are 11.0 ◦C (in 1798) and 13.6 ◦C (in 2010), respectively, with a
standard deviation (SD) of 0.4 ◦C. Ultimately, 13 and 20 years, respectively, were found to
be extremely warm and cold years over the past 278 years (Table 3), accounting for 4.3%
and 7.2% of the period. Therein, 1858~1859 and 1983~1984 featured persistent extremely
warm years for two or more years, while 1797~1799, 1819~1820, 1843~1844, 1874~1875,
1907~1908, and 2003~2004 featured persistent extremely cold years for two or more years.
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Table 3. Extreme events during the past 278 years.

Year
The Value of

Extremely High
Temperature (◦C)

Year
The Value of

Extremely High
Temperature (◦C)

1735 13.2 1797 11.2
1788 13.4 1798 11.0
1808 13.5 1799 11.8
1858 13.3 1819 11.9
1859 13.2 1820 11.7
1863 13.4 1843 11.8
1884 13.2 1844 11.8
1887 13.3 1872 11.5
1889 13.3 1874 11.6
1933 13.4 1875 11.8
1983 13.2 1878 11.8
1984 13.2 1900 11.8
2010 13.6 1907 11.8

1908 11.6
1918 11.7
1920 11.9
1968 11.7
1990 11.8
2003 11.8
2004 11.7

During 1733~2010, there were nine warm periods and ten cold periods. The warm
periods occurred in 1733~1743, 1771~1791, 1804~1814, 1825~1837, 1853~1864, 1881~1899,
1924~1936, 1950~1962, and 1980~1988; the cold periods happened in 1759~1770, 1792~1803,
1815~1824, 1838~1852, 1865~1880, 1900~1911, 1915~1923, 1937~1949, 1963~1979, and
1989~1997.

As shown in Figure 6, the results of MTM at a confidence level of 95% indicated that
the reconstructed series mainly features an interannual variation period of 2 years and a
decadal oscillation period of 21 to 35 years.
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4. Discussion
4.1. Climate Responses

As shown in Figures 3 and 4, the summer temperatures (June and July), particularly
the minimum temperatures, are the leading limiting factor influencing the radial growth
of trees in the region. The samples were established near the alpine timberline in the
central part of WSP, where the climate is mainly driven by the East Asian monsoon (EAM)
and South Asian monsoon (SAM). In summer, it becomes rainy and hot, which coincides
with the most vigorous and rapid growth of trees in the region. The high temperatures
in summer are favorable for the photosynthesis of trees. Particularly, a higher minimum
temperature can promote the accumulation of nutrients produced by photosynthesis and
accelerate the splitting of cambial cells, which is conducive to the production of wide tree
rings [32,33]. Conversely, a lower minimum temperature in summer not only limits the
accumulation of photosynthesis products but can also affect the root system development
and water uptake of trees [34,35], thus forming narrow tree rings and even frost rings or
missing rings. Therefore, the mean minimum temperature in summer is the main limiting
factor that affects the growth of Abies faxoniana and has specific physiological significance.
Similar climatic limiting factors were also found in others research focusing on high-altitude
or high-latitude areas [32,36–38].

In addition, correlation analysis showed that precipitation also affected the radial
growth of Abies faxoniana, with precipitation in December of the previous year and the
current July showing significant negative and positive correlations with the tree-ring
index, respectively. In winter, precipitation mainly occurs in the form of snow, and more
precipitation in winter may lead to a longer duration of snow cover, thus delaying cambial
activity and shortening the reproductive period [39–41], resulting in a narrower tree-ring
width. In contrast, greater precipitation in summer compensates for the evaporation of soil
water, which facilitates root activity and photosynthesis, thus promoting the radial growth
of trees.

