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Abstract: Repetitive observations (direct measurements) of seasonal kinetics of xylogenesis and
simulations (proxy data) with tree growth models are the two main approaches available to assess
tree-ring growth and development. Both have drawbacks: short cover period for observations; limited
accuracy of simulations depending on input data for models. We proposed an implementation of both
approaches on the same trees to find ways for compensation. Cell numbers at subsequent xylogenesis
stages were observed for Pinus sylvestris L. over five seasons in moisture-deficient habitats of Southern
Siberia. The Vaganov–Shashkin model was parameterized for species and soil-landscape conditions to
fit local tree-ring width chronologies (R = 0.56–0.73). Seasonal kinetics variables were then compared
among themselves and with the simulated environmentally driven growth rate. The number of cells
in the cambial and cell enlargement zone closely followed the curve of the 15-day moving average of
the simulated growth rate (R = 0.56–0.87 at one site and R = 0.78–0.89 after shifting rate curve forward
by 17–20 days at another site). The maximum number of cambium cells, which occurred within three
weeks of the summer solstice, was found to be positively related with the number of tracheids in
the complete tree ring (R2 = 0.12–0.75 for individual seasons and 0.49 for total dataset), making it a
promising short-term forecast variable for tree radial growth and productivity.

Keywords: continental Siberia; drought-sensitive habitat; Pinus sylvestris L.; tree rings; seasonal
growth kinetics; xylogenesis; cambium cells; cells in enlargement zone; tree growth modeling;
Vaganov–Shashkin process-based model

1. Introduction

Modeling is an effective tool for analyzing plant growth and development processes,
which helps overcome the costs and commitment required from individuals and organi-
zations in long-term forest monitoring [1–4]. It is notably useful in comprehending the
complex reactions of temporal and spatial patterns in forest structure and function to a
changing environment, but experimental verification of model algorithms is often limited
or extremely difficult [5,6]. The developed models of the seasonal growth of xylem face
limitations from the short duration of direct observations and/or the complexity of mea-
suring the seasonal dynamics of cellular and especially cytoplasmic components [7–10].
Therefore, it has not yet been possible to directly test many promising hypotheses, such as
spatial control of cambium functioning by the balance of major hormones [11–17]. More
circumstantial evidence is used in these cases, such as testing if models based on these
hypotheses conform to available observations of seasonal growth kinetics and/or wood
anatomical structure.

Coniferous wood predominantly consists of regular radial files of tracheids [18]. Its
development begins with cells division in the cambium, and then newly formed cells after
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several more divisions undergo differentiation through stages of expansion and secondary
wall deposition, culminating in mature tracheids apoptosis [19–34]. The kinetics of tree
rings formation is studied by counting cell numbers in separate zones of a developing
ring on dyed cross-sections of periodically collected samples [25–29]. On a temporal
scale, these measurements allow the static pattern at a particular moment in the growth
season to be translated into a kinetic pattern that can sometimes even be described by
analytical functions [25,29–31]. In addition to tree-specific traits (i.e., species, age, and
growth energy), cell number kinetics is naturally regulated by habitat environment (wet,
dry, cold, etc.) and intra-seasonal climatic fluctuations [19,28,32,33]. Due to the temporal
shift in timeframes of subsequent differentiation stages from one cell to the next one [34–36],
information about current environmental fluctuations is presumably recorded sequentially
in the kinetics of seasonal growth [23,27,37]. All this modifies the overall growth pattern of
a tree and is ultimately reflected in the anatomical characteristics of tree rings, including
earlywood-to-latewood ratio, intra-annual density fluctuations (IADFs), cell size, and cell
wall thickness [27,31,38–42].

Similarly, the development and validation of mechanistic growth models, such as
the Vaganov–Shashkin-process-based model (VS-model), is another potentially efficient
method of assessing the influence of external factors on the kinetics of tree-ring seasonal
growth and formation [10,20,43–46]. The VS-model allows users to use solar radiation,
temperatures, and precipitation as input data to simulate the environment-dependent
component of tree-ring width (TRW) variation, making it feasible to compare simulated
and actual TRW indices [46–52]. Daily data on these three environmental variables are
used in the growth block to calculate intra-seasonal dynamics of tree growth rate and to
obtain the TRW index as an integral growth rate over all seasons. The following blocks
of the model predict the intra-seasonal increase in the cell number per radial file in the
tree ring and their sizes based on the seasonal growth rate curve. However, these blocks
are currently in the process of modification to improve their fitness to contemporary
datasets and theoretical advancements [15,53]. Recently published comparative studies
have revealed a satisfactory convergence between actual measurements of seasonal increase
in cell number and their VS-model estimates in several regions [8–10]. The problem of
many process models is determining an adequate parameterization approach, which is
largely influenced by the number of parameters. The technique of parameterization for
the external conditions block of the VS-model, VS-Oscilloscope, has been worked out and
sufficiently automated [8,45,54]. It allows users to adapt model performance to various
species and habitats. In addition, physiological limits of change for several parameters also
facilitate their selection.

