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Abstract: The dynamics of affective decision making is considered for an intelligent network com-
posed of agents with different types of memory: long-term and short-term memory. The consideration
is based on probabilistic affective decision theory, which takes into account the rational utility of
alternatives as well as the emotional alternative attractiveness. The objective of this paper is the
comparison of two multistep operational algorithms of the intelligent network: one based on discrete
dynamics and the other on continuous dynamics. By means of numerical analysis, it is shown that,
depending on the network parameters, the characteristic probabilities for continuous and discrete
operations can exhibit either close or drastically different behavior. Thus, depending on which
algorithm is employed, either discrete or continuous, theoretical predictions can be rather different,
which does not allow for a uniquely defined description of practical problems. This finding is im-
portant for understanding which of the algorithms is more appropriate for the correct analysis of
decision-making tasks. A discussion is given, revealing that the discrete operation seems to be more
realistic for describing intelligent networks as well as affective artificial intelligence.

Keywords: dynamic algorithms; affective decision making; dynamic decision making; affective
artificial intelligence; probabilistic networks; intelligent networks

1. Introduction

Algorithms of modeling dynamic decision making are important for understanding
and predicting the behavior of societies with regard to many principal problems that
people encounter in their life. As examples of such problems, it is possible to mention
climate change, factory production, traffic control, firefighting, driving a car, military
command, and so on. Research in dynamic decision making has focused on investigating
the extent to which decision makers can use the obtained information and the acquisition
of experience in making decisions. Dynamic decision making is a multiple, interdependent,
real-time decision process, occurring in a changing environment. The latter can change
independently or as a function of a sequence of actions by decision makers [1–4].

A society of decision makers forms a network, where separate agents play the role of
network nodes. Decision making in networks has been studied in many papers that are
summarized in the recent reviews [5–8]. The role of moral preferences in following their
personal and social norms has been studied [7].

Here, we consider dynamic decision making in a network of intelligent agents. The
agents make decisions in the frame of affective decision theory that is a probabilistic theory
where the agents choose alternatives taking account of both utility and emotions [9,10].
This theory can serve as a basis for creating affective artificial intelligence [11]. The society
of intelligent agents forms an intelligent network. Interactions between the agents occur
through the exchange of information and through herding effect.

Algorithms 2023, 16, 416. https://doi.org/10.3390/a16090416 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16090416
https://doi.org/10.3390/a16090416
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-4833-0175
https://orcid.org/0000-0001-8582-1868
https://doi.org/10.3390/a16090416
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16090416?type=check_update&version=2


Algorithms 2023, 16, 416 2 of 19

Real-life situations are usually modeled by computer simulations, which is termed
microworld modeling [1,12]. The derivation of equations in dynamic decision making
can be achieved by assuming the time variation of an observable quantity in the presence
of noise and then passing to the equations for the corresponding probabilities [13]. An
important point in dynamic decision making is that living beings need to accumulate
information adaptively in order to make sound decisions [14,15]. This stresses the necessity
of obtaining sufficient information for making optimal decisions. The received information
accumulates in memory, which can be of different types, say, long-term and short-term.
Generally, the type of memory depends on the environment and on the personality of
decision makers. For example, in quickly changing environments, animals use decision
strategies that value recent observations more than older ones [16–18], although in gradually
varying environments, they can have rather long-term memory. Human beings can have
both types of memory, long-term and short-term memories [19].

Decision making in a society of many agents includes several problems. One of them is
associated with multi-agent reinforcement learning [20]. In the latter, one considers a society
of many agents in an environment shared by all members. The agents can accomplish
actions leading to the change of the environmental state with a transition probability usually
characterized by a Markov process. At each step of the procedure, each agent receives an
immediate reward, generally diminishing with time due to time discounting. The aim of
each agent is to find a behavioral policy, which is a strategy that can guide the agent to take
sequential actions that maximize the discounted cumulative reward.

The setup we consider has some analogies, although being quite different from multi-
agent reinforcement learning. We consider a society where the environment for an agent
consists of other society members. The state of the society is the set of probabilities of
choosing alternatives by each member, with the probabilities taking account of the utility
of alternatives as well as their attractiveness influencing the agents’ emotions. The actions
executed by the agents are the exchange of information on the choice of all other members.
The aim of the agents is to find out whether stable distributions over the set of alternatives
exist and, if so, what type of attractors they correspond to. The principal difference from
multi-agent reinforcement learning is in two aspects: first, the aim is not a maximal reward,
but a stable probability distribution over the given alternatives; and second, the influence
of emotions is taken into account.

Considering a sequence of multistep decision events, it is possible to accept two types
of dynamics, based on either an algorithm with discrete time or with continuous time. The
aim of the present paper is to compare these two kinds of algorithms in order to understand
whether they are equivalent or not, and if they could lead to qualitatively differing results.
If it happens that the conclusions are principally different, it is necessary to decide which
of the ways has to be used for the correct description of realistic situations.

