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Abstract: This paper presents a tutorial on the state-of-the-art software for the solution of two-stage
(mixed-integer) linear stochastic programs and provides a list of software designed for this purpose.
The methodologies are classified according to the decomposition alternatives and the types of the
variables in the problem. We review the fundamentals of Benders decomposition, dual decomposition
and progressive hedging, as well as possible improvements and variants. We also present extensive
numerical results to underline the properties and performance of each algorithm using software
implementations, including DECIS, FORTSP, PySP, and DSP. Finally, we discuss the strengths and
weaknesses of each methodology and propose future research directions.
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1. Introduction

In the modeling and optimization of real-world problems, there is usually a level of
uncertainty associated with the input parameters and their future outcomes. Stochastic
programming (SP) models have been widely studied to solve optimization problems under
uncertainty over the past decades [1,2]. SP is acknowledged for providing superior results
compared to the corresponding deterministic model with nominal values for the uncertain
parameters, which can lead to suboptimal or infeasible solutions. SP applications in process
systems engineering include manufacturing networks and supply chain optimization [3,4],
production scheduling [5], synthesis of process networks [6].

Two-stage stochastic programming is a commonly applied framework for cases where
parameter uncertainties are decision independent (exogenous uncertainties). In stochastic
programming, uncertain parameters are explicitly represented by a set of scenarios. Each
scenario corresponds to one possible realization of the uncertain parameters, according
to a discretized probability distribution. The goal is to optimize the expected value of the
objective function over the full set of scenarios, subject to the implementation of common
decisions at the beginning of the planning horizon.

Stochastic programs are often difficult to solve due to their large size and complexity
that grows with the number of scenarios. To overcome these difficulties, decomposition
algorithms, such as Benders decomposition [7], Lagrangian decomposition [8], and progres-
sive hedging [9], have been developed to solve linear programming (LP) and mixed-integer
linear programming (MILP) stochastic problems. For a comprehensive review of recent
algorithmic advances in two-stage stochastic MIP, we refer the readers to the tutorial [10].

On the software development front, several modeling systems and optimization
platforms have included extensions for a convenient algebraic representation of stochas-
tic problems, as offered by major software vendors, such as GAMS, LINDO, XpressMP,
AIMMS, and Maximal.
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In recent years, various commercial and open-source applications have been developed
specifically to represent and solve two-stage and multistage SP problems. Some of them
include capabilities to read and build stochastic MPS (SMPS) files, the standard exchange
format for SP applications. However, despite advances in the field and proven benefits, SP
has not been widely used in industrial applications. Existing applications include power
systems planning and scheduling [11-13], and process systems engineering [14,15].

The scope of this paper is to provide a tutorial for beginners on linear and mixed-
integer linear stochastic programming, introducing the fundamentals on solution method-
ologies with a focus on available software. To accomplish this objective, we present a
general description of techniques based on Benders decomposition and dual decomposi-
tion, which are the fundamentals of most known solvers designed specifically to tackle
special problem structures. We then review the currently available state-of-the-art soft-
ware for the solution of two-stage stochastic programming problems and evaluate their
performance, using large-scale test libraries in SMPS format.

The remainder of this paper is organized as follows. In Section 2, we explain the math-
ematical formulation of (mixed-integer) linear stochastic problems. Section 3 describes the
classical L-shaped algorithm. Section 4 summarizes the enhancement strategies to improve
the performance of Benders decomposition. Section 5 describes scenario decomposition
methods and algorithmic enhancements. In Section 6, we describe algorithmic innovations
in software packages for dual decomposition and show some computational results. Finally,
in Section 7, we summarize the conclusions.

2. Problem Statement

We consider a two-stage stochastic mixed-integer linear problem (P) in the follow-
ing form:

(P) min TC =cTx+ ) Towd L e (1a)
Y we)
st. Ax<b (1b)
xeX, X={x:x€{0,1} Viel, x,>0Viel\L} (1c)
WolYw < hy —Tux Yw € Q) (1d)
Yo €Y YweQ (le)