In this study, we compared the seasonal kinetics of the cell numbers for five seasons at
various stages of differentiation with the calculated growth rate obtained in the VS-model
in order to estimate quantitatively close relationships between these direct and simulated
indicators of seasonal growth kinetics, and to consider the prospects for using the VS-model
as a proxy for direct measurements of the cell number kinetics in different zones of the
developing tree ring.

2. Materials and Methods
2.1. Study Area and Sampling Sites

The study was carried out in moisture deficit habitats of the Khakass-Minusinsk
Depression, a vast inter-mountain valley in the basin of the Yenisei River (Figure 1). This
region experiences a sharply continental climate and receives an annual precipitation of
about 350 mm based on the data obtained from Minusinsk weather station (53◦41′ N 91◦40′

E, 250 m a.s.l., 1936–2021, https://meteo.ru, accessed on 29 September 2022). The sampling
was carried out from two different locations during five seasons:

1. An isolated pine forest in the steppe zone near the Minusinsk city (MIN; 2014 and
2017—53◦39′ N 91◦36′ E, 320 m a.s.l.; 2021—53◦40′ N 91◦42′ E, 260 m a.s.l.);

https://meteo.ru
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2. The forest-steppe ecotone in the foothills of the Batenevsky Range of the Kuznetsk
Alatau bordering the valley area near the village of Vershino-Bidzha (BID; 2018–2019—
54◦00′ N 90◦59′ E, 600-650 m a.s.l.).
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Figure 1. The study area: (A) satellite map (© Google) with marked locations of sampling sites (cir-
cles) and Minusinsk weather station (triangle); years of sampling are shown next to sampling site 
codes BID and MIN; inset schematic map (adapted from the Map of Khakassia within Russia (CC 
BY-SA 4.0) demonstrates the location of the study area (rectangle) in the Asian part of Russia; (B) 
climatic diagram of Minusinsk station (1936–2021): monthly precipitation (P, bars), maximum 
(Tmax, dark dashed line), mean (Tmean, solid line), and minimum (Tmin, light dashed line) tem-
peratures. 

In the steppe zone, forest stands are represented by Pinus sylvestris L. trees of dif-
ferent ages on sandy aeolian soils with predominantly flat terrain. The undergrowth 
bushes cover about 30% of the stand area and comprise Caragana arborescens Lam., Coto-
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Figure 1. The study area: (A) satellite map (© Google) with marked locations of sampling sites (circles)
and Minusinsk weather station (triangle); years of sampling are shown next to sampling site codes
BID and MIN; inset schematic map (adapted from the Map of Khakassia within Russia (CC BY-SA
4.0) demonstrates the location of the study area (rectangle) in the Asian part of Russia; (B) climatic
diagram of Minusinsk station (1936–2021): monthly precipitation (P, bars), maximum (Tmax, dark
dashed line), mean (Tmean, solid line), and minimum (Tmin, light dashed line) temperatures.

In the steppe zone, forest stands are represented by Pinus sylvestris L. trees of different
ages on sandy aeolian soils with predominantly flat terrain. The undergrowth bushes
cover about 30% of the stand area and comprise Caragana arborescens Lam., Cotoneaster
melanocarpus Fisch. ex Blytt. and Rosa acicularis Lindl., while the herbaceous cover (40%–50%
of the area) is primarily made up of Iris ruthenica Ker.-Gawl., Phleum phleoides (L.) H. Karst.,
Poa pratensis L., Pulsatilla flavescens (Zucc.) Juz. and Thalictrum minus L. Due to their
proximity and similarity in terrain, soil, and undergrowth vegetation, the two locations
chosen for sampling were assumed to have similar climatic conditions.
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The forest-steppe ecotone is signified by a mixed forest stand (Betula pendula Roth.,
Larix sibirica Ledeb. and Pinus sylvestris L.) on stony loamy soil. Sampling was performed
on gentle slopes facing southeast. The forest-steppe ecotone has an undergrowth cover
(20%–30%) comprised of Caragana arborescens Lam., Cotoneaster melanocarpus Fisch. ex Blytt.,
Pentaphylloides fruticosa L., Spiraea chamaedrifolia L. and Rosa acicularis Lindl, whereas the
herbaceous cover (30%–40%) is mainly formed by the Bupleurum spp., Scabiosa ochroleuca L.,
Achillea millefolium L., Allium spp., Sanguisorba officinalis L., Calamagrostis spp., etc. Moss
cover was found to be absent at all sites.

