
Citation: Wang, Y.; Wang, W.; Shao,

M.; Sun, Y. Deep Cross-Network

Alignment with Anchor Node Pair

Diverse Local Structure. Algorithms

2023, 16, 234. https://doi.org/

10.3390/a16050234

Academic Editors: Jie Meng, Xiaowei

Huang, Minghui Qian and

Zhixuan Xu

Received: 14 March 2023

Revised: 21 April 2023

Accepted: 26 April 2023

Published: 28 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Deep Cross-Network Alignment with Anchor Node Pair
Diverse Local Structure
Yinghui Wang 1,2, Wenjun Wang 1,2,*, Minglai Shao 3 and Yueheng Sun 1

1 College of Intelligence and Computing, Tianjin University, Tianjin 300350, China;
wangyinghui@tju.edu.cn (Y.W.)

2 Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen 518055, China
3 School of New Media and Communication, Tianjin University, Tianjin 300350, China
* Correspondence: wjwang@tju.edu.cn

Abstract: Network alignment (NA) offers a comprehensive way to build associations between
different networks by identifying shared nodes. While the majority of current NA methods rely on
the topological consistency assumption, which posits that shared nodes across different networks
typically have similar local structures or neighbors, we argue that anchor nodes, which play a pivotal
role in NA, face a more challenging scenario that is often overlooked. In this paper, we conduct
extensive statistical analysis across networks to investigate the connection status of labeled anchor
node pairs and categorize them into four situations. Based on our analysis, we propose an end-to-end
network alignment framework that uses node representations as a distribution rather than a point
vector to better handle the structural diversity of networks. To mitigate the influence of specific nodes,
we introduce a mask mechanism during the representation learning process. In addition, we utilize
meta-learning to generalize the learned information on labeled anchor node pairs to other node pairs.
Finally, we perform comprehensive experiments on both real-world and synthetic datasets to confirm
the efficacy of our proposed method. The experimental results demonstrate that the proposed model
outperforms the state-of-the-art methods significantly.

Keywords: network alignment; local structure diverse; uncertainty node representations; deep learning

1. Introduction

Network analysis, particularly cross-network analysis, has recently been gaining
attention in various study domains due to the exceptional rise of the diversified information
that has produced a significant volume of networks. The key to transferring information
across multiple networks is to identify hidden inter-network links (i.e., anchor links) [1–3],
which connect nodes that are shared among different networks (i.e., anchor nodes) [4].
For example, a person’s account nodes in different social networks can be regarded as
anchor nodes, and the corresponding relationship between these two accounts can be
regarded as anchor links. The process of finding corresponding anchor nodes is also called
network alignment (NA). Comparative studies of specific tasks, such as cross-network
recommendation [5], mutual community detection [6], and genetic disease classification [7],
can be conducted at the systems level with help of NA.

Various NA methods have been proposed and most of them are based on topological
similarity, and sometimes the attribute similarity is fused to determine the corresponding
relationship between nodes. Inspired by network embedding [8–10], which has the po-
tent ability to represent network structures into a low-dimension embedding, numerous
embedding-based network alignment approaches have been presented [11–13]. Recent
embedding-based network alignment methods first, typically, learn node representations
before learning mapping functions over latent representation spaces to decrease the dis-
parity in node representations across different networks [14], whereas learning mapping

Algorithms 2023, 16, 234. https://doi.org/10.3390/a16050234 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16050234
https://doi.org/10.3390/a16050234
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-4569-8193
https://doi.org/10.3390/a16050234
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16050234?type=check_update&version=2

Algorithms 2023, 16, 234 2 of 16

functions usually use labeled anchor node pairs as supervision information [12,15–18]. Al-
though there has been notable progress in the field of network alignment, current methods
still have several deficiencies. One of the most significant limitations is that most methods
tend to overlook the diverse local structure of anchor node pairs. Consequently, these
approaches are often only suitable for specific alignment cases and fail to apply in some
real-world scenarios.

Specifically, anchor node pairs’ local structure, i.e., the connection status of anchor
node pairs across networks can be roughly divided into four situations according to labeled
anchor nodes, as shown in Figure 1. Equivalence connection status. As shown in Figure 1a,
anchor node v1 “replicates” its interaction in network1 to network G2, i.e., v1 tends to
maintain a similar interaction with the same neighbors. This connection status demonstrates
that an anchor node v1 in different networks has a similar local topology structure (such as
node degree) and connects to similar neighborhoods. Non-equivalence connection status.
As shown in Figure 1b, the activity of anchor node v1 in the two networks differs a lot, i.e.,
v1 has different participation in the two networks and interacts with different neighbors
in the two networks. This connection status demonstrates that anchor node v1 has a
different local topology structure and connects the different neighborhood nodes as well.
Containment connection status. As shown in Figure 1c, anchor node v1 chooses a part of the
same neighbors in G1 to interact in G2, i.e., v1 only “replicates” part of the neighbors in G1

to G2 and follow some new friends in G2. This connection status demonstrates that anchor
node v1 in different networks has different local topology structures but connects similar
neighborhood nodes. Non-containment connection status. As shown in Figure 1d, anchor
node v1 divides its time/interest equally between the two networks but interacts with a
different neighborhood. This connection status demonstrates that anchor node v1 has a
similar local topology structure but connects the different neighborhood nodes. We present
the analysis for labeled anchor node pairs’ diverse local structure in two real-world social
network datasets collected from Twitter and Foursquare [3] in Figure 2. It is observed that
the proportion of commonly labeled anchor node neighbors for anchor nodes in different
networks is differential.

G1

𝑣2 𝑣3

𝑣4

𝑣5

𝑣1

G2
𝑣2

𝑣4

𝑣1

𝑢1

G1

𝑣2 𝑣3

𝑣4

𝑣5

𝑣1

G2u2

𝑢3

𝑣1

𝑢1

G1
𝑣2

𝑣3

𝑣4 𝑣5

𝑣1

G2
𝑣2

𝑢2

𝑣1

𝑢1

G1
𝑣2

𝑣3

𝑣4 𝑣5

𝑣1

G2u2

𝑢3

𝑣1

𝑢1

(a) (b) (c) (d)

Figure 1. An example of anchor node pairs’ diverse connection status. Given two networks, the
relationships between users within each network are represented by solid black lines, while the yellow
dashed line connects the common users (i.e., anchor nodes) across the networks. (a) Equivalence
connection status. (b) Non-equivalence connection status. (c) Containment connection status. (d) Non-
containment connection status.

Algorithms 2023, 16, 234 3 of 16

Figure 2. The common neighbors’ analysis of anchor node pairs in real social networks (Twitter–
Foursquare). For a given pair of anchor nodes (v, u), r is the ration of their common labeled anchor
node neighbors to v/u’s neighbors. The abscissa represents the r in Twitter, and the ordinate
represents r in Foursquare.