The layout of the paper is as follows. In order that the reader could better understand
the approach to affective decision making used in the present paper, it seems necessary
to recall the main points of this approach, which is presented in Section 2 . In Section 3,
the process of affective decision making in a society is formulated. In Section 4, the
picture is specified for a society composed of two groups of agents choosing between two
alternatives in a multistep dynamics of decision making. One group of agents enjoys long-
term memory, while the other short-term memory. Section 5 reformulates the dynamical
process of multistep discrete decision making into a continuous process characterized by
continuous time. In Section 6, a detailed numerical investigation is analyzed comparing
the discrete and continuous algorithms of affective decision making. Section 7 concludes.

2. Affective Decision Making by Individuals

The usual approach to decision making is based on constructing a utility functional
for each of the alternatives from the considered set [21,22]. In order to include the role of
emotions, the expected utility is modified by adding the terms characterizing the influence
of emotions [23–26]. Thus, one tries to incorporate into utility at once both sides of decision
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making: rational reasoning, based on logical normative rules, and irrational unconscious
emotions, such as joy, sadness, anger, fear, happiness, disgust, and surprise. The alternative
that corresponds to the largest expected utility is treated as optimal and is certainly to
be preferred.

The approach we are using is principally different in several aspects: (i) This is a
probabilistic theory, where the main characteristics are the probabilities of choosing each
of the given alternatives. (ii) The probability of a choice is the sum of a utility factor,
describing the probability of a choice based on rational reasoning, and an attraction factor,
characterizing the influence of emotions. (iii) The optimal, or more correctly, a stochastically
optimal alternative, is that which is associated with the largest probability.

The mathematically rigorous axiomatic formulation of the theory has been carried out in
Refs. [9–11]. The theory starts with the process of making decisions by separate individuals.
Here, we state the main points of the approach in order that the reader could better understand
the extension to decision making by a society, as is presented in this paper.

First of all, decision making is understood as a probabilistic process. Let us consider
decision makers choosing between the alternatives from a set

A = {An : n = 1, 2, . . . , NA}. (1)

The decision makers are considered as separate agents making decisions indepen-
dently from each other. Equivalently, it is possible to keep in mind a single decision maker
deciding on the given alternatives. The aim is to define the probability p(An) of choosing an
alternative An. This probability can be understood as either the fraction of agents choosing
this alternative or the frequency of choices of the alternative An by a separate decision
maker. Of course, the probability is normalized:

NA

∑
n=1

p(An) = 1 , 0 ≤ p(An) ≤ 1. (2)

The process of taking decisions consists of two sides. One evaluates the utility of
alternatives as well as the attractiveness of alternatives that is influenced by emotions with
respect to the choice of the alternatives. Therefore, the probability p(An) of choosing an
alternative An is a behavioral probability consisting of two terms: a utility factor f (An)
and an attraction factor q(An):

p(An) = f (An) + q(An). (3)

The utility factor f (An) shows the rational probability of choosing an alternative An
being based on the rational evaluation of the alternative utility, with the normalization

NA

∑
n=1

f (An) = 1 , 0 ≤ f (An) ≤ 1. (4)

The attraction factor characterizes the influence of emotions in the process of choice of
the alternative An. Emotions can be positive or negative. For instance, the positive emotions
are joy, happiness, pride, calm, serenity, love, gratitude, cheerfulness, euphoria, satisfaction
(moral or physical), inspiration, amusement, pleasure, etc. Examples of negative emotions
are sadness, anger, fear, disgust, guilt, shame, anxiety, loneliness, disappointment, etc.
Taking into account Conditions (2)–(4) implies

NA

∑
n=1

q(An) = 0 , −1 ≤ q(An) ≤ 1. (5)

To be more precise, the attraction factor varies in the interval

− f (An) ≤ q(An) ≤ 1− f (An). (6)
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An alternative Aopt is stochastically optimal if and only if it corresponds to the maximal
behavioral probability

p(Aopt) = max
n

p(An). (7)

Let the alternatives be characterized by utilities (or value functionals) U(An). The
utility factor (rational probability) f (An) can be derived from the minimization of the
information functional

I[ f (An)] = ∑
n

f (An) ln
f (An)

f0(An)
+ α

[
1−∑

n
f (An)

]
+ β

[
U −∑

n
f (An)U(An)

]
, (8)

where f0(An) is a prior distribution defined by the Luce rule [27,28], which gives

f (An) =
f0(An)eβU(An)

∑n f0(An)eβU(An)
. (9)

The parameter β is a belief parameter characterizing the level of certainty of a decision
maker in the fairness of the decision task and in the subject confidence with respect to their
understanding of the overall rules and conditions of the decision problem [9–11]. Here, we
keep in mind rational beliefs representing reasonable, objective, flexible, and constructive
conclusions or inferences about reality [29,30].

The attraction factor is a random quantity that is different for different decision makers
and even for the same decision maker at different times. The average values for positive
or negative emotions of the attraction factor can be estimated by non-informative priors
as ±0.25, respectively [10,11]. The description of decision making by independent agents
in the frame of probabilistic affective decision making has been studied and expounded
in detail in Refs. [9–11]. The aim of the present paper is to consider the extension of the
theory from single-step affective decision making of a single agent to multistep dynamic
affective decision making by a society of many decision makers.