In this study, daily climatic series of the closest Minusinsk weather station (1936–2021)
and latitude of each sampling site were used. Despite the substantial distance of Minusinsk
station from Vershino-Bidja, its air temperature and precipitation series were found to be
more appropriate for dendroclimatic analysis at the BID site compared to Shira, the other
available station located at a similar distance; this could be attributed to the flatter terrain
between Minusinsk and Vershino-Bidja [55].

2.2. Dendrochronological Data

To study the long-term dynamics of P. sylvestris radial growth, wood cores at each site
were collected at breast height using an increment borer from more than 20 healthy mature
dominant and subdominant trees, which were free of close neighbors and mechanical
damage. The full sample at each site (Table 1) included cores from previous expeditions
from 2012 to 2017, as well as cores collected at the end of the respective seasons from
trees observed for seasonal kinetics. Cores were collected and prepared using standard
dendrochronological methods [56]. Tree-ring width (TRW) was measured with an accuracy
of 0.01 mm using the LINTAB 5 measuring tool and the TSAPwin program (Rinntech, Ger-
many; [57]). The accuracy of cross-dating of individual TRW series with master chronology
was verified using the COFECHA program [58]. Raw measurement series were indexed by
eliminating age-related trends described with negative exponent functions, and the TRW
index was calculated as the ratio of the actual value to age trend value. The autocorrelation
component was then also removed. The individual residual series for each sample site
were averaged with a bi-weighted mean to produce the local indexed TRW chronology.
The ARSTAN program [59] was used for indexing and generalization.

Table 1. Statistical characteristics of tree-ring width chronologies.

Characteristics MIN BID

Sample
Number of cores 144 31

Cover period, years 1881–2021 1849–2018
Length, years 141 170

Residual chronology
Standard deviation 0.25 0.29

Inter-series correlation coefficient 0.45 0.55
Mean sensitivity 0.30 0.36

2.3. Vaganov–Shashkin Model

To simulate pine growth, VS-model parameters were estimated using local TRW
chronologies [20,34,46,60]. The model assumes that three key environmental variables
influence seasonal radial growth, including solar radiation, air temperature, and moisture
availability (Figure 2). These three factors determine the daily rate of new xylem cells pro-
duction (growth rate) using the principle of limiting factors. Piecewise linear trapezoidal
functions, which approximate the bell-shaped curve of the law of optimum, were used to
describe the dependences of the growth rate on soil moisture (estimated using temperature,
precipitation, evapotranspiration, and drainage losses) and air temperature. Soil moisture
daily changes in the VS-model are defined with the water balance equation, where the
dependence of evapotranspiration on temperature is described with an exponential func-
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tion [20] (pp. 212); thus, the issue of collinearity does not appear between temperature
and soil moisture, or between respective partial growth rates. The partial growth rate due
to solar radiation is estimated using latitude and daylength for each calendar date. The
general growth rate is then determined by multiplying the partial growth rate caused by
solar radiation to the minimal one of partial growth rates related to temperature and water.
The onset of the growth season is determined by a specific threshold sum of temperatures
for the previous short period, which is usually 60 degree-days over 10 days (Table 7.2 in [20];
cf., critical temperatures 5–8 ◦C required for xylogenesis described by Rossi et al. [35]).
However, the end of the season is not determined in the model other than the temperature
partial growth rate being zero for temperatures below minimal for growth. A more detailed
description of the growth rate calculation is presented in [20] (pp. 211–214).
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Figure 2. Vaganov–Shashkin model, growth block. Daily growth rates due to the environment
are determined by comparing daily temperature and soil moisture (calculated from temperature,
precipitation, evapotranspiration, and soil drainage) to piecewise linear approximations of parabolic
growth functions (inset). Partial growth rates caused by temperature gT(t), by soil wetness gW(t), and
by solar radiation estimated from daylength gE(t) are combined to calculate general growth rate G(t).
Figure adapted from Vaganov et al. [34] with permission from Springer Nature.