However, most embedding-based network alignment methods will result in node
pairs that are more likely to present an equivalence connection status. Specifically, these
methods generally hold the assumption that anchor node pairs have similar local structures
and/or neighbors across different networks (i.e., the situation as shown in Figure 1a,c). For
example, IONE [11] preserves the proximity of users that exhibit “similar” sets of followers
and followees in the embedded space; FRUI-P [19] extracts the friend feature of each user
in a social network, constructs a corresponding friend feature vector, and, subsequently,
computes the similarities among all potential identical users between two social networks.
In addition, employing network embedding techniques, such as DeepWalk and GCN, to
represent each node as a point vector, and using labeled anchor nodes to learn mapping
functions will lead to align most nodes in one network with the labeled anchor nodes in the
other network. Furthermore, it is difficult to distinguish the labeled anchor nodes and their
neighbors due to the neighboring nodes are embedded in closed forms in most network
embedding. As shown in Figure 1c, if we use v1 to learn the mapping function, v2, v4, and
v5 are more likely to be close to v1 in G2. Since the representations of v1 and v2 are similar
in G2, it is difficult for v2 in G1 to match corresponding nodes in G2.

To address the above problems, we propose a novel model, namely DCSNA, which
adjusts to Diverse anchor nodes Connection Status for Network Alignment. Firstly, consid-
ering the different impacts of labeled anchor nodes and other nodes in the neighborhood
among node pairs between different networks, we design a masked network encoder to
learn node representations by removing some edges to mitigate the influence of some
specific nodes. Not all neighboring nodes are equally informative for alignment, as some
nodes interact with many nodes across networks. Our encoder selectively incorporates
only the relevant neighbors to learn more effective representations. Secondly, to better
distinguish a node and its neighbors, we represent each node as a Gaussian distribution
instead of a point vector. Thus, we obtain node representations with mean and variance
embeddings, where the mean embeddings present the position of the nodes and variance
embeddings present the uncertainties of the representations. Meanwhile, compared to
representing nodes as deterministic point vectors, using Gaussian distribution to represent
nodes could tolerate the network’s structural diversity to a large extent which may be the
reason for anchor node pairs’ diverse connection status, and benefit for network alignment.

Algorithms 2023, 16, 234 4 of 16

Thirdly, because of the diverse connection status of anchor node pairs, it is difficult to
generalize the learned information on the labeled anchor node pairs to other node pairs.
Motivated by recent progress in meta-learning that enables adaptation to new tasks and
acquisition of transferable knowledge between tasks, we leverage meta-learning from
labeled anchor nodes to derive latent priors for matching potential anchor nodes.

The main contributions of this paper are summarized as follows:

• We present a masked network encoder to embed nodes in each network as a Gaussian
distribution, which not only preserves the structural information but also obtains
the uncertainty of node representations. Additionally, the mask mechanism could
alleviate the impact of nodes that will confuse structural proximity in alignment.

• We generalize the information of labeled anchor node pairs to other node pairs by
utilizing meta-learning. Additionally, a method based on meta-learning can also
reduce the dependence on the number of labeled anchor nodes, where it is time-
consuming to collect labeled anchor nodes.

• We propose an end-to-end framework based on a masked variational auto-encoder to
address the NA task. Our solution works better than other NA methods, according to
extensive experiments on both real-world and synthetic datasets.

2. Related Work

For cross-network data mining, network alignment is a crucial issue with numerous
application scenarios, such as re-identification [20–22], bioinformatics [23–26], transla-
tion [27,28], and pattern recognition [29]. Recent embedding-based methods of network
alignment can be broadly classified into structure-based methods and attributes–structure
hybrid methods.

The structure-based methods only use network structural information to learn node
representation [11,12,16,19,30,31]. For example, PALE [12] first learns the individual em-
beddings of two networks from existing single network embedding methods (e.g., LINE,
node2vec). Then, it uses an MLP (Multi-Layer Perceptron) and labeled anchor nodes to
match the latent space of the two networks. CrossMNA [16] simultaneously performs node
representation learning and network alignment by introducing two type specific vectors.
Specifically, the intra-vector keeps the unique structural feature for an anchor node in its
chosen network, on the contrary, the inter-vector represents the shared characteristics of
the anchor nodes in different networks. MC [30] uses a matrix factorization-based net-
work representation learning method to obtain node embedding vectors to capture the
local and global structural features of nodes. IDRGM [32] estimate the distribution of
perturbed graphs and maximize the distances among the perturbed nodes within the same
graphs, for separating the nodes in a narrow space into a wide space. DHNA [31] designs
a VGAE-based network alignment model, and two carefully thought-out restrictions are
used to incorporate anchor nodes’ degree differences across different networks into the
encoder module.

The attributes–structure hybrid methods use both network structural information and
node attribute information to learn node representation [13,15,33–35]. Take social networks as
an example, node-attribute information consists of the user profile, such as user name [36,37],
and other content generated through user activity on the social platform [4,38]. For ex-
ample, Zhang et al. [33] proposed a GNN-based network alignment model, in which a
convolutional neural network incorporates attribute embedding and structural embedding.
Then they trained a classifier to predict whether two nodes are in alignment. CAMU [15]
introduces an attributed social network embedding (ASNE) method that incorporates
both topological and node attribute information in each network. Subsequently, a map-
ping function is learned to project the representation from the source network onto the
target network. CoLink [34] consists of two distinct models, namely the attribute-based
model and the relationship-based model, along with a co-training algorithm that reinforces
them iteratively.

Algorithms 2023, 16, 234 5 of 16

However, these methods are looking for the consistency of anchor nodes in different
networks, but this situation is not always met in real networks. Therefore, this paper
proposes a more general representation method to adapt to the different connection statuses
of anchor nodes.

3. Method

In this section, we introduce our NA model DCSNA and show how to adjust to the
diverse connection status of anchor nodes by a variational auto-encoder in detail.

3.1. Problem Formulation

We focus on undirected networks in this paper. In general, nodes in various networks
do not relate to one other, hence not all nodes are shared by all networks. In this paper,
we focus on aligning such partially aligned networks. In addition, a node in one network
only has, at most, one corresponding node in another. For the NA task, we provide the
following necessary definitions.

Let Gs and Gt denote the two networks to be aligned, respectively, where Gs = (Vs, Es)
and Gt = (Vt, Et). Vs =

{
vs

1, vs
2, · · · , vs

ns

}
is the node set of Gs, where ns = |Vs| represents

the node number of Vs. Es =
{
(vs

i , vs
j)
∣∣ i, j ∈ {1, 2, · · · , ns}

}
is the edge set among nodes

in Vs. Vt, Et and nt have similar meanings.
Anchor Nodes/Anchor Links. Anchor nodes refer to nodes that exist in multiple

networks and represent the same real-world entities. The set of anchor nodes is denoted as
Va, while anchor links refer to the corresponding relations between anchor nodes. Anchor
links set is defined as Ea =

{
(vs

i , vt
i)
∣∣ vs

i , vt
i ∈ Va}.

Network Alignment. Given two partially aligned networks Gs, Gt, and a few labeled
anchor links Ea, the goal of network alignment is to discover all potential anchor links, that

is, we aim to learn a predictive function: f : (Gs, Gt, Ea)→ Y, Y ∈ {0, 1}|V
s |×|Vt|, Yij = 1 if

vs
i and vt

j are predicted to be a pair of potential anchor nodes across networks Gs and Gt,
and 0 otherwise.

3.2. Network Embedding with the Diverse Local Structure of Anchor Node

We design a novel framework (DCSNA) for learning the uncertainty representation
of each node in different networks in the low-dimension embedding space for network
alignment, as shown in Figure 3. We will introduce each part of DCSNA in detail in
the following.