Utility factors are objective quantities that can be calculated provided the utility of
alternatives U(An) are defined. Generally, U(An) can be an expected utility, a value func-
tional, or any other functional measuring the rational utility of alternatives. For example,
in the case of multi-criteria decision making, this can be an objective function defined
by one of the known multi-criteria evaluation methods [31–34]. For the purpose of the
present paper, we do not need to plunge into numerous methods of evaluating the utility
of alternatives. We assume that the utility factor is defined in one of the ways. Our basic
goal is the investigation of the role of emotions.

In what follows, we assume that the utility factors, evaluated at the initial moment of
time, do not change, since their values have been objectively defined. On the contrary, The
attraction factors depend on emotions that change in the process of decision making due
to the exchange of information between the society members and because the behavior of
decision makers is influenced by the actions of other members of a society.

3. Discrete Dynamics in Affective Decision Making

The approach to affective decision making, considered in the present paper, is based
on the probabilistic theory [9–11] characterized by probabilities of choosing an alternative
among the set of given alternatives, taking account of utility as well as emotions. In
studying dynamic equations, one has to define initial conditions, that is, the utility factors
and attraction factors at time t = 0. At the initial time, the decisions are taken by agents
independently, since they have no time for exchanging information and observing the
behavior of their neighbors. Thus, the initial behavioral probabilities define the required
initial conditions for the following dynamics.

A society, or a network, is considered to consist of many agents. For each member of a
society, the other members play the role of surrounding. The agents of a society interact
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with each other through the exchange of information and by imitating the actions of others.
The probability dynamics is due to these features [35–37].

Let us consider NA alternatives between which one needs to make a choice. The
alternatives are enumerated by the index n = 1, 2, . . . , NA. A society of Ntot agents is
making a choice among the available alternatives. The overall society is structured into N
groups enumerated by the index j = 1, 2, . . . , N. Each group differs from other groups by
its specific features, such as its type of memory and the inclination to replicate the actions
of others, which is termed herding. The herding effect is well known and has been studied
in voluminous literature [38–46].

The number of agents in a group j is Nj so that the summation over all groups gives
the total number of agents, N

∑
j=1

Nj = Ntot. (10)

The number of agents in a group j choosing an alternative An at time t is Nj(An, t).
Since each member of a group j chooses one alternative, then

NA

∑
n=1

Nj(An, t) = Nj. (11)

The probability that a member of a group j chooses an alternative An at time t is

pj(An, t) ≡
Nj(An, t)

Nj
, (12)

which satisfies the normalization condition
NA

∑
n=1

pj(An, t) = 1 , 0 ≤ pj(An, t) ≤ 1. (13)

Probability (12) is a functional of the utility factor f j(An, t) and the attraction factor
qj(An, t). The utility factor characterizes the utility of an alternative An at time t and obeys
the normalization condition

NA

∑
n=1

f j(An, t) = 1 , 0 ≤ f j(An, t) ≤ 1. (14)

The attraction factor quantifies the influence of emotions when selecting an alternative
An at time t and satisfies the normalization condition

NA

∑
n=1

qj(An, t) = 0 , −1 ≤ qj(An, t) ≤ 1. (15)

At the initial moment of time t = 0, the functional dependence of the probability on
the utility and attraction factors has the form

pj(An, 0) = f j(An, 0) + qj(An, 0), (16)

where the initial utility factor and attraction factor can be calculated following the rules
explained in detail in earlier works [9–11,46–48].

The tendency of agents of a group j to replicate the actions of the members of other
groups is described by the herding parameters ε j, which lay in the interval

0 ≤ ε j ≤ 1 (j = 1, 2, . . . , N). (17)

The other meaning of these parameters is the level of tendency for acting as others,
which in the present setup models the agents’ cooperation.
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Generally, the value ε j can vary in time. However, this variation is usually very slow
so that the herding parameters can be treated as constants characterizing the members of
the related groups.

The time evolution, consisting of a number of subsequent decisions at discrete mo-
ments of time t/τ = 1, 2, . . ., is given by the dynamic equation

pj(An, t + τ) = (1− ε j) [ f j(An, t) + qj(An, t)]

+
ε j

N − 1

N

∑
i( 6=j)

[ fi(An, t) + qi(An, t)] , (18)

where τ is a delay time required for taking a decision by an agent. It is possible to measure
time in units of τ keeping in mind the dimensionless time t = 1, 2, . . .. The time dependence
of the utility factor can be prescribed by a discount function [11,49,50], and the temporal
dependence of the attraction factor for an agent of a group j,

qj(An, t) = qj(An, 0) exp{−Mj(t)}, (19)

is defined by the amount of information received from other society members and kept in
the memory Mj(t) by time t. The derivation of Relation (19) can be achieved by resorting
to the theory of quantum measurements [51] or by accepting the empirical fact [52–66]
that the increase in information kept in the memory decreases the role of emotions so that
δqj = −qjδMj.

At the beginning, when t < 1, there is no yet any memory with respect to the choice
between the present alternatives so that

Mj(t) = 0 (t < 1), (20)

and one returns to the initial condition (16). For the time t > 1, the memory is written as

Mj(t) = Θ(t− 1)
t

∑
t′=1

N

∑
i=1

Jij(t, t′)µji(t′), (21)

where Jij(t, t′) is the interaction transfer function describing the interaction between the
agents i and j during the time from t′ to t, µji is the information gain received by the agent
j from the agent i, and the unit-step function is used

Θ(t− 1) =
{

0 , t < 1
1 , t ≥ 1

.