In addition to climatic series and latitude, the model includes input parameters de-
scribing tree species characteristics and habitat conditions (Table 7.2 in [20]). The parame-
terization (search for the best combination of model constant parameters) was performed
using the previously developed and widely tested VS-Oscilloscope tool [54]. The quality
of the simulation was examined by dividing the common period of climatic series and
TRW chronologies into sub-periods used for calibration and verification. The correla-
tion coefficient R and the synchronicity coefficient (Glk, the ratio of inter-annual changes
unidirectional in two time series [61]) for the simulated and measured TRW indexes, as
well as the root mean standard error (RMSE [62]), were used as the main indicators of
model quality.
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2.4. Observations of Seasonal Tree-Ring Development

Seasonal growth kinetics was measured directly by annually selecting 7–10 trees of
P. sylvestris in the same general area and following the same principles as the sample
collected previously for radial growth analysis. Samples were collected from mid-April
to mid-September by taking mini cores of 2–3 growth rings on average in every 10-day
interval. Sampling was performed using a hand-made instrument similar to Trephor [63]
but of a larger diameter (4 mm). Samples were collected at an approximate height of
1.3 m on the southern half of the tree trunk surface in oblique rows 5 cm apart from each
other. Collected mini cores were immediately placed in the water-ethanol-glycerol (1:1:1)
solution and stored at a temperature of about 6 ◦C. Wood mini cores were converted into
cross-sections of 14–16 µm thickness using a rotary microtome Microm HM 340E (Thermo
Fisher Scientific, Waltham, MA, USA). Cross-sections were dyed with safranin and astra
blue pigments to distinguish lignified (magenta) tissue from non-lignified (blue) tissue.
Microphotographs of cross-sections were taken at 200× magnification using the digital
camera ProgRes Gryphax Subra (Jenoptik GmbH, Leipzig, Germany) mounted on the
biological microscope BX43 (Olympus, Japan). In each microphotograph, cell numbers
were counted and averaged from 5 radial files in the zones of (1) cambium division, (2) cell
enlargement, and (3) cell wall thickening and mature tracheids (Figure 3). Cambium cells
are the smallest and have the weakest cell walls, resulting in deformed shapes in mounted
cross-sections. In the absence of available polarized light images, which are commonly
used to determine zone boundaries, we interpreted the color change in radial cell walls
from blue to magenta as a sign of lignification and the loss of ability to expand, and such
cells were counted as having transited into the cell wall thickening zone. In all images, the
end of the radial file was clearly visible at the boundary of the previous ring. To estimate
the variability in cell numbers, we calculated the standard error (SE) of their mean values
for these 5 radial files.
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Figure 3. Cross-section of the developing ring of Scots pine sampled on 22 July 2019, at the BID site.
Zones are marked as: ph, phloem; c, cambial zone; e, cell enlargement zone; m, maturation (wall
thickening) and mature cells.

3. Results
3.1. Seasonal Kinetics of Cell Number in the Developing Tree Ring

The number of cells in the cambial zone increased at the beginning of the season,
reached a maximum, and then declined back to a minimum (Figure 4). Simultaneously,
seasonal characteristics were manifested in the beginning dates of the increase in cambial
cell number (e.g., sharp increase from mid-April in 2014), as well as the course of seasonal
dynamics (e.g., a second smaller peak in the cambial cell number in 2017). Under prevailing
environmental conditions, the highest number of cambial cells in a season were recorded
in June and the beginning of July. Although there was a slight delay in the kinetics
time of the number of cells in the enlargement zone compared to the cambium cells, the
shape replicated the kinetics of the cambial cell number (Figure 4). In comparison to the
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enlargement zone, the maturation zone witnessed an additional 15–20 day delay in cell
appearance. This delay indicates the time interval required for the first earlywood cells
to reach their final size when intense lignification begins. The observed estimates show
agreement with results obtained in previous conifer seasonal growth studies performed
under various environmental conditions [10,28,31,32,64].
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thickening and mature cells in developing tree rings of Scots pine at MIN (A) and BID (B) sampling sites.