𝐺s

𝑣𝑖
𝑠

𝑣𝑗
𝑠

𝐺𝒕

𝑣𝑖
𝑡

𝑣𝑗
𝑡

Input Networks
Node Representations of 𝑮𝒔

Node Representations of 𝑮𝒕

𝑣𝑖
𝑠

𝑣𝑗
𝑠

𝑣𝑖
𝑡

𝑣𝑗
𝑡

Anchor Link

Prediction

Meta-Learning based

Constraint

𝑮𝒔

𝑮𝒕

labeled anchor node

sampling

sampling

predicted anchor link

𝑀𝒔

𝛴𝒔

Masked Network Encoder

𝑣𝑖
𝑠𝑣𝑗

𝑠

𝑣𝑖
𝑡

𝑣𝑗
𝑡

masked nodes

𝑀𝒕

𝛴𝒕

Figure 3. The overall process of DCSNA contains three parts: Masked Network Encoder that
learns the node representations in Gs and Gt in a low-dimension embedding space; Meta-Learning
based Constraint that learns the information of corresponding labeled anchor nodes between Gs

and Gt; Anchor Link Prediction that predicts the potential anchor links based on the learned node
representations.

Algorithms 2023, 16, 234 6 of 16

3.2.1. Masked Network Encoder Based on Variational Graph Convolution

Due to their similar characteristics and connectedness, nearby nodes generally have
more influence than distant ones when comparing nodes across networks [39,40]. To better
use the network’s local structure while preserving the whole network structure in a low-
dimension embedding space and learning the distribution of each node simultaneously,
we perform convolution operations between Gaussian distributions parameterized by a
two-layer convolutional network as an encoder. Without loss of generality, we denote the
matrix with capital letters, and use A(i, :) to denote the i-th row of the matrix A. � is the
Hadamard product. d is the dimension of each node embedding.

Notice that degree distributions are power-law in most cases, and nodes with lower
degrees are less likely than nodes with higher degrees to be connected to neighbors who
are classified as anchors. As a result, these low-degree nodes receive less information from
labeled anchor nodes, which leads to unsatisfactory or even subpar alignment performance.
Therefore, we randomly mask some edges of nodes whose degree is larger than the average
degree of all nodes in the network.

For the network without attributes, we use the identity matrix I and the adjacency
matrix A as the model input. Furthermore, we can also use the node-feature matrix as
input if the network has the node attributes, which means our method can be extended
easily to attribute networks. For each network, take Gs as an example, we define a masked
adjacency matrix Ās. Specifically, we first collect the nodes whose degree is larger than the
average degree of all nodes in Gs, and for node vs

i in the set

Ās(i, :) = As(i, :)�m, (1)

where m ∈ {0, 1}1×ns is the masked vector for vs
i and the sum of its elements is (d(vs

i)−
davg). d(vs

i) and davg are the vs
i ’s degree and the average degree of all nodes in Gs, respec-

tively; similarly for Āt.
Instead of embedding each node as a point vector, we represent a node by Gaussian

distributions, i.e., the mean and the variance, to incorporate the uncertainty [41]. We use
Ms ∈ Rns×d, Mt ∈ Rnt×d, Σs ∈ Rns×d, and Σt ∈ Rnt×d to denote the matrix of means
and variances for all nodes in the Gs and Gt, respectively, where each row represents the
mean/variance vector for a node

Ms = Ãs(ρ(Ãs IW s
0))W

s
µ Mt = Ãt(ρ(Ãt IW t

0))W
t
µ, (2)

Σs = Ãs(ρ(Ãs IW s
0))W

s
σ Σt = Ãt(ρ(Ãt IW t

0))W
t
σ, (3)

where W s
0∈ Rns×F is parameter matrix shared by Ms and Σs, W s

µ∈ RF×d and W s
σ∈ RF×d

are parameters for the Ms and Σs, respectively, and F is the number of neurons by hidden
layer that usually be 2 ∗ d. Similar for W t

0∈ Rnt×F, W t
µ∈ RF×d, and W t

σ∈ RF×d. ρ(·) is a non-

linear activation function, such as ReLU. Ãs = D(s)− 1
2 (Ās + I)D(s)− 1

2 is the symmetrically
normalized adjacency matrix, and D(s) ∈ Rns×ns is a diagonal matrix containing each
node’s degree in Gs. The same is for Ãt.

Through the above masked network encoder, nodes in two different networks, Gs

and Gt, are embedded into a low-dimension embedding space, and some labeled anchor
nodes’ influence is ignored by using the masked adjacency matrix. We denote the Gaussian
distribution N (µs

i , σs
i) of each node in Gs as hs

i , where µs
i represents the structural informa-

tion of vs
i and σs

i implies the possible uncertainty of µs
i . Similar for ht

i . For each network
we reconstruct the input adjacency matrix, which represents the network’s neighborhood
structure, to maintain the network’s global structure,

Lrec =
∥∥Âs − (As + I)

∥∥2
+
∥∥∥Ât − (At + I)

∥∥∥2
, (4)

Algorithms 2023, 16, 234 7 of 16

where Âs = Zs(Zs)T , Ât = Zt(Zt)T are the reconstructed adjacency matrix. Zs and Zt are
the stochastic latent variables matrix, whose i-th row can be sampled from the Gaussian
distribution hs

i and ht
i :

zs
i = µs

i + ε�
√

σs
i , zt

i = µt
i + ε�

√
σs

t , ε ∼ N (0, I). (5)

In addition, to ensure that the learned representations are indeed Gaussian distribu-
tions, we use the following regularization to constrain the latent representations:

Lreg =
ns

∑
i=1

KL(N (µs
i , σs

i)||N (0, I)) (6)

+
nt

∑
i=1

KL
(
N (µt

i , σt
i)||N (0, I)

)
.

KL[q(·) ‖ p(·)] is the Kullback–Leibler divergence between q(·) and p(·), it quantifies
the difference between two probability distributions q(·) and p(·).

Therefore, we obtain the following training objective function to learn node representations:

Len = Lrec + Lreg. (7)

3.2.2. Meta-Learning-Based Constraint

The typical goal of network alignment is to identify potential anchor links. When
labeled anchor links are available, we can use them as supervision information to learn the
node relationship between the two networks. However, the number of labeled anchor links
is often small, and the learned knowledge on the labeled anchor links should generalize to
potential anchor links. To address this challenge, we leverage meta-learning to distinguish
between anchor nodes and non-anchor nodes.

In general, the meta-learning methodology employs an episodic paradigm to train on
numerous samples of related tasks in order to solve the few-shot learning problem. These
related tasks are referred to as meta-training tasks, while the few-shot learning task is called
the meta-testing task [42]. We treat a labeled anchor node as a meta-training class and a
non-labeled node as a meta-testing class. Since we only consider aligning two networks
in this paper, the NA task that finding potential anchor links is comparable to identifying
nodes belonging to the same class between Gs and Gt. The number of samples in each
meta-training class and meta-testing class is limited to two, which correspond to whether a
pair of nodes is an anchor node pair or not. Thus, the network alignment (NA) task can be
viewed as a one-shot classification problem. In the meta-learning scenario, our training
tasks are for different tasks, and each task is a randomly drawn dataset, which contains k
samples drawn from two classes. For each task, 2 ∗ k samples are its training data (i.e., the
support dataset), and the prediction task of each task is to classify a new sample belonging
to these two classes (i.e., the task test is performed on the query dataset).