In contemporary societies, the interaction between agents is of long-range type, since
the society members are able to interact by exchanging information through numerous
sources not depending on the distance, e.g., through phone, Skype, Whatsapp, and a num-
ber of other messengers. The long-range interactions are characterized by the expression

Jij(t, t′) =
J(t, t′)
N − 1

. (22)

On the contrary, in the case of short-range interactions, Jij(t, t′) essentially depends
on the fixed location of agents. However, the members of modern societies are not fixed
forever to precise prescribed locations. This concerns not only human societies, but animal
groups as well. Therefore, the long-range interaction (22) looks to be the most realistic case.

The information gain can be taken in the Kullback–Leibler [67,68] form

µji(t, t′) =
NA

∑
n=1

pj(An, t) ln
pj(An, t)
pi(An, t)

. (23)

Thus, the memory function (21) reads as
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Mj(t) = Θ(t− 1)
t

∑
t′=1

J(t, t′)
N − 1

N

∑
i=1

µji(t′). (24)

From the point of view of duration, there exist two types of memory: long-term and
short-term memory [19,69–72]. Long-term memory allows us to store information for long
periods of time, including information that can be retrieved. This implies weak dependence
of the interaction transfer on time,

J(t, t′) = J (long− term), (25)

which defines the long-term memory

Mj(t) = Θ(t− 1)
J

N − 1

t

∑
t′=1

N

∑
i=1

µji(t′). (26)

Short-term memory is the capacity to store a small amount of information in the mind
and keep it readily available for a short period of time. Then, the interaction transfer is
modeled by the function

J(t, t′) = Jδtt′ (short− term), (27)

so that the short-term memory takes the form

Mj(t) = Θ(t− 1)
J

N − 1

N

∑
i=1

µji(t). (28)

4. Two Groups with Binary Choice

For concreteness, let us study the case where the choice is between two alternatives,
A1 and A2. Then, it is convenient to simplify the notation by setting the probabilities

pj(A1, t) ≡ pj(t) , pj(A2, t) = 1− pj(t), (29)

the utility factors
f j(A1, t) ≡ f j(t) , f j(A2, t) = 1− f j(t), (30)

and the attraction factors

qj(A1, t) ≡ qj(t) , qj(A2, t) = − qj(t), (31)

where the normalization conditions (13)–(15) are taken into account.
Let the society consist of two groups, one whose members possess long-term memory

and the other group consisting of the members with short-term memory. In the following
numerical modeling, we set J = 1. Now, the long-term memory reads as

M1(t) = Θ(t− 1)
t

∑
t′=1

µ12(t′) (long− term), (32)

while the short-term memory becomes

M2(t) = Θ(t− 1)µ21(t′) (short− term). (33)

The information gain (23) takes the form

µij(t) = pi(t) ln
pi(t)
pj(t)

+ [1− pi(t)] ln
1− pi(t)
1− pj(t)

. (34)

For brevity, let us use the notations

f j(0) ≡ f j , qj(0) ≡ qj. (35)
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Also, we assume that the process of making decisions concerns the alternatives with
given utilities so that

f j(t) = f j = const, (36)

although emotions can vary due to the exchange of information between the agents.
Thus, we come to the equations of dynamic decision making

p1(t + 1) = (1− ε1)[ f1 + q1(t)] + ε1[ f2 + q2(t)] ,

p2(t + 1) = (1− ε2)[ f2 + q2(t)] + ε2[ f1 + q1(t)] , (37)

with the initial conditions

p1(0) = f1 + q1 , p2(0) = f2 + q2. (38)

The attraction factors have the form

q1(t) = q1 exp{−M1(t)} , q2(t) = q2 exp{−M2(t)} , (39)

with the long- and short-term memories (32) and (33).

5. Continuous Dynamics of Affective Decision Making

Repeated multistep decision making is a discrete process, as is described above. How-
ever, if the time of taking a decision is much shorter than the whole multistep process,
τ/t� 1, then it looks admissible to pass from the equations with discrete time to continu-
ous time by expanding the probabilities in powers of τ/t,

pj(An, t + τ) ' pj(An, t) +
∂pj(An, t)

∂t
τ. (40)

Measuring time again in units of τ gives

pj(An, t + 1) ' pj(An, t) +
∂pj(An, t)

∂t
. (41)

Using this, Equation (18) transforms into

∂pj(An, t)
∂t

= (1− ε j)[ f j(An, t) + qj(An, t)]

+
ε j

N − 1

N

∑
i( 6=j)

[ fi(An, t) + qi(An, t)]− pj(An, t). (42)

For the binary case of the previous section, we obtain

dp1(t)
dt

= (1− ε1)[ f1 + q1(t)] + ε1[ f2 + q2(t)]− p1(t),

dp2(t)
dt

= (1− ε2)[ f2 + q2(t)] + ε2[ f1 + q1(t)]− p2(t). (43)

For small τ, it is possible to use the relation
t

∑
t′=τ

µ12(t′) '
∫ t

τ
µ12(t′) dt′ (τ → 0, t ≥ τ),

which yields the long-term memory

M1(t) =
∫ t

0
µ12(t′) dt′. (44)
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Employing the approximate equality

Θ(t− τ) ' tanh
(

t
τ

)
(τ → 0 , t ≥ 0),

the short-term memory can be represented as

M2(t) = tanh
(

t
τ

)
µ21(t). (45)

In numerical calculations, τ is taken as a step of the used numerical scheme.