where x denotes the ‘here and now’ decisions, taken at the beginning of the planning
horizon before the uncertainties unfold, and () is the set of scenarios. Vector y,, repre-
sents the recourse or corrective actions (wait and see), applied after the realization of
the uncertainty. Matrix A € R™*™ and vector b € R™ represent the first-stage con-
straints. Matrices T,, and W,,, and vector h,, € R"2 represent the second-stage problem.
Matrices T,, € R™*™ and W, € R™*" are called technological and recourse matri-
ces, respectively. Let I = {1,2,...,n1} be the index set of all first-stage variables. Set
I; C I as the subset of indices for binary first-stage variables. Let ] = {1,2,...,n,} be
the index set of all second-stage variables. If the second-stage variables are mixed integer,
Y ={y: yi€{0,1},Vi€e 1, y; >0 Vje€ J\J1}, where set J; C ] is the subset of indices
for binary second-stage variables. If all the second-stage variables are continuous, set
Ji=@andY = {y : y; > 0 Vj € J}. The objective function (TC) minimizes the total
expected cost with the scenario probability T, and the cost vectors c and d,,. It should be
noted that the approaches discussed in this paper can be applied to mixed-integer variables.
Here, we restrict the variables to be mixed binary for simplicity. Equation (1) is often
referred to as the deterministic equivalent, or extensive form of the SP.

Formulation (P) can be rewritten in an equivalent form (PNAC) with nonanticipativity
constraints (NACs), where the first-stage variables are no longer shared, and each scenario
represents an instance of a deterministic problem with a specific realization outcome [16,17].

(PNAC) min TC= Y t(c"xw +dlye) (2a)

Yo we
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st. ) Huxo =0 (2b)

we)
(Xw, Yw) € Gy Yw € Q) (2¢)

In Equation (2c) , G, represents the feasible region for scenario w, which is defined
by constraints (1b)—(1e). Nonanticipativity constraints (2b) are added to ensure that the
first-stage decisions are the same across all scenarios. Nonanticipativity constraints are
represented by a suitable sequence of matrices H,, € R""(I21=1)x"1One example of such
constraints is the following:

X = X1 Yw=23...,|Q] 3)

Given the mathematical structure of the deterministic equivalent formulations (P) and
(PNAC), (mixed-integer) linear stochastic problems can be solved using decomposition
methods derived from duality theory [18]. Such methods split the deterministic equivalent
into a master problem and a series of smaller subproblems to decentralize the overall
computational burden. Decomposition methodologies are classified in two groups: (i) node-
based or vertical decomposition, which includes Benders decomposition and variants where
the problem is decomposed by the nodes in the scenario tree, and (ii) scenario-based or
horizontal decomposition, where the problem is decomposed by scenarios. In the following
Section 3, we provide a tutorial overview of Benders decomposition. In Section 4, we
also provide a tutorial review of scenario decomposition methods, including the dual
decomposition algorithm and the progressive hedging algorithm.

3. L-Shaped Algorithm/Benders Decomposition

If the second-stage variables are all continuous (ie., Y = {y : yi 2 0Vvje] h,
problem (P) can be solved with Benders decomposition. Benders decomposition (BD)
was originally developed in 1962 by Benders [19] to solve large-scale mixed-integer linear
problems (MILP) with complicating variables. This concept has been extended to solve a
broader range of optimization problems [20], including multistage, bilevel, and nonlinear
programming. When applied to stochastic problems, it is commonly referred to as the
L-shaped algorithm [7].

The L-shaped algorithm partitions the deterministic formulation (P) into multiple prob-
lems: (i) a master problem (MP) that contains all the first-stage constraints and variables,
which can be mixed integer; and (ii) a collection of subproblems that include corrective
future actions for the given first-stage solution. The master problem (MP) is derived from
the projection of (P) on the variables x:

(MP) min TC = cTx+Q(x) (4a)
st. Ax<b (4b)
xeX (40)

where Q(x) = Y, e Twbw(x) is defined as the recourse function (or expected second-stage
value function); and 6, (x) is defined by the primal second-stage program for scenario w,
(BSPpw),

(BSPpy) Buw(x) = min ALy (5a)
st WolYw < hy — Tx (5b)
Yo =0 (50)

The recourse functions 6,,(x) and Q(x) are convex, differentiable, and piece-wise
linear, characteristics that are exploited in the BD method [1]. These conditions do not
hold when integer variables are included in the second-stage program. For the case
of integer recourse, a logic-based Benders framework [21], second-stage convexification
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techniques [22-24], specialized branch-and-bound schemes [25,26] or dual decomposition
methods [16] may be applied to solve large stochastic problems. In this section, we only
focus on Benders decomposition for SP with continuous second-stage variables.