Meta-training. We denote the meta-training classes set and the meta-testing classes set
are L and N, respectively. The following is a description of how the meta-training tasks are
generated:

(1) Ci ← RANDOMSAMPLE(L,|C|),
(2) Si ← GET(Ci,Gs),
(3) Qi ← GET(Ci,Gt),
(4) Ti = Si ⊕Qi,
(5) Repeat steps (1)–(4) for K times.
To be more precise, we first randomly select |C| classes from meta-training classes L,

designated as Ci, at random. The support set Si is then formed by taking the nodes from
Gs that belong to class Ci. To obtain the query set Qi, the same process is used with Gt. A
meta-training task Ti = Si ⊕Qi is created using both Si and Qi. The foregoing processes
can be repeated K times to produce K meta-training tasks.

Algorithms 2023, 16, 234 8 of 16

Through meta-training, we constrain nodes of the same class (from Gs and Gt, re-
spectively) to be close and far away from other nodes. Specifically, for each node vt

j in

Q =
{

vt
1, vt

2, · · · , vt
j, · · · , vt

|c|

}
, we traverse all nodes in S =

{
vs

1, vs
2, · · · , vs

i , · · · , vs
|c|

}
, and

calculate the loss function L as follows,

L =

{
Len + d(vs

i , vt
j) if vs

i and vt
j are belonging to the same class

Len + log ∑ exp(−d(vs
i , vt

j)) otherwise
(8)

where d(·, ·) measures the similarity between two nodes. Since the representation of each
node is a Gaussian distribution, we use the second Wasserstein distance to calculate d(·, ·),
which can be computed as

d(vs
i , vt

j) = W2(hs
i , ht

j)
2 (9)

=
∥∥∥µs

i − µt
j

∥∥∥2

2
+ Tr

(
σs

i + σt
j − 2(σs

i
1/2σt

j σs
i

1/2)1/2
)

,

where σs
i σt

j = σt
j σs

i because the covariance matrices are diagonal. Thus, Equation (9) can be
simplified to

d(vs
i , vt

j) =
∥∥∥µs

i − µt
j

∥∥∥2

2
+
∥∥∥σs

i
1/2 − σt

j
1/2
∥∥∥2

F
, (10)

where ‖·‖F is the Frobenius norm.

3.3. Network Alignment Based on Node Representations

After acquiring the final distribution representation of each node in Gs and Gt, we
predict the potential anchor nodes. As introduced in Section 3.1, we aim to learn a predictive

function f : (Gs, Gt, Ea) → Y, Y ∈ {0, 1}|V
s |×|Vt|, Yij = 1 if vs

i and vt
j are predicted to be

a pair of potential anchor nodes across networks Gs and Gt, and 0 otherwise. Thus, for
a pair of nodes (vs

i , vt
j), vs

i ∈ Gs, vt
j ∈ Gt, to build a predictive function, we use a fully

connected network

f
(
(vs

i , vt
j) ∈ Y|hs

i , ht
j

)
= ReLU(W[µs

i ||σs
i ||dvs

i
||Na(vs

i)||

µt
j ||σt

j ||dvt
j
||Na(vt

j)] + b),
(11)

where [·||·] denotes the concatenation of embeddings, W and b are trainable parameters.
dvs

i
and dvt

j
are the degree of vs

i and vt
j, respectively. Na(vs

i) and Na(vt
j) are the number

of labeled anchor nodes in the neighborhood of vs
i and vt

j, respectively. Intuitively, node
degree can reflect its local topology to some extent, and the number of neighborhood
labeled anchor nodes can reflect the ability to receive labeled anchor node information.
The final result of the prediction is then obtained using the labeled anchor links set Ea to
calculate the cross-entropy as the loss function.

In general, only a small portion of the entire network is made up of labeled anchor
nodes. The following guidelines can be used to build some pseudo-anchor links in order to
effectively train the prediction function mentioned above

sim
(

vs
i , vt

j

)
=

∣∣∣Na(vs
i) ∩Na(vt

j)
∣∣∣∣∣∣N (vs

i) ∪N (vt
j)−Na(vs

i) ∩Na(vt
j)
∣∣∣ e−

∣∣∣d(vs
i)−d(vt

j)
∣∣∣, (12)

where Na(vs
i) and Na(vt

j) are the labeled anchor nodes in the neighborhood of vs
i and vt

j,
respectively. N (vs

i) and N (vt
j) are the neighbors of vs

i and vt
j, respectively. As a result, if

two nodes in separate networks have more neighbors who are designated anchor nodes

Algorithms 2023, 16, 234 9 of 16

and their node degree differences are lower, they have a high likelihood of being possible
anchor node pairs.

Then, we construct a pseudo-anchor link generator by using pairs of labeled an-
chor nodes:

fg

(
vs

i , vt
j

)
=

1 if sim
(

vs
i , vt

j

)
≥ 1
|Ea | ∑(vs

i ,vt
i)∈Ea sim

(
vs

i , vt
i
)

0 otherwise
(13)

Pseudo-anchor links generated by the generator are easier to find the anchor node
pairs that satisfy the equivalence connection status and containment connection status as
introduced in Section 1.

3.4. Time Complexity

There are two steps to the analyses: Masked Network Encoder. The time complexity
for calculating Ā is O(nd). The encoder uses graph convolutional network that takes in
the input network and outputs the mean and variance of the latent representation for each
node, takes in the sampled latent representations and reconstructs the input network and
uses a variational lower bound on the log-likelihood of the input network as its objective
function. Its time complexity is O(4ned + n2d), where n and e are the number of nodes and
edges of the input network, respectively, d is the node representation dimension. Meta-
Learning-Based Constraint. The time complexity of meta-Learning based constraint is
O(K(N|C|+ |C|2)d), where N = max(ns, nt), |C| is the sampled number of classes from
meta-training classes, K is the number of meta-training tasks.

4. Experiment

In this section, we perform experiments to validate the proposed DCSNA on both
real-world datasets and the synthetic dataset. We first compare it with the existing baseline
models on the NA task. Then we perform a parameter sensitivity analysis of DCSNA to
prove the effectiveness of considering anchor node diverse local structures.

4.1. Datasets

We validate the effectiveness of DCSNA on both real-world datasets and the synthetic datasets.

• Real-world dataset. There are three datasets in it, ACM-DBLP(Dataset.1) [43], arXiv
dataset(Dataset.2) [44], and Twitter–Foursquare(Dataset.3) [3].

• The synthetic dataset. It is constructed based on Facebook [45]. We remove nodes
with degrees of less than 10 and sample two networks in accordance with the method-
ology described in [12], resulting in 38,344 nodes and 1,183,080 edges. It uses a
distribution p ∼ U(0, 1) to determine which network each edge belongs to. Whenever
p ≤ 1− 2αs + αsαc, the edge is thrown away; if the edge is only preserved in the first
network, 1− 2αs + αsαc < p ≤ 1− αs; if 1− αs < p ≤ 1− αsαc, only the other network
retains the edge; otherwise, both networks maintain the edge. We set αs = αc = 0.5
and denote the synthetic dataset as Dataset.4.