6. Comparison of Discrete versus Continuous Algorithms

Formally, it looks that the fixed points, if they exist, of the discrete (37) and continuous (43)
dynamical systems are the same, being given by the equations

p∗1 = (1− ε1)( f1 + q∗1) + ε1( f2 + q∗2),

p∗2 = (1− ε2)( f2 + q∗2) + ε2( f1 + q∗1), (46)

where q∗j is the limit of qj(t) as time goes to infinity. However, strictly speaking, the discrete
and continuous limits can be different, since the related expressions for the memory
functions in the discrete and continuous cases are different. Also, the considered equations
are not autonomous and contain time delay. In addition, even if the fixed points would be
the same, the stability conditions of discrete, continuous, and delay equations, generally,
are different [73–75]. Thus, numerical investigations are necessary.

We have compared the solutions to discrete-time Equation (37) and continuous-time
Equation (43), for the same sets of parameters and initial conditions. The society is com-
posed of two groups, one whose members enjoy long-term memory and the other group,
consists of members with short-term memory. Solutions for discrete equations are marked
as pdis

j (t) and for continuous equations as pcon
j (t). In all figures, time is dimensionless,

being measured in units of τ. The results are discussed below.
Figure 1 presents the case where the fractions (probabilities) pcon

j (t) and pdis
j (t) starting

from the same values smoothly tend to the same fixed points, being only slightly different
at intermediate times.

0 20 40 60 80 100 120t
0

0.2

0.4

0.6

0.8

1

p
1

dis
(t)

p
1

con
(t)

(a)

0 20 40 60 80 100 120t
0

0.2

0.4

0.6

0.8

1

p
2

dis
(t)

p
2

con
(t) (b)

Figure 1. Solutions to discrete Equation (37) and to continuous Equation (43) for the initial conditions
f1 = 0.4, f2 = 0.1, q1 = 0.59, and q2 = 0.6, in the absence of herding effect, when ε1 = ε2 = 0:
(a) Discrete solution pdis

1 (t) (solid line) and continuous solution pcon
1 (t) (dashed-dotted line). Both

solutions tend to the same fixed point p∗1 = 0.4; (b) Discrete solution pdis
2 (t) (solid line) and continuous

solution pcon
2 (t) (dashed-dotted line). Both solutions tend to the same fixed point p∗2 = 0.636, which

is a stable node.
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Figure 2 shows the situation when the probabilities of choosing an alternative by
agents with long-term memory smoothly tend to the same fixed point, but the probabilities
for agents with short-term memory, although tending to the same fixed point, tend in a
rather different way. The continuous solution tends smoothly, while the discrete solution,
through oscillations.

0 5 10 15 20 25 30t
0.7

0.75

0.8

0.85

0.9

0.95

1

p
1

dis
(t)

p
1

con
(t)

(a)

0 10 20 30 40 50t
0

0.2

0.4

0.6

0.8

1

p
2

dis
(t)

(b)

p
2

con
(t)

Figure 2. Solutions to discrete Equation (37) and to continuous Equation (43) for the initial conditions
f1 = 0.8, f2 = 0.9, q1 = 0.19, and q2 = −0.8, when there is no herding effect, hence ε1 = ε2 = 0:
(a) Discrete solution pdis

1 (t) (solid line) and continuous solution pcon
1 (t) (dashed-dotted line). Both

solutions tend to the same fixed point p∗1 = 0.8; (b) Discrete solution pdis
2 (t) (solid line) and continuous

solution pcon
2 (t) (dashed-dotted line). Probability pcon

2 (t) tends monotonically, while pdis
2 (t) tends

with oscillations to the same fixed point p∗2 = 0.377. Discrete and continuous solutions tend to the
same fixed point, but for the agents with long-term memory the fixed point is a stable node, however
for the agents with short-term memory, the continuous solution tends to a stable node, while for the
discrete solution, to a stable focus.

Figure 3 demonstrates that the fixed points of discrete and continuous solutions can be
of different nature. Thus, for the group of agents with long-term memory, the discrete and
continuous solutions tend to the same stable node. However, for the agents with short-term
memory, it is a stable node for the continuous solution, but a center for the discrete solution.
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Figure 3. Solutions to discrete Equation (37) and to continuous Equation (43) for the initial conditions
f1 = 0.8, f2 = 1, q1 = 0.1, and q2 = −0.99, in the absence of herding effect, when ε1 = ε2 = 0:
(a) Discrete solution pdis