Formulation (BSPp,,) is a linear program for any given feasible value of x. By the strong
duality theorem, the second-stage program is equivalent to its dual (BSPd,,) if (BSPp.,) is
feasible and bounded. Vector 7, represents the Lagrangian multipliers associated with the
second-stage constraints given by Equation (5b):

(BSPdy)  (x) = max (1o — Twx) 710 (6a)
st. Whr, <dg (6b)
Ty >0 (6¢)

BD introduces a set of piece-wise linear approximations of the recourse function in
the problem MP, known as optimality cuts, which are built from dual solutions of the
second-stage program. It is important to highlight that the dual feasible region does not
depend on the value of x. Thus, the exact representation of the expected cost consists of the
computation of all the extreme points of problems (BSPd,,).

However, the second-stage program may not be feasible for some values of x. BD
enforces second-stage constraints (5b) by adding feasibility cuts, which are valid inequalities
that exclude infeasible first-stage solutions from the MP. Subproblem feasibility is evaluated
by solving the following recourse reformulation for scenario w:

T

Vw(x) = min e v~ (7a)

Yw, 0™
st. Weyw —v < hy —Tux (7b)
v >0, Yo=>0 (7c)

where e € R™ is a vector with all-1 entries, and v~ € R™2 is the slack of constraints (5b).
The objective function V,(x) measures the amount by which these constraints are violated;
thus, if V,,(x) equals zero, it implies that the original subproblem (5) is feasible. To derive
feasibility cuts in terms of x, BD considers the dual of problem (7) to generate an expression
equivalent to Equation (7a). The optimal solution p € R™2 of the dual feasibility problem
(8) corresponds to one of the extreme rays (or directions) of the recourse subproblem (6):

V(x) = ml?x (he — Twx)Tu (8a)
st. Wiu<o (8b)
O<puc<e (8c)

The master problem (4) is linearized by (i) substituting function Q(x) with the weighted
sum of the future cost estimation (6a), and (ii) applying feasibility cuts as needed. This
reformulation is referred to as the multi-cut Benders master problem (BMP),

(BMP) TCyj=min c’x+ ¥ Twbw (9a)
e we)

st. Ax<b, xeX (9b)

(hj—Tix)"p; <0 VjeE (9¢)

(ho — Twx)TAK, <60, YwoeQ, keK (9d)

where variables 6, € Rl represent the outer linearization of the second-stage cost 6, (x).
Parameters 7%, and fi j represent the extreme points and rays from the dual form of the
recourse program (BSPd,,), which are stored in sets E and K, respectively. Constraints (9c)



Algorithms 2022, 15,103

5 of 30

and (9d) denote the feasibility and optimality cuts, j € E and k € K respectively. Matrices
h i and T; correspond to the matrices h, and T,, for the scenario where a feasibility cut can
be found.

The complete enumeration of the extreme points and rays of the dual second-stage
program is impractical, if not impossible. Instead, the L-shaped algorithm relaxes the
MP by initially considering a subset of the optimality and feasibility cuts. BD iteratively
solves the relaxed problem to generate a candidate solution for the first-stage variables
(%), and then solves the collection of scenarios subproblems at fixed X to generate a new
group of optimality or feasibility cuts. This process is repeated until the optimal solution is
found [26].

The optimal solution of the relaxed Benders master problem provides a valid lower
estimation (TC;) of the optimal total cost, TC. On the other hand, the solution of the
second-stage programs (BSPd,,) at feasible ¥ yields an upper bound of the original ob-
jective function (TC,), given by Equation (10). The solution procedure terminates when
the difference between the bounds is closed, as implied by Equation (11). Algorithm 1
summarizes the procedure.

TCy(%) = c'%+ Y Twbu(X) (10)
we)
TC; < TC < TC, (11)

Algorithm 1: Multi-cut Benders decomposition
k

1 Setk+— 0,zp ¢— —0o0, zyg +— 0, X
2 while k < kj;zy do
3 | SOLVE (6) to obtain 6,,(x¥) and 7%, for given x¥ for all w € O

«—— xpoand e > 0

4 if all subproblems (6) are feasible then
5 ADD new optimality cuts (9d) corresponding to 7%, for all w € Q)
6 compute TC, from 6(x*) and x¥
7 if TC, < zyp then
8 zyp +— TCp (upper bound)
9 L x* —
10 else
1 SOLVE (8) to obtain u for given x/ and infeasible scenario j € Q
12 ADD new feasibility cut (9c) corresponding to u

13 | SOLVE (9) to obtain (x**1,65t1) and TCy
14 if z;g < TC; then
15 L z1g <— TC; (lower bound)

16 | if (zup — z1p)/ (max(|zysgl, |zLp|) + 1e — 10) < € then
17 | break

18 Setk<+—k+1

19 return optimal solution x* and z g

The L-shaped method is summarized in Algorithm 1. It is initialized with a guess of
the first-stage solution x, and considers two stopping criteria: (i) the optimality tolerance e
that limits the relative gap between the dual (z;p) and primal (zy;5) bounds of the objective
function (TC), and (ii) the maximum number of allowed iterations (k).