The statistics of datasets are summarized in Table 1 (The datasets can be found at
https://github.com/tjuwangyinghui/DCSNA (accessed on 26 April 2023)). As shown
in Figure 2, we use the anchor node neighbors to their neighbors r as the analysis index.
Specifically, if r in each network less than 0.5 means that about half of the local structures
between anchor pairs are inconsistent. pr is the proportion of anchor node pairs in each
dataset whose r is less than 0.5 in both networks.

https://github.com/tjuwangyinghui/DCSNA

Algorithms 2023, 16, 234 10 of 16

Table 1. Statistics details of the datasets.

Dataset # Nodes # Edges # Anchor Links pr

Dataset.1 9872 39,561 6352 0.869916 44,808

Dataset.2 3583 14,485 985 0.801905 6097

Dataset.3 5120 164,919 1609 0.735313 76,972

Dataset.4 38,310 591,124 38,287 0.8238,310 591,694

4.2. Baseline Methods

We choose six network alignment methods as baselines to validate the effectiveness of
our method. The comparison methods are listed as follows:

• PALE [12] first learns the individual embeddings of two networks by existing single
network embedding methods LINE. Then, it learns a mapping function to match the
latent space of the two networks and predicts anchor node pairs by calculating the
distance of embeddings.

• CrossMNA [16] uses two vectors to preserve the common features of the anchor nodes
in different networks (inter-vector) and the specific structural feature for a node in its
selected network (intra-vector) respectively. Additionally, it uses the inter-vector to
align nodes in different networks.

• CAMU [15] learns network embedding by considering network structure and node
attribute information. Additionally, then it learns a mapping function to decrease the
representation distribution discrepancy of different networks.

• BRIGHT [35] builds a specific unified space using labeled anchor links as landmarks
using random walk with restart (RWR), and then employs a common linear layer to
determine the significance of the RWR scores at various dimensions.

• NeXtAlign [46] uses a special relational graph convolutional network (RelGCN) to
encode the alignment consistency.

• DHNA [31] uses a variational autoencoder to learn node embeddings, and considers
the different anchor nodes’ degrees across networks.

4.3. Experimental Settings

This part mainly introduces the evaluation of network alignment and parameter
settings in the experiment.

4.3.1. Evaluation Metrics

For the alignment of social networks, we randomly divided the labeled anchor links
into two parts, the training set and the test set. As introduced in Section 3.3, with a pair of
node (vs

i , vt
j) as input, DCSNA aims to predict whether they are a pair of potential anchor

nodes in two networks or not. In the context of our testing, each pair of anchor nodes
(vs

i , vt
j) can be classified into one of three categories based on its prediction status, true

positive (TP), false positive (FP), or false negative (FN).
A pair of anchor nodes (vs

i , vt
j) is classified as TP if it is predicted as a pair of anchor

nodes in the test and is indeed a pair of anchor nodes. On the other hand, if (vs
i , vt

j) is not a
pair of anchor nodes in the test but it is predicted as a pair of anchor nodes, it is classified as
FP. Lastly, a pair of anchor nodes (vs

i , vt
j) are classified as FN if it is a pair of anchor nodes

in the test but it is not predicted as such.
Under this prediction status, we have the following indicator, Precision = TP/(TP +

FP), Recall = TP/(TP + FN), F1 = 2 ∗ (Precision ∗ Recall)/(Precision + Recall). Since each

Algorithms 2023, 16, 234 11 of 16

pair of anchor nodes can be seen as a class, we use three frequently used metrics, Macro
Precision, Macro Recall, and Macro F1, as measurement, that is, the arithmetic mean of
each statistical indicator value across all classes.

4.3.2. Parameter Settings

To quantify the NA task, we apportioned labeled anchor nodes at random into a
training set and a test set at a ratio of 9:1. We set the learning rate to 0.001 in our model
training, and use about 30% labeled anchor nodes for meta-learning-based constraint. We
randomly select nodes in both networks for negative sampling to train the predictive
function, and the number of negative samples is 0.5 times the number of labeled anchor
node pairs. With the exception of CrossMNA which we set the dimensions of the inter-
vector and intra-vector to 200 and 100, respectively, and the embedding dimension d = 200
for all other methods. We have used the optimal parameter settings for each approach for
the remaining parameters.

4.4. Performance Analysis

Accuracy. The experimental results of network alignment on real-world datasets and
synthetic dataset are presented in Table 2, we can draw the following observations.

Table 2. Experimental results of DCSNA and other methods.

Metric Dataset PALE CrossMNA CAMU BRIGHT NeXtAlign DHNA DCSNA

Macro Precision

Dataset.1 0.617 0.630 0.663 0.602 0.710 0.719 0.730
Dataset.2 0.589 0.629 0.654 0.617 0.649 0.672 0.727
Dataset.3 0.596 0.616 0.635 0.616 0.651 0.750 0.883
Dataset.4 0.595 0.650 0.553 0.598 0.621 0.703 0.796

Macro Recall

Dataset.1 0.554 0.620 0.646 0.626 0.697 0.662 0.676
Dataset.2 0.586 0.618 0.686 0.554 0.693 0.677 0.695
Dataset.3 0.585 0.616 0.629 0.614 0.696 0.706 0.516
Dataset.4 0.594 0.630 0.549 0.622 0.629 0.688 0.796

Macro F1

Dataset.1 0.583 0.618 0.655 0.619 0.703 0.675 0.688
Dataset.2 0.585 0.619 0.670 0.584 0.670 0.673 0.704
Dataset.3 0.584 0.616 0.670 0.616 0.674 0.721 0.533
Dataset.4 0.594 0.640 0.551 0.610 0.625 0.695 0.796

• Based on the experimental results, we find that our method DCSNA can perform
better than other baseline methods in most cases, especially under the metric Macro
Precision. These results demonstrate DCSNA’s superiority, which learns each node
representation as a distribution and masks the nodes with a larger degree. Represent-
ing nodes as distributions let us distinguish the nodes from their neighbor nodes and
reduce confusion during network alignment. This is also why embedding-based meth-
ods, such as PALE and CrossMNA, perform slightly worse, as they overly preserve
the neighbor structure of nodes, making nodes and their neighbors indistinguishable.
Since CAMU is to reduce the node representation distribution between two networks,
it performs better than methods that only learn node representations.

• Although BRIGHT and NeXtAlign consciously distinguish anchor node pairs from
their neighbors through mechanisms, such as sampling or using anchor links as
landmarks, the key idea is still keeping the consistency of anchor node pairs. Therefore,
they are more suitable for the situation where most anchor nodes satisfy equivalence
connection status across networks.

• It is worth noting that the performance of DHNA is second only to our model in most
cases. DHNA considers the degree discrepancy across nodes, i.e., non-equivalence
connection status, and makes a balance between consistency and such connection
status. However, it ignores another connection status.

Algorithms 2023, 16, 234 12 of 16

Overall, our results highlight the effectiveness of DCSNA in addressing the diverse
connection status of anchor nodes and demonstrate its superiority over other state-of-the-art
network alignment methods.