1 (t) (solid line) and continuous solution pcon
1 (t) (dashed-dotted line). Solutions

pcon
1 (t) and pdis

1 (t) tend to the same fixed point p∗1 = 0.8; (b) Discrete solution pdis
2 (t) (solid line) and

continuous solution pcon
2 (t) (dashed-dotted line). Solution pcon

2 (t) tends to the fixed point p∗2 = 0.366,
whereas pdis

2 (t) oscillates around p∗2 with the constant amplitude. For the agents with long-term
memory, both probabilities, discrete and continuous, tend to the same stable node, but for the agents
with short-term memory, the fixed point for discrete probability is a stable limit cycle, while the
continuous probability tends to a stable node.
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Figure 4 shows that the fixed points of agents with long-term memory can coincide for
discrete and continuous solutions, both being stable nodes, while for agents with short-term
memory, the continuous solution tends to a stable node, whereas the discrete solution at
the beginning almost coincides with the continuous one, but starts oscillating from a finite
time and after this continues oscillating for all times.
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Figure 4. Solutions to discrete Equation (37) and to continuous Equation (43) for the initial conditions
f1 = 0.3, f2 = 0, q1 = 0.699, and q2 = 0.98, without the herding effect, when ε1 = ε2 = 0:
(a) Discrete solution pdis

1 (t) (solid line) and continuous solution pcon
1 (t) (dashed-dotted line). Solutions

pcon
1 (t) and pdis

1 (t) tend to the same fixed point p∗1 = 0.3; (b) Discrete solution pdis
2 (t) (solid line) and

continuous solution pcon
2 (t) (dashed-dotted line). Solution pcon

2 (t) tends to p∗2 = 0.699, whereas pdis
2 (t)

oscillates around p∗2 , starting at a finite time and continues oscillating for t → ∞ with a constant
amplitude. The fixed points of agents with long-term memory coincide for discrete and continuous
solutions, both being stable nodes, while for agents with short-term memory, the continuous solution
tends to a stable node, whereas the discrete one oscillates.

Figure 5 explains that discrete and continuous probabilities, though both being stable
nodes, tend to different fixed points, which do not coincide. This happens in the presence
of a strong herding effect.
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Figure 5. Solutions to discrete Equation (37) and to continuous Equation (43) for the initial conditions
f1 = 1, f2 = 0.2, q1 = −0.9, and q2 = 0.6, in the presence of strong herding effect, when ε1 = ε2 = 1:
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(a) Discrete solution pdis
1 (t) (solid line) tends to the fixed point p∗1dis = 0.5 and continuous solution

pcon
1 (t) (dashed-dotted line) tends to the fixed point p∗1con = f2 + q2 = 0.8 = p∗2con; (b) Discrete

solution pdis
2 (t) (solid line) tends to p∗2dis = 1, while continuous solution pcon

2 (t) (dashed-dotted line)
tends to p∗2con = p∗1con = 0.8; (c) Solutions pdis

1 (t) and pdis
2 (t); (d) Solutions pcon

1 (t) and pcon
2 (t). For

t → ∞, solutions pcon
1 (t) and pcon

2 (t) tend to the same fixed point p∗1con = p∗2con = f2 + q2 = 0.8,
however solution pdis

1 (t) tends to p∗1dis = 0.5, whereas solution pdis
2 (t) tends to p∗2dis = 1. Discrete

and continuous probabilities, though both being stable nodes, but tend to different fixed points.

Figures 6 and 7 illustrate qualitatively different behaviors of discrete and continuous
solutions in the presence of the herding effect, when the related pdis

j (t) and pcon
j (t) can either

tend to coinciding stable nodes or pdis
j (t) can exhibit oscillations, while pcon

j (t) smoothly
tends to a stable node.
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Figure 6. Solutions to discrete Equation (37) and to continuous Equation (43) for the initial conditions
f1 = 0.6, f2 = 1, q1 = 0.39, and q2 = −0.9: (a) Discrete solution pdis

1 (t) (solid line) and continuous
solution pcon

1 (t) (dashed-dotted line) for the herding parameters ε1 = ε2 = 1. Solution pcon
1 (t) tends

to the fixed point p∗1con = 0.280, whereas solution pdis
1 (t) oscillates with a constant amplitude around

p∗1con for t → ∞; (b) Discrete solution pdis
2 (t) (solid line) and continuous solution pcon

2 (t) (dashed-
dotted line) for the herding parameters ε1 = ε2 = 1. Solutions pdis

2 (t) and pcon
2 (t) tend to the same

fixed point p∗2dis = p∗2con = f1 = 0.6; (c) Discrete solution pdis
1 (t) (solid line) and continuous solution

pcon
1 (t) (dashed-dotted line) for the herding parameters ε1 = 0.9 and ε2 = 0.8. Solution pdis

1 (t)
oscillates, and solution pcon

1 (t) monotonically tends to the fixed point p∗1con = 0.265; (d) Discrete
solution pdis

2 (t) (solid line) and continuous solution pcon
2 (t) (dashed-dotted line) for the herding

parameters ε1 = 0.9 and ε2 = 0.8. Solution pdis
2 (t) oscillates, and solution pcon

2 (t) monotonically tends
to the limit p∗2con = 0.525. The behavior of discrete and continuous solutions is qualitatively different.
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Figure 7. Solutions to discrete Equation (37) and to continuous Equation (43) for the initial con-
ditions f1 = 0, f2 = 0.1, q1 = 0.93, and q2 = 0.899: (a) Discrete solution pdis

1 (t) (solid line) and
continuous solution pcon

1 (t) (dashed-dotted line) for the herding parameters ε1 = ε2 = 1. Solutions
pcon