3.2. Simulation of Radial Growth and Calculation of Seasonal Growth Rates

The tree ring chronologies corresponding to the years of seasonal tree ring measure-
ments at each site (2014, 2017, and 2021 at MIN; 2018 and 2019 at BID) were obtained and
used for modeling. The main statistical characteristics of the chronologies are summarized
in Table 1. The chronologies had similar lengths, standard deviations, and inter-series
correlation values.

The values of the parameters of the environmental block of the VS-model selected
to ensure the maximum convergence of the simulated and actual growth indices in the
VS-Oscilloscope are listed in Table 2, and respective TRW chronologies are presented in
Figure 5. The main statistical characteristics showed a significant agreement between
the simulated and actual radial growth dynamics at both sites, but the values of these
characteristics were slightly higher at the MIN site. Separation of the overlapping period of
instrumental climate series and actual chronologies demonstrated the stability of the model
fitness with selected parameter values.

The main habitat-related input parameters of the VS-model had different values for
each site. Minusinsk exhibited higher optimal and minimum values of soil moisture,
whereas Vershino–Bidzha demonstrated higher values of parameters describing evapotran-
spiration and moisture loss from the soil. This difference is well illustrated by the calculated
VS-model soil moisture for the investigated seasons, which was higher at the MIN than at
the BID site (Appendix A, Figure A1). The optimal range and maximum temperatures for
pine growth were the same at both locations, but the minimum temperature varied by 2 ◦C.
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Figure 5. Simulated VS-model (blue) and actual (red) indices of the Scots pine tree-ring width
(TRW). Vertical dotted lines divide analysis period into sub-periods of calibration and verification.
Presented are statistical characteristics of fitness for entire common period (above plot) and for calibra-
tion/verification periods: R, correlation between modeled and actual TRW index; Glk, synchronicity
coefficient; RMSE, root-mean-standard error (see Methods).

Table 2. Optimal parameters for growth block in VS-model.

Parameter Description MIN BID

Tmin Minimum temperature for tree growth (◦C) 7 5
Topt1 Lower end of range of optimal temperatures (◦C) 11 11
Topt2 Upper end of range of optimal temperatures (◦C) 22 22
Tmax Maximum temperature for tree growth (◦C) 26 26

Wmin
Minimum volumetric soil moisture for tree growth,
relative to saturated soil (rel. unit) 0.095 0.065

Wopt1 Lower end of range of optimal soil moistures (rel. unit) 0.35 0.20
Wopt2 Upper end of range of optimal soil moistures (rel. unit) 0.425 0.400
Wmax Maximum soil moisture for tree growth (rel. unit) 0.575 0.675
Tbeg Temperature sum for initiation of growth (◦C) 70 78

lr Depth of root system (mm) 500 600
Pmax Maximum daily precipitation for saturated soil (mm/day) 42 40

C1
Fraction of precipitation penetrating soil
(not caught by crown; rel. unit) 0.53 0.50

C2 First coefficient for calculation of transpiration * (mm/day) 0.155 0.258

C3
Second coefficient for calculation of transpiration *
(rel. unit per ◦C) 0.115 0.165

* In the VS-model, the evapotranspiration is calculated from the daily growth rate from previous day Gr and
temperature T with a simplified equation: C2·Gr·exp(C3·T).
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According to temperature series and calculated soil moisture dynamics (Appendix A,
Figure A1), cool temperatures slowed the growth onset in 2014, and moderately low soil
moisture was observed throughout the growth season. In 2017, a bout of high temperatures
was observed around DOY 170–180, followed by a cool period immediately afterward and
steady soil moisture relatively close to optimal. The highest soil moisture for the MIN site
across all considered seasons was observed in 2021, accompanied by low temperatures,
particularly before DOY 190. At the BID site, after the cool and wet beginning of the
season, soil moisture steadily decreased and then stayed low during DOY 170–220 in 2018,
while the next season was cooler and slightly less dry, with a drop of soil moisture in the
same dates.