In addition, we conduct experiments on the synthetic data, to analyze the impact
of edge insertions/deletions of networks on network alignment. The result is presented
in Figure 4, we compare the three metrics on combinations of different overlap levels αc
and sparsity level αs. For example, “3_5” on the horizontal axis means the combination
of αc = 0.3 and αs = 0.5. It is obvious that performance becomes better when αc and αs
increase. This is because as αc and αs increase, the network becomes denser and the two
networks share more edges, which is beneficial for network alignment. It is worth noting
that the results of DCSNA on various combinations are not very different, which means
that our model is not sensitive to the insertions/deletions of edges in the networks.

3_5 5_3 5_5 5_7 5_9 7_5 9_50.4

0.5

0.6

0.7

0.8

M
ac

ro
 P

re
cis

io
n

PALE CrossMNA CAMU BRIGHT NeXtAlign DHNA DCSNA

3_5 5_3 5_5 5_7 5_9 7_5 9_50.4

0.5

0.6

0.7

0.8
M

ac
ro

 R
ec

al
l

3_5 5_3 5_5 5_7 5_9 7_5 9_50.4

0.5

0.6

0.7

0.8

M
ac

ro
 F

1

Figure 4. Results of varying edges on Dataset.4.

Efficiency. In Figure 5, we compare the running time of DCSNA and baselines on
different datasets. Although DCSNA is not the fastest, its running time is competitive. It
spends most of its time in the process of masking some edges according to the filtering
conditions, and we will optimize this process in further work.

Dataset.1 Dataset.2 Dataset.3 Dataset.4
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m

e(
ho

ur
)

PALE CrossMNA CAMU BRIGHT NeXtAlign DHNA DCSNA

Figure 5. Running time on all datasets.

4.5. Ablation Study

We compare our proposed method with the following variants, (1) DCSNA-U, which
represents nodes by a single node embedding according to Equation (5), and replaces the
second Wasserstein distance with Euclidean distance in Equation (8); (2) DCSNA-M, which
learns node representations without masking any nodes; and (3) DCSNA-P, which does not
use the pseudo-anchor links generated by Equation (13) during model training. The results
are shown in Figure 6. As we can see, the proposed DCSNA performs the best, validating
the necessities of all components in the whole model.

Algorithms 2023, 16, 234 13 of 16

Dataset.1 Dataset.2 Dataset.3 Dataset.40.65

0.70

0.75

0.80

0.85

0.90

M
ac

ro
 P

re
cis

io
n

DCSNA-M DCSNA-U DCSNA-P DCSNA

Dataset.1 Dataset.2 Dataset.3 Dataset.40.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

M
ac

ro
 R

ec
al

l

Dataset.1 Dataset.2 Dataset.3 Dataset.40.50

0.55

0.60

0.65

0.70

0.75

0.80

M
ac

ro
 F

1

Figure 6. Result of ablation study.

4.6. Parameter Sensitivity

In this part, we explore how the hyperparameters of the proposed DCSNA model
affect performance. We conduct several experiments to analyze the results by varying the
hyperparameters. There are three main parameters in the proposed DCSNA, the dimension
d of node embeddings, the negative sample ratio rn (i.e., the number of labeled anchor
nodes used in the training set divided by the number of node pairs we obtain from the
negative sampling for training predictive function), and sampling ratio ra (i.e., the number
of labeled anchor nodes used in the meta-learning constraint divided by the number of
labeled anchor nodes used in the training set). To investigate the impact of these parameters
on model performance, we set the default values of d = 200, rn = 0.5, and ra = 0.3. We
then vary one parameter at a time while keeping the other parameters constant and assess
its effect on network alignment tasks using the three evaluation metrics on four datasets.

• Figure 7a shows that performance improves with increasing node size d, but perfor-
mance degrades when d is more than 200. The reason is that we represent each node as
a distribution containing both mean and variance embedding, as the dimension d in-
creases, the uncertainty (i.e., the information of variance embedding) will accumulate
and result in the poor performance of matching potential anchor nodes.

• From Figure 7b, we can observe that our model could achieve competitive performance
on different rn. It indicates that although the negative sampling mechanism is helpful
for better training of the model, it plays a limited role. Improper determination of the
number of negative samples may even reduce the accuracy of the model.

• From Figure 7c, we can observe our model can achieve competitive performance by us-
ing fewer labeled anchor nodes, which demonstrates the effectiveness of meta-learning
constraint and the robustness of our model. Since the number of labeled anchor nodes
is usually small in the real task, the robustness of the model can guarantee the model
to be applied to the alignment task well.

50 100 200 300 4000.6

0.7

0.8

0.9

M
ac

ro
 P

re
cis

io
n

50 100 200 300 4000.46

0.56

0.66

0.76

M
ac

ro
 R

ec
al

l

(a) embedding dimension d.
50 100 200 300 4000.46

0.56

0.66

0.76

M
ac

ro
 F

1

0.3 0.5 0.7 0.90.65

0.75

0.85

M
ac

ro
 P

re
cis

io
n

0.3 0.5 0.7 0.90.48

0.58

0.68

0.78

M
ac

ro
 R

ec
al

l

(b) negative sample ratio rn.
0.3 0.5 0.7 0.90.48

0.58

0.68

0.78

M
ac

ro
 F

1

0.1 0.3 0.5 0.80.68

0.78

0.88

M
ac

ro
 P

re
cis

io
n

0.1 0.3 0.5 0.80.48

0.58

0.68

0.78

M
ac

ro
 R

ec
al

l

(c) sampling ratio ra.
0.1 0.3 0.5 0.80.48

0.58

0.68

0.78

M
ac

ro
 F

1

Dataset.1 Dataset.2 Dataset.3 Dataset.4

Figure 7. Results of parameters study.

Algorithms 2023, 16, 234 14 of 16

5. Conclusions

The network alignment problem has numerous applications in various fields, includ-
ing social and natural sciences. In this paper, we study the network alignment problem and
analyze the characteristic of anchor node pairs’ connection status across different networks
in the real world. Our analysis reveals that the diversity of anchor node pairs exists in
many standard datasets.

To let the alignment method have a good performance at different connection statuses
of anchor node pairs, we design a masked network encoder to alleviate the impact of
nodes with a high degree. These nodes have a higher probability link to labeled anchor
nodes and will pass confusing information in the alignment process. Moreover, we learn
the node representations as distribution with mean embedding and variance embedding
instead of single node embedding to represent the distinctive character and uncertainty
in the network. Additionally, we use a meta-learning mechanism to better generalize the
information of labeled anchor nodes, which could ignore the influence of anchor node
pairs’ diverse connection status in network alignment to a certain extent. We assess the
proposed method’s validity using three real and one synthetic dataset. The analytical
performance of the proposed DSCNA can exceed other current baselines, according to
extensive experiments. In future work, we consider making our method more explicable
in theory.

Author Contributions: Conceptualization, Y.W.; methodology, Y.W.; software, M.S.; formal analysis,
Y.W.; investigation, M.S.; resources, validation, writing—review and editing, visualization, Y.S.; data
curation, M.S.; writing—original draft preparation, Y.W.; supervision, W.W.; project administration,
W.W.; funding acquisition, W.W. All authors have read and agreed to the published version of the
manuscript.

Funding: This work was supported by the Sustainable Development Project of Shenzhen (KCXFZ2020
1221173013036).