1 (t), monotonically, and pdis
1 (t), with oscillations, tend to the same limit p∗1dis = p∗1con = 0.526;

(b) Solutions pdis
2 (t) (solid line) and pcon

2 (t) (dashed-dotted line) for the herding parameters
ε1 = ε2 = 1. Solutions pdis

2 (t) and pcon
2 (t) tend to the same limit p∗2dis = p∗2con = f1 = 0; (c) Solutions

pdis
1 (t) (solid line) and pcon

1 (t) (dashed-dotted line) for the herding parameters ε1 = 0.3 and ε2 = 0.1.
Solution pdis

1 (t), and solution pcon
1 (t) monotonically tend to the same limit p∗1dis = p∗1con = 0.209;

(d) Solutions pdis
2 (t) (solid line) and pcon

2 (t) (dashed-dotted line) for the herding parameters
ε1 = 0.3 and ε2 = 0.1. Solution pdis

2 (t), and solution pcon
2 (t) monotonically tend to the same limit

p∗2dis = p∗2con = 0.628. Discrete and continuous probabilities tend to common fixed points, but in a
different way.

Figure 8 shows a rare case, where all probabilities for the groups with long-term
memory as well as short-term memory, for discrete as well as continuous solutions, tend to
the common fixed point p∗1dis = p∗1con = p∗2dis = p∗2con = f2 + q2 = 0.99.
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Figure 8. Solutions to discrete Equation (37) and continuous Equation (43) for the initial conditions
f1 = 0.3, f2 = 0, q1 = 0.699, and q2 = 0.99, with the herding parameters ε1 = 0.9 and ε2 = 0.8:
(a) Solutions pdis

1 (t) (solid line) and pcon
1 (t) (dashed-dotted line). Solutions pdis

1 (t) and pcon
1 (t) tend to

the same limit p∗1 = f2 + q2 = 0.99; (b) Solutions pdis
2 (t) (solid line) and pcon

2 (t) (dashed-dotted line).
Solutions pdis

2 (t) and pcon
2 (t) tend to the same limit p∗2 = f2 + q2 = 0.99. Note that here p∗1 = p∗2 . All

probabilities for the groups with long-term memory as well as short-term memory, for discrete as
well as continuous solutions, tend to the common fixed point.
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Figure 9 gives an example where continuous solutions for both groups, with long-term
and short-term memory, can tend to coinciding limits, while the related discrete solutions
for these groups are very different: One solution permanently oscillates, and the other
tends to a stable node.
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Figure 9. Solutions to discrete Equation (37) and to continuous Equation (43) for the initial conditions
f1 = 0.1, f2 = 0, q1 = 0.899, and q2 = 0.93, with the herding parameters ε1 = ε2 = 1: (a) Solution to
discrete Equation (37) pdis

1 (t) (solid line) oscillates, but solution pdis
2 (t) (dashed-dotted line) tends to

the fixed point p∗2 = f1 = 0.1; (b) Solutions to continuous Equation (43) pcon
1 (t) (solid line) and pcon

2 (t)
(dashed-dotted line) tend to the same fixed point p∗1 = p∗2 = f2 + q2 = 0.93. Continuous solutions
for both groups, with long-term and short-term memory, tend to coinciding limits, while the related
discrete solutions for these groups are very different: One solution permanently oscillates, and the
other tends to a stable node.

Finally, Figures 10 and 11 demonstrate the possibility of chaotic behavior for discrete solutions,
when, for the same parameters, continuous solutions smoothly converge to stable nodes.
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Figure 10. Solutions to discrete Equation (37) and continuous Equation (43) for the initial conditions
f1 = 0.2, f2 = 0, q1 = −0.1, and q2 = 0.999, with the herding parameters ε1 = 1 and ε2 = 0.7:
(a) Solutions pdis

1 (t) (solid line) and pcon
1 (t) (dashed-dotted line). Discrete solution pdis

1 (t) chaotically
oscillates and continuous solution pcon

1 (t) tends to the limit p∗1con = 0.735; (b) Discrete solution pdis
2 (t)

(solid line) and continuous solution pcon
2 (t) (dashed-dotted line). Discrete solution pdis

2 (t) chaotically
oscillates, while continuous solution pcon

2 (t) tends to the limit p∗2con = 0.360. Discrete solutions are
chaotic, while, for the same parameters, continuous solutions smoothly converge to stable nodes.
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Figure 11. Solutions to discrete Equation (37) and to continuous Equation (43) for the initial conditions
f1 = 0.6, f2 = 1, q1 = 0.3, and q2 = −0.999: (a) Discrete solution pdis

1 (t) (solid line) and continuous
solution pcon

1 (t) (dashed-dotted line) for the herding parameters ε1 = ε2 = 1. Solution pcon
1 (t) tends

to the limit p∗1con = 0.246, while pdis
1 (t) chaotically oscillates around p∗1dis; (b) Discrete solution pdis

2 (t)
(solid line) and pcon

2 (t) (dashed-dotted line) for the herding parameters ε1 = ε2 = 1. Solutions pdis
2 (t)

and pcon
2 (t) tend to the same limit p∗2dis = p∗2con = f1 = 0.6; (c) Solutions pdis

1 (t) (solid line) and
pcon

1 (t) (dashed-dotted line) for the herding parameters ε1 = 1 and ε2 = 0.8. Solution pcon
1 (t) tends to

the limit p∗1con = 0.210, but solution pdis
1 (t) chaotically oscillates for all times t → ∞; (d) Solutions

pdis
2 (t) (solid line) and pcon

2 (t) (dashed-dotted line) for the herding parameters ε1 = 1 and ε2 = 0.8.
Solution pcon

2 (t) tends to the limit p∗2con = 0.522, while solution pdis
2 (t) chaotically oscillates around

p∗2dis. Examples of chaotic behavior of discrete solutions.