4. Benders Decomposition Enhancement Strategies

The application of BD often leads to slow convergence, long computational times,
and excessive use of memory resources, particularly for the case when the MILP master
problem has poor LP relaxation [27-29]. Major BD disadvantages include time-consuming
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iterations, poor feasibility and optimality cuts, ineffective initial iterations, primal solu-
tions that behave erratically, slow convergence at the end of the algorithm (tailing-off
effect), and upper bounds that remain stuck in successive iterations due to second-stage
degeneracy [26,30].

Various strategies have been proposed to accelerate the convergence of the standard
BD method. Enhancement strategies are mainly split into two categories: reducing the cost
of each iteration, or reducing the number of iterations [26,31].

4.1. Reducing the Cost of Each Iteration

Cheaper iterations are achieved by reducing the time spent solving the MP and
subproblems. The MP is often the most time-consuming part of the BD algorithm (more
than 90% of the execution time) in the case of mixed-integer problems [27]. The overall
process can be accelerated by relaxing the integrality of the MP in most of the iterations
to rapidly compute a large number of cuts [32]. A variation of this method was proposed
by Geoffrion and Graves [28], in which the MP is solved to a non-zero optimality gap.
The integrality gap is continuously reduced to ensure global convergence.

Alternatively, the MP might be solved via (meta) heuristics [33,34], which provide
good approximate solutions in short time; however, it is still required to solve the MP to
optimality to guarantee convergence. The application of heuristics or the LP relaxation of
the MP often yields worse bounds and lack of controllability, reducing the ability of BD to
generate the necessary cuts [35].

Similarly, suboptimal solutions of the dual subproblems yield valid cuts, known as
inexact cuts. Algorithm convergence can still be guaranteed under the conditions described
by Zakeri et al. [36]. Additional subproblem acceleration schemes comprise synchronous
parallelization and re-optimization. The latter exploits structural similarities between
scenarios to solve the subproblems in fewer solver iterations.

4.2. Reducing the Number of Iterations

The number of iterations of the L-shaped algorithm is closely related to the tightness
of the LP relaxation of the first-stage problem, as well as the strength of the optimality
and feasibility cuts [27]. Better candidates are computed from improvements in the MP
problem, especially in the strengthening of the representation of the recourse functions.
Tighter formulations can be obtained by adding multiple cuts per iteration (multi-cut
reformulation [37]); as well as through the use of heuristics to eliminate inactive cuts and
to select the fittest dual variables to be inserted in the MP (size management techniques).

Complementary strategies have been developed to generate cuts that are more efficient.
One alternative is the reformulation of the subproblems to select non-dominant dual
solutions from the set of optimal multipliers, known as Pareto-optimal cuts [27]. Recently,
Ref. [38] proposed a methodology to compute bundles of covering cuts, designed to involve
most of the first-stage variables and to carry as much information as possible.

Alternative methods tighten the MP to alleviate some of the drawbacks of BD: cross
decomposition, for instance, avoids the generation of low-quality solutions, while quadratic
stabilization methods provide a solution for the tailing-off effect. Cross decomposition [39]
combines and alternates between iterations of BD and Lagrangian decomposition to provide
an additional valid lower bound of the objective function and a set of feasible deterministic
solutions (X, Yw) € G, which are used to compute Lagrangian-based cuts to strengthen
the MP.

Quadratic methods have been proposed to stabilize BD, aiming to improve the quality
of the initial iterations and reduce the oscillation that occurs when the algorithm is close to
the optimal solution [31]. These methods penalize the distance of the first-stage candidates
to the current best solution. Popular variants include regularized decomposition [16,40],
the trust-region method [41] and level decomposition [42], which are summarized below.
It should be noted that Equations (12)—-(14) are all variants of the large family of bundle
method, which can be seen from chapters XIV and XV of [43].
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* Regularized decomposition (also known as proximal bundle method)

. 1 .
X1 = argmin{c!x + Y twbo + ng — &5 st (v600) €VE} (12
x,00 we) k

*  Trust-region method

Xpy1 = argmin{ch+ Z Tobo st |x— £k||% <Ry (x,0,) €V} (13)
x,00 we)

e Level decomposition method

Xep1 = argmin{ ||x — £]|3 st cTx+ Y. twbo < Ly, (