Data Availability Statement: Data are available in https://github.com/tjuwangyinghui/DCSNA
(accessed on 26 April 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shu, K.; Wang, S.; Tang, J.; Zafarani, R.; Liu, H. User identity linkage across online social networks: A review. ACM Sigkdd Explor.

Newsl. 2017, 18, 5–17. [CrossRef]
2. Shi, C.; Li, Y.; Zhang, J.; Sun, Y.; Philip, S.Y. A survey of heterogeneous information network analysis. IEEE Trans. Knowl. Data

Eng. 2016, 29, 17–37. [CrossRef]
3. Zhang, J.; Philip, S.Y. Integrated anchor and social link predictions across social networks. Knowl. Inf. Syst. 2019, 60, 303–326.

[CrossRef]
4. Kong, X.; Zhang, J.; Yu, P.S. Inferring Anchor Links across Multiple Heterogeneous Social Networks. In Proceedings of the 22nd

ACM International Conference on Information & Knowledge Management (CIKM’13), Francisco, CA, USA, 27 October 2013;
ACM: New York, NY, USA, 2013; pp. 179–188.

5. Chen, L.J.; Gao, J. A trust-based recommendation method using network diffusion processes. Phys. A Stat. Mech. Appl. 2018,
506, 679–691. [CrossRef]

6. Wang, B.; Gu, Y.; Zheng, D. Community detection in error-prone environments based on particle cooperation and competition
with distance dynamics. Phys. A Stat. Mech. Appl. 2022, 607, 128178. [CrossRef]

7. Wang, Q.; Xiao, Y.; Meng, D. Identification of structural key genes of mutual information gene networks of brain tumor. Phys. A
Stat. Mech. Appl. 2022, 608, 128322. [CrossRef]

8. Liang, B.; Wang, L.; Wang, X. OLMNE+FT: Multiplex network embedding based on overlapping links. Phys. A Stat. Mech. Appl.
2022, 596, 127116. [CrossRef]

9. Jiao, P.; Tang, M.; Liu, H.; Wang, Y.; Lu, C.; Wu, H. Variational autoencoder based bipartite network embedding by integrating
local and global structure. Inf. Sci. 2020, 519, 9–21. [CrossRef]

10. Wu, H.; Wolter, K.; Jiao, P.; Deng, Y.; Zhao, Y.; Xu, M. EEDTO: An Energy-Efficient Dynamic Task Offloading Algorithm for
Blockchain-Enabled IoT-Edge-Cloud Orchestrated Computing. IEEE Internet Things J. 2021, 8, 2163–2176. [CrossRef]

https://github.com/tjuwangyinghui/DCSNA
http://doi.org/10.1145/3068777.3068781
http://dx.doi.org/10.1109/TKDE.2016.2598561
http://dx.doi.org/10.1007/s10115-018-1210-1
http://dx.doi.org/10.1016/j.physa.2018.04.089
http://dx.doi.org/10.1016/j.physa.2022.128178
http://dx.doi.org/10.1016/j.physa.2022.128322
http://dx.doi.org/10.1016/j.physa.2022.127116
http://dx.doi.org/10.1016/j.ins.2020.01.033
http://dx.doi.org/10.1109/JIOT.2020.3033521

Algorithms 2023, 16, 234 15 of 16

11. Liu, L.; Cheung, W.K.; Li, X.; Liao, L. Aligning Users across Social Networks Using Network Embedding. In Proceedings
of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI’16), New York, NY, USA, 9–15 July 2016;
pp. 1774–1780.

12. Man, T.; Shen, H.; Liu, S.; Jin, X.; Cheng, X. Predict Anchor Links across Social Networks via an Embedding Approach. In
Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI’16), New York, NY, USA, 9–15
July 2016; pp. 1823–1829.

13. Chen, H.; YIN, H.; Sun, X.; Chen, T.; Gabrys, B.; Musial, K. Multi-Level Graph Convolutional Networks for Cross-Platform
Anchor Link Prediction. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, Long Beach (KDD’20), CA, USA, 6–10 July 2020; ACM: New York, NY, USA, 2020; pp. 1503–1511.

14. Trung, H.T.; Toan, N.T.; Vinh, T.V.; Dat, H.T.; Thang, D.C.; Hung, N.Q.V.; Sattar, A. A comparative study on network alignment
techniques. Expert Syst. Appl. 2020, 140, 112883. [CrossRef]

15. Zheng, C.; Pan, L.; Wu, P. CAMU: Cycle-Consistent Adversarial Mapping Model for User Alignment across Social Networks.
IEEE Trans. Cybern. 2021, 52, 10709–10720. [CrossRef]

16. Chu, X.; Fan, X.; Yao, D.; Zhu, Z.; Huang, J.; Bi, J. Cross-Network Embedding for Multi-Network Alignment. In Proceedings of
the The World Wide Web Conference (WWW’19), San Francisco, CA, USA, 13–17 May 2019; ACM: New York, NY, USA, 2019;
pp. 273–284.

17. Trung, H.T.; Van Vinh, T.; Tam, N.T.; Yin, H.; Weidlich, M.; Hung, N.Q.V. Adaptive network alignment with unsupervised and
multi-order convolutional networks. In Proceedings of the 2020 IEEE 36th International Conference on Data Engineering (ICDE),
Dallas, TX, USA, 20–24 April 2020; pp. 85–96.

18. Nicolau, M.; McDermott, J. Learning neural representations for network anomaly detection. IEEE Trans. Cybern. 2018,
49, 3074–3087. [CrossRef]

19. Zhou, X.; Liang, X.; Du, X.; Zhao, J. Structure Based User Identification across Social Networks. IEEE Trans. Knowl. Data Eng.
2018, 30, 1178–1191. [CrossRef]

20. Bayati, M.; Gleich, D.F.; Saberi, A.; Wang, Y. Message-passing algorithms for sparse network alignment. ACM Trans. Knowl.
Discov. Data (TKDD) 2013, 7, 1–31. [CrossRef]

21. Zhang, S.; Tong, H. Final: Fast attributed network alignment. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 1345–1354.

22. Koutra, D.; Tong, H.; Lubensky, D. Big-align: Fast bipartite graph alignment. In Proceedings of the 2013 IEEE 13th International
Conference on Data Mining, Dallas, TX, USA, 7–10 December 2013; pp. 389–398.

23. Vijayan, V.; Milenković, T. Multiple network alignment via multiMAGNA++. IEEE/ACM Trans. Comput. Biol. Bioinform. 2017,
15, 1669–1682. [CrossRef]

24. Ge, R.; Wu, Q.; Xu, J. Computational methods for protein–protein interaction network alignment. In Recent Advances in Biological
Network Analysis; Springer: Berlin/Heidelberg, Germany, 2021; pp. 45–63.

25. Menor-Flores, M.; Vega-Rodríguez, M.A. Decomposition-based multi-objective optimization approach for PPI network alignment.
Knowl.-Based Syst. 2022, 243, 108527. [CrossRef]

26. Lanrezac, A.; Laurent, B.; Santuz, H.; Férey, N.; Baaden, M. Fast and Interactive Positioning of Proteins within Membranes.
Algorithms 2022, 15, 415. [CrossRef]

27. Sun, M.; Zhu, H.; Xie, R.; Liu, Z. Iterative Entity Alignment Via Joint Knowledge Embeddings. In Proceedings of the International
Joint Conference on Artificial Intelligence, Melbourne, Australia, 19–25 August 2017; pp. 4258–4264. [CrossRef]

28. Chen, M.; Tian, Y.; Yang, M.; Zaniolo, C. Multilingual Knowledge Graph Embeddings for Cross-Lingual Knowledge Alignment.
In Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI’17), Melbourne, Australia, 19–25 August
2017; pp. 1511–1517.