Summarizing the possible types of behavior, we see that continuous decision making
always displays smooth behavior of probabilities for both groups, with either long-term or
short-term memory always converging to a stable node. However, discrete decision making
can exhibit, for the same probabilities, a larger variety of behavior types, which can be smooth,
tending to a stable node, or oscillating, hence tending to a stable focus, or even chaotic.

As far as the temporal behavior of the probabilities of choosing the related alterna-
tives for discrete and continuous decision making can be essentially different, the natural
question arises: Which of the algorithms, discrete or continuous, better corresponds to the
real decision making of social groups? It seems there are activities, such as car driving,
where decisions can be well approximated by a continuous process. At the same time, it
looks like such processes can be described by a series of decisions occurring discretely,
although with rather small time intervals between the subsequent steps. It may happen
that, despite the small time intervals, the discrete and continuous decision algorithms lead
to different conclusions. From our point of view, the discrete algorithm is preferable, since
decisions, anyway, are complex, discrete actions composed of several subactions: receiving
information, processing this information, and making a decision, so that always there is
a delay time from the start of receiving information to the moment of making a decision.
The continuous algorithm can provide a reasonable approximation in some cases, although
sometimes can result in wrong conclusions.
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When a probability pj(t) converges to a stable node, the corresponding stationary
limit p∗j plays the role of the optimal decision taken after multiple steps of decision making,
including the exchange of information with other agents of all groups, taking account of
agents’ emotions, and the tendency of the agents to herding. When a probability oscillates
either periodically or chaotically, this implies that the agents are not able to come to a
decision, but cannot stop hesitating. There exist numerous examples of chaotic behavior of
decision making in medicine, economics, and different types of management [76–87].

The mathematical reason why the considered continuous solutions for the probabilities
cannot display chaos is as follows. The probabilities, by definition, are bounded, hence
Lagrange stable. Then, for a plane motion, the Poincare–Bendixson theorem tells us that if
a trajectory of a continuous two-dimensional dynamical system is Lagrange stable, then it
approaches either a stable node or a limit cycle [75]. However, for discrete equations, there
is no such theorem, and a discrete dynamical system can exhibit chaos.

7. Conclusions

We have considered affective dynamic decision making, where there are several
groups of agents choosing between several alternatives. A multistep process of decision
making takes into account the utility of the alternatives, their attractiveness, and the
inclination of the society members to mimic the actions of others (herding effect). Two
possible algorithms are compared, one algorithm treating multistep decision making as a
sequence of discrete decisions, while the other algorithm studies the overall process as one
continuous action. Dynamic regimes of both algorithms are thoroughly investigated for
the case of two alternatives and two groups of agents. One group consists of agents with
long-term memory and the other, of agents with short-term memory.

It is worth stressing that our aim has been not a study of some specific cases, but the
general understanding of which of the possible algorithms is more appropriate for the
description in a wide range of parameters corresponding to different situations.

It turns out that the discrete algorithm exhibits much richer behavior that includes
the tendency to a stable node, or to stable focus, or to chaotic behavior. Contrary to
this, the continuous algorithm always results in the convergence to a stable node. In real
life, as empirical studies show, chaotic decision making can occur in the presence of risk
and uncertainty. Therefore, it appears that the discrete algorithm is more general, while
the continuous algorithm can be treated as an approximation that in some cases gives a
reasonable description, while in many other cases it is not applicable. Anyway, from the
physiological point of view, multistep decision making better corresponds to a sequence of
separate decisions than to a single continuous action.

For clarity, above, we kept in mind the frequentist interpretation of probability as
a fraction of group members. As far as the decision making of a single agent is also a
probabilistic process, the theory can also be applied to separate agents possessing different
types of memory.

Instead of separate agents, it is possible to consider the nodes of an intelligent network.
For instance, one can keep in mind a neural network, where neurons exchange information in
order to come to a state represented by a fixed point. The chaotic performance of an intelligent
network can be interpreted as due to some uncertainty in the process of choice. For humans,
uncertainty can be caused by the complexity of the studied problem or by defects in a neural
network. Overall, affective intelligence, whether artificial or natural, seems to be better described
by discrete algorithms than by their continuous approximations. The results of this paper can
be useful for the creation of affective artificial intelligence.

The probabilistic model of affective decision making, considered in this paper, can
be extended in several aspects. It is possible to include into consideration more than two
groups, for instance differing from each other by memory longevity or by the strength of
mutual interactions in the process of exchanging information. It is also possible to take into
account time discounting diminishing the utility factors with time. These extensions are
planned for future research.
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