Growth rates curves for these seasons (Figure 6) reflected particular features of these
seasons, such as drought suppression of growth in both years at the BID site, short-term
reaction to hot and dry weather in 2017, and late growth onset in 2021 at the MIN site.
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averaging period of the growth rate.
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3.3. Relationship between Observed and Estimated Seasonal Growth Kinetics

Initially, the total cell numbers in the cambium (cell production) and enlargement zones
were compared with the daily growth rates obtained in the VS-model on the sampling days.
Positive correlations were observed between these two curves. For 2014 and 2021 seasons,
correlations were significant at p < 0.05 (0.48 and 0.87), while nonsignificant correlations
ranged from 0.02 to 0.28 during other seasons. As the simulated growth rates for each
season can have significant fluctuations in daily time resolution, the growth rate curves
were smoothed using a 15-day moving average to obtain more accurate relationships. The
selected 15-day time interval showed correspondence with the estimates of the average
duration of the cell enlargement stage for individual tracheids [19,65–68]. Thus, after
smoothing, the number of dividing and expanding cells on a certain day was compared
with the average growth rate over a 15-day period ending on the same day.

For smoothed growth rate curves, a correlation of 0.56–0.87 (MIN) and 0.26–0.44 (BID)
was observed between the simulated growth rate and seasonal kinetics of cell numbers in
the cambial and enlargement zones (Figure 6). The shapes of actual and simulated growth
rate curves showed notable similarity upon visual examination. According to the graphs,
lower correlations at BID were due to the delays between the growth curves. Therefore,
cross-correlations between calculated and observed curves reached the maximum values of
0.78 in 2018 and 0.89 in 2019 when the calculated curves were shifted forward by 17 and
20 days, respectively.

On the other hand, the sum of cell numbers in cell expansion, wall thickening zones,
and mature tracheids should closely follow the cumulative curve of xylem cells production
and, thus, be comparable to the cumulative growth rate curve. However, as both functions
are cumulative, likely similar to the Gompertz function due to the general bell-shape
of the growth rate and cell production [25], comparison of their stepwise increments
should be more informative. In fact, the difference in cumulative growth rate between
consecutive sampling dates (or just the sum of daily growth rates) was easily comparable
to the difference in the number of differentiating and mature tracheids during the same
time interval (Appendix A, Figure A2). In addition to BID in 2018 (r = 0.16), all correlations
between the curves of growth rate and cell number differences were significant at p < 0.05
and ranged from 0.63 to 0.75. However, there was the issue of negative cell number
differences calculated sometimes in the second half of the vegetative season.

3.4. Relation between Maximum Cambial Cell Number and Seasonal Production of Tracheids

The maximum number of cambial cells for individual trees was observed between 147
and 193 calendar days of the year (27 May to 12 July). At the same time, the number of
cells in the zones of cell wall thickening and mature tracheids was stable after the 240th
day of the year (28 August), and from that point until the end of the season (last sampling
in the second half of September), the majority of trees completely lacked cells at the stage
of enlargement. For each tree, the number of cambial cells during active cell division and
the total number of cells in the tree ring were estimated by averaging over these two intra-
seasonal intervals. A comparison of the obtained estimates showed positive correlations
for all years, and significant linear relationships were found in 2014, 2017, and 2019, as
well as in total local and regional datasets (Table 3, Figure 7). At the same time, the linear
function always crossed the horizontal axis at a point with a positive number of cambial
cells: 1.71–5.60 cells for individual seasons and 3.46–4.24 cells after generalization on the
local scale. Local dataset functions were similar to one another and to the generalized
function for all observations at both sites, where an axis intercept (the number of cells in
the cambium in the absence of production) of 3.59 cells was observed.
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Table 3. Dependences of final cell number in tree ring (Ntr) on maximal number of cambial cells (Nc):
for individual years, for sampling sites, and for total sample. Linear regressions calculated according
to equation Ntr = a·(Nc–Nc0), where a is the numerical coefficient, and Nc0 is the number of cambial
cells when Ntr = 0.

Sample Sample Depth Equation R2 p

MIN 2014 10 Ntr = 8.15·(Nc−3.21) 0.75 0.001
MIN 2017 7 Ntr = 6.52·(Nc−3.22) 0.62 0.035
MIN 2021 7 Ntr = 4.71·(Nc−1.71) 0.40 0.125

MIN all years 24 Ntr = 7.28·(Nc−3.46) 0.60 <0.001

BID 2018 7 Ntr = 5.69·(Nc−2.51) 0.12 0.445
BID 2019 9 Ntr = 11.56·(Nc−5.60) 0.61 0.012

BID all years 16 Ntr = 8.03·(Nc−4.24) 0.32 0.023

Total 40 Ntr = 7.36·(Nc−3.59) 0.49 <0.001
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dataset from two sites (bold solid line) and for particular seasons (thin dotted lines). Nc0 is number
of cambial cells when Ntr = 0.