29. Zaslavskiy, M.; Bach, F.; Vert, J.P. A path following algorithm for the graph matching problem. IEEE Trans. Pattern Anal. Mach.
Intell. 2008, 31, 2227–2242. [CrossRef]

30. Yang, Y.; Wang, L.; Liu, D. Anchor link prediction across social networks based on multiple consistency. Knowl.-Based Syst. 2022,
257, 109939. [CrossRef]

31. Wang, Y.; Peng, Q.; Wang, W.; Guo, X.; Shao, M.; Liu, H.; Liang, W.; Pan, L. Network Alignment enhanced via modeling
heterogeneity of anchor nodes. Knowl.-Based Syst. 2022, 250, 109116. [CrossRef]

32. Ren, J.; Zhang, Z.; Jin, J.; Zhao, X.; Wu, S.; Zhou, Y.; Shen, Y.; Che, T.; Jin, R.; Dou, D. Integrated Defense for Resilient Graph
Matching. In Proceedings of the 38th International Conference on Machine Learning, Virtual, 18–24 July 2021; Meila, M., Zhang,
T., Eds.; Volume 139, pp. 8982–8997.

33. Zhang, J.; Chen, B.; Wang, X.; Chen, H.; Li, C.; Jin, F.; Song, G.; Zhang, Y. MEgo2Vec: Embedding Matched Ego Networks for User
Alignment Across Social Networks. In Proceedings of the 27th ACM International Conference on Information and Knowledge
Management (CIKM’18), Turin, Italy, 22–26 October 2018; Association for Computing Machinery: New York, NY, USA, 2018;
pp. 327–336. [CrossRef]

http://dx.doi.org/10.1016/j.eswa.2019.112883
http://dx.doi.org/10.1109/TCYB.2021.3064294
http://dx.doi.org/10.1109/TCYB.2018.2838668
http://dx.doi.org/10.1109/TKDE.2017.2784430
http://dx.doi.org/10.1145/2435209.2435212
http://dx.doi.org/10.1109/TCBB.2017.2740381
http://dx.doi.org/10.1016/j.knosys.2022.108527
http://dx.doi.org/10.3390/a15110415
http://dx.doi.org/10.24963/ijcai.2017/595
http://dx.doi.org/10.1109/TPAMI.2008.245
http://dx.doi.org/10.1016/j.knosys.2022.109939
http://dx.doi.org/10.1016/j.knosys.2022.109116
http://dx.doi.org/10.1145/3269206.3271705

Algorithms 2023, 16, 234 16 of 16

34. Zhong, Z.; Cao, Y.; Guo, M.; Nie, Z. Colink: An Unsupervised Framework for User Identity Linkage. In Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32, pp. 5714–5721.

35. Yan, Y.; Zhang, S.; Tong, H. BRIGHT: A Bridging Algorithm for Network Alignment. In Proceedings of the Web Confer-
ence (WWW’21), Ljubljana, Slovenia, 19–23 April 2021; Association for Computing Machinery: New York, NY, USA, 2021;
pp. 3907–3917. [CrossRef]

36. Liu, J.; Zhang, F.; Song, X.; Song, Y.I.; Lin, C.Y.; Hon, H.W. What’s in a Name? An Unsupervised Approach to Link Users across
Communities. In Proceedings of the Sixth ACM International Conference on Web Search and Data Mining (WSDM’13), Rome,
Italy, 4–8 February 2013; ACM: New York, NY, USA, 2013; pp. 495–504.

37. Liu, S.; Wang, S.; Zhu, F.; Zhang, J.; Krishnan, R. HYDRA: Large-Scale Social Identity Linkage via Heterogeneous Behavior
Modeling. In Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data (SIGMOD’14), Snowbird,
UT, USA, 22–27 June 2014; ACM: New York, NY, USA, 2014; pp. 51–62.

38. Riederer, C.; Kim, Y.; Chaintreau, A.; Korula, N.; Lattanzi, S. Linking users across domains with location data: Theory and
validation. In Proceedings of the 25th International Conference on World Wide Web, Montreal, QC, Canada, 11–15 April 2016;
pp. 707–719.

39. Wang, Z.; Lv, Q.; Lan, X.; Zhang, Y. Cross-lingual Knowledge Graph Alignment via Graph Convolutional Networks. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 31 October–4
November 2018; pp. 349–357.

40. Wang, Y.; Wang, W.; Zhen, Z.; Peng, Q.; Jiao, P.; Liang, W.; Shao, M.; Sun, Y. Geometry interaction network alignment.
Neurocomputing 2022, 501, 618–628. [CrossRef]

41. Zhu, D.; Cui, P.; Wang, D.; Zhu, W. Deep Variational Network Embedding in Wasserstein Space. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, London, UK, 19–23 August 2018; pp. 2827–2836.

42. Zhou, F.; Cao, C.; Zhang, K.; Trajcevski, G.; Zhong, T.; Geng, J. Meta-GNN: On Few-Shot Node Classification in Graph Meta-
Learning. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management (CIKM’19),
Beijing China, 3–7 November 2019; pp. 2357–2360.

43. Zhang, S.; Tong, H. Attributed Network Alignment: Problem Definitions and Fast Solutions. IEEE Trans. Knowl. Data Eng. 2019,
31, 1680–1692. [CrossRef]

44. De Domenico, M.; Lancichinetti, A.; Arenas, A.; Rosvall, M. Identifying modular flows on multilayer networks reveals highly
overlapping organization in interconnected systems. Phys. Rev. X 2015, 5, 011027. [CrossRef]

45. Viswanath, B.; Mislove, A.; Cha, M.; Gummadi, K.P. On the Evolution of User Interaction in Facebook. In Proceedings of the 2nd
ACM Workshop on Online Social Networks, Barcelona, Spain, 17 August 2009; pp. 37–42.

46. Zhang, S.; Tong, H.; Jin, L.; Xia, Y.; Guo, Y. Balancing Consistency and Disparity in Network Alignment. In Proceedings of the
27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD’21), Washington, DC, USA, 24–28 August 2021;
Association for Computing Machinery: New York, NY, USA, 2021; pp. 2212–2222.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/3442381.3450053
http://dx.doi.org/10.1016/j.neucom.2022.06.077
http://dx.doi.org/10.1109/TKDE.2018.2866440
http://dx.doi.org/10.1103/PhysRevX.5.011027

	Introduction
	Related Work
	Method
	Problem Formulation
	Network Embedding with the Diverse Local Structure of Anchor Node
	Masked Network Encoder Based on Variational Graph Convolution
	Meta-Learning-Based Constraint

	Network Alignment Based on Node Representations
	Time Complexity

	Experiment
	Datasets
	Baseline Methods
	Experimental Settings
	Evaluation Metrics
	Parameter Settings

	Performance Analysis
	Ablation Study
	Parameter Sensitivity

	Conclusions
	References