4.2. Verification of the Reconstructed Temperature

It is necessary to explore whether the regional representativeness of the reconstructed
series is consistent with the observed series across a large range. To this end, spatial
correlation analysis was conducted for the reconstructed and the observed TminJJ using
the grid data of the Climate Research Unit (CRU TS4.06) in the same period. The results are
shown in Figure 7. Here, the spatial correlations of observed (Figure 7a) and reconstructed
TminJJ (Figure 7b) values with CRU data exhibit similar spatial patterns, suggesting high
representativeness of the reconstructed TminJJ for the WSP and QTP. However, due to the
possibility of the loss of some variation characteristics in the reconstruction, the correlations
between the reconstructed TminJJ and CRU data were weaker than those of the observed
and CRU data.
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To verify the reliability of the reconstructed series, the reconstructed series was com-
pared with some reconstructed temperature series in surrounding areas (Figure 8). The
reconstructed series for comparison and validation included the mean maximum tempera-
ture in May and June in the southeastern Qinghai–Tibet Plateau reconstructed by Zhang
et al. [17], the anomaly series of mean minimum temperatures in summer in the Yangtze
River headwater region reconstructed by Liang et al. [33], and the PC1 series reflecting
mean minimum temperatures in the Western Sichuan Plateau reconstructed by Shao and
Fan [42]. During the comparison, 11-year Gaussian low-pass filtering was performed for
all series. As shown in Figure 8, despite certain differences in the reconstruction seasons
and objects, the reconstructed TminJJ in the current research presented high consistency
with cold and warm periods of the other three reconstructions. This result further val-
idated the reliability of the reconstructed series. The cold and warm periods that were
well reflected by all of the four reconstructions included warm periods in the 1780s, 1810s,
1830s, 1880s~1890s, 1950s, and 1980s and common cold periods in the 1790s, 1870s, and
1960s. Except for the aforementioned cold and warm periods, the warm periods in the
early 1750s and 1850s and the cold periods in the 1760s and 1840s were also commonly
reflected by three reconstructed series (including those in this study). In addition, the four
reconstructions also differed in their views of cold and warm periods. These differences
may arise from the discrepancy in local climate due to different reconstruction time periods,
reconstruction objects (maximum or minimum temperatures), and habitats at different sam-
ples. These differences may occur because of the deviations caused by the use of different
detrending methods when presenting the chronologies. Some other reconstructions also
recorded the cold and warm periods reflected by the reconstructed TminJJ in this study. The
continuous cold period from 1900~1923 was also reflected by the reconstructed temperature
variations of southeastern QTP in winter [43], the mean temperatures in June and July
in the WSP [18], the mean temperatures from June to August in the Eastern QTP [44],
and the mean temperature field during May and June in the southeastern QTP [2]. The
warm period from 1950 to 1962 was also well reflected by the reconstructed annual mean
minimum temperatures in Hengduan Mountains [37] and the annual mean temperatures
in Songpan [45].
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Figure 8. Comparisons between our reconstruction and other proxies: (a) PC1 series reflecting mean
minimum temperatures in the WSP [42]; (b) the anomaly series of mean minimum temperatures in
summer in the Yangtze River headwater region [33]; (c) the mean maximum temperature in May
and June in the southeastern Qinghai–Tibet Plateau [17], and (d) the reconstructed mean summer
minimum temperature of the present study. Here, 11-year Gaussian low-pass filtering was performed
for all series.
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Although few historical climatic events before 1950 can be determined, some clues
can still be garnered from historical records to provide evidence for a reconstruction.
According to some low-temperature events (snow disasters and freeze-related injuries) in
the Sichuan Volume of the China Meteorological Calamity Grand Ceremony [46], there
were few low-temperature events, indicating a high-temperature period. Correspondingly,
low-temperature events were frequently recorded in the low-temperature period. For
example, 1865~1880 was found to be a cold period in our reconstruction. Correspondingly,
large-scale snow disasters happened frequently from the 1860s to early 1870s, particularly
in 1871, in which snow disasters were most severe: “countless passers-by died, and most
cattle and sheep froze to death” [46]. Thereafter, snow disasters occurred frequently from
1890 to 1930, and snow disasters were recorded to happen in counties and cities around the
study area in 1913, 1917, and 1922 [46]. This period corresponds to the two continuous cold
periods from 1900 to 1911 and 1915 to 1923 in the reconstructed series.

The glacial advance and retreat around the study area also conform to the reconstruc-
tion [47–49]. The continuous low-temperature periods reflected by the reconstructed series
correspond to the stable or advanced stages of glaciers. Glacial recession or significant
glacial retreat were observed when the reconstructed series showed a persistent trend
toward increasing temperatures or when the temperature remained high.

4.3. Climate Responses

MTM spectral analysis of the reconstruction shows that the reconstructed series in-
cluded significant periodic changes (Figure 6). Furthermore, wavelet analysis indicated
the significant presence of decadal oscillations with a period of 21~35 y, nearly through-
out the period analyzed. The interannual periodic changes of 2 y mainly correspond to
high-frequency oscillations of the reconstructed series. On the one hand, this result is likely
related to the quasi-two-year period commonly present in the climatic system; on the other
hand, these changes are consistent with the main period of El Niño–Southern Oscillation
(ENSO), indicating that ENSO may have a certain modulating effect on temperature varia-
tions in the region. Similar results were also obtained for the reconstructed temperature in
the surrounding areas [17,21,50,51]. The decadal periodic oscillation is likely related to Pa-
cific decadal oscillation (PDO), which was verified in numerous studies as one of the main
factors controlling decadal climate variability in East Asia [17,52,53]. The reconstructed
series has a correlation coefficient of 0.14 with the reconstructed PDO [54] (1733~2004,
p < 0.05), indicating that PDO exerts an important influence on the temperature in the study
area. Here, when PDO is in a warm phase, the sea temperature in the middle-east equator
of the Pacific Ocean is higher, and the location of the ridge point of the western Pacific
subtropical high (WPSH) is much more westward. The study area is likely to be controlled
by WPSH, with strong downdrafts leading to higher temperatures. Conversely, if PDO is
in a cold phase, it becomes conducive to the northward movement of warm and humid air
flows, leading to frequent rain and relatively lower summer temperatures in the study area.
Studies in the nearby area revealed that PDO is one of the main controlling factors [55,56].
Correlations between the reconstructed series and sea surface temperature (SST) of the
Pacific also support this result (Figure 9).
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5. Conclusions

TRW chronologies were constructed using tree-ring samples of Abies faxoniana collected
on the Snowy Mountains in Dadu River Basin in the central part of WSP. The summer (June
and July) mean minimum temperature was reconstructed for the period of 1733~2010. The
reconstruction equation was found to be stable and reliable, with a variance explanation
rate of 36.2% in the observed period (1962~2010). A total of 13 years of extremely high
temperatures and 20 years of extremely low temperatures occurred in the past 278 years. In
addition, there were 9 warm periods and 10 cold periods on a decadal scale. The correlation
analysis shows that the reconstruction is highly spatiotemporally representative. Moreover,
the reconstruction could be verified by other temperatures reconstructed using tree-ring
data, historical meteorological disaster records, and glacial advance and retreat events in
surrounding areas. The MTM results suggest that there were significant quasi-2-year and
21–35-year cycles in temperature variation in the study area. ENSO and PDO were possibly
important controlling factors of temperature variations in the region. The reconstruction
results indicate greater historical climate change at the western Sichuan Plateau and provide
a reference for tackling climate change.
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