4. Discussion
4.1. Process-Based Tree Growth Simulation Model and Its Application in the Studied Conditions

The results of this study confirmed the ability of the VS-model to reconstruct tree
radial growth dynamics. In the past, the model has produced reliable results not only for
the study area [39,50] but also for other moisture-deficient regions [43,47,49,64,69]. Several
factors may contribute to the limitations of the model fit to actual data. First, climatic
extremes can not only suppress growth processes but also damage tissues, thus having a
disproportionately large impact on tree growth [70,71]. This argument was supported by
better model values fit for the years of fast and moderate tree growth, but underestimated
growth suppression for the years of minimal growth (Figure 5). Second, the VS-model
represents the bell-like curve of the law of tolerance with a simplified piecewise linear
function, which may lead to biases in the estimations of respective partial growth rates.
Third, threshold temperatures are reported to be symmetrical (approximately equal) for
the onset of xylogenesis and ending of tracheid differentiation [26,35]. This implies that
cambial activity (and TRW formation) terminates at higher temperatures, which is not
currently reflected by the VS-model algorithm.
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The closer model-to-actual-pine-growth data convergence at the MIN sampling site
was probably provided by the proximity of the site to the base weather station. The
magnitude of distance between the base weather station and the Minusinsk sites (2–6 km)
is much shorter than that of the BID site (58 km), which is mainly responsible for the
greater similarity between the climate series of the weather station and actual weather
conditions inside the forest stand. This spatial heterogeneity in climatic conditions is
particularly more pronounced in the distribution of daily rainfall and consequently, the soil
moisture dynamics, and evapotranspiration. The selected values of the main VS-model
parameters also reflected the differences in soil conditions. For instance, the higher soil
moisture required for pine growth in the Minusinsk forest can be associated with sandy
soil, in contrast to the stony and clayey soil in the foothills. The coefficients describing
transpiration and moisture loss from the soil disclosed a higher intensity of these processes
at the BID site, which was associated with the location of model pine trees on a well-
lit southern slope, having a lesser forest-stand canopy cover density, and, consequently,
increased soil warming by direct insolation. Additionally, the pine in the Minusinsk
forest was able to draw some moisture from deeper soil layers due to the flat terrain and
proximity to a watercourse, whereas the slope location of the forest stands at the BID
site prevented this from happening. Conifer growth can be influenced not only by air
temperature, but also by soil warming at the start of the vegetative season [55,72]. As
higher direct surface insolation and faster snowmelt on the sunlit slope can enhance soil
warming in spring in the BID site, thawing of the root-inhabited soil layer at lower air
temperature can possibly explain the lower minimum air temperature for tree growth
obtained by VS-model parameterization for this site despite other temperature boundaries
being identical. For the study area with a high continental climate, the maximum threshold
of mean daily air temperature of 26 ◦C corresponds to maximum diurnal temperatures of
around 36 ◦C, putting it in the correct temperature range for suppression of pine growth.
Similar maximum temperature threshold values for conifer growth have previously been
reported for the VS-model, for example, by Buttò et al. [9].

A comparison of climatic conditions of the studied years (Appendix A, Figure A1)
with calculated growth rates suggests that the seasonality of xylogenesis (the timing of
the beginning and end of growth) in the study area was primarily regulated by threshold
temperatures. However, the rate of xylogenesis was controlled by the water deficit during
the majority of the vegetative season. The maximum of cambial activity, in full accordance
with the basic equation of the growth rate in VS-model, falls near the summer solstice
(21 June), although deviations from it occur due to external stresses during this period.
This is consistent with direct observations of seasonal kinetics in this study, which showed
that the maximum number of dividing cells occurs within three weeks before and after this
date and, thus, supports the idea of photoperiod regulation of xylogenesis [19,73–75].

4.2. Relation between Calculated Growth Rate and Seasonal Kinetics of Xylogenesis

This study has provided the daily dynamics of growth rate to weather conditions as a
significant outcome of pine radial growth simulation. As the tree-ring width has a close
linear relationship with tracheid production in the cambial zone [20,40,76], intra-seasonal
curves of the calculated growth rate can be interpreted as an indirect estimate of the cambial
activity kinetics. Indeed, the intra-seasonal curves of calculated growth in the study area
showed high similarity to the total cell number curve in the cambial and enlargement zones,
which is also supported by the previous observations [45].

Of course, these variables are not equivalent. Their difference and relationship can
be comprehended through analogy with water flow in hydrological objects. The number
of cells at the early stages corresponds to the water level, whereas inflow represents
cell division (i.e., growth rate), and outflow represents the transition of cells into further
differentiation stages. Inflow and outflow are balanced in the long term; water level, despite
its different nature, is closely related to both and can be calculated.
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Following the same principles, the cell number curve in the cambial and cell enlarge-
ment zones can be interpreted as an estimate of the xylem cell production rate, assuming
(1) a delay for the partial and/or total duration of the cell enlargement stage for individual
tracheids, (2) the presence of several cells in the cambial zone during plant dormancy,
and (3) the outermost cells of the cambial zone being dedicated to phloem production.
For the considered trees, the number of cambial cells during dormancy was relatively
stable. Phloem cell production exhibits a correlation with xylem cell production, but higher
stability and less susceptibility to environmental factors [77,78]. It has been reflected by
a closer linear relationship between the rate of total cell production in the cambial zone
and the number of xylem cells versus phloem cells [77]. Moreover, both indicators were
several times lower than xylem production for the relatively wide tree rings considered
in this study. Therefore, in the first approximation, the curve of total cell number in the
cambial and enlargement zones can be described as a linear transformation of the curve
of actual xylem cell production, taking into account the delay for a period from the last
mother cell division up to the end of cell expansion, i.e., up to 20 days and more [19,65–68].

As a result, the close similarity in the shape of curves (both visual and linear regression)
for the simulated growth rate from the VS-model and the actually observed kinetics of cell
number in the early stages of xylogenesis supports the predominant contribution of the
cell division rate to the result of xylogenesis and the high convergence of the model with
actually occurring growth processes at the cell scale.

4.3. Dependence of Seasonal Tracheid Production on the Maximum Cell Number in the
Cambial Zone

It should be noted that the relationship between the total production of xylem cells
per season and the maximum number of dividing cells in the cambial zone was positive at
both sites and for all considered vegetative seasons. As the rate of xylem cell production
within trees appears to vary between different radii [79–81], the technique used to collect
wood samples from varying radii during the season is thought to be the primary source
of uncertainty. The small sample size (number of trees) for each season also contributed
to the high variability of the numerical coefficients and the low significance level of the
correlations. As a result, when samples from different seasons are combined, both within-
site and on a regional scale, the empirical dependence became more stable and gained
a higher level of significance. Based on the timeframe of direct observations of these
related variables, we can conclude that the obtained function can be used for short-term
forecasting of the seasonal production of Scots pine xylem cells in the study area from the
number of cambial cells near the summer solstice. Such a prediction can be helpful in forest
management operations because the tree-ring width and its dependent indicators of tree
productivity (e.g., basal area increment BAI) are closely related to the seasonal production
of xylem cells [20,40,76]. The pattern of quantitative coefficients for this relationship is
also interesting: for all considered individual seasons, and generalized local and regional
datasets, this linear dependence crosses the horizontal axis at a positive number of cambial
cells, the range of which is limited. As the independent variable is the maximum intra-
seasonal value for cambial cell number, this allows us to hypothesize that for pine in the
study area, even under the most extreme conditions and at complete rest, the cambial zone
contains at least three or four cells (theoretically, the cambium initial cell, one-two xylem
mother cells, and one phloem mother cell).

5. Conclusions

We studied the seasonal dynamics in tree-ring development of Scots pine from
moisture-deficit habitats of the Khakass-Minusinsk Depression. The simulated VS-model
daily growth rate, based on soil moisture and air temperature, showed notable accordance
with actually observed new xylem cell production dynamics. The highest number of
cambial cells in a season, recorded near the summer solstice, demonstrated a positive
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relationship with the final total number of tracheids in the tree ring, projecting this variable
as a promising short-term predicting estimation for tree radial growth and productivity.
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Figure A2. Seasonal kinetics of differences in total cell number in cell enlargement, wall-thickening,
and mature zones (∆Nem, black line with markers), and of modeled cumulative tree growth rate
(∆ΣGr, red line); each point is the difference between dates of current and previous sampling. The
horizontal axis represents calendar dates (day of year, DOY) for current sampling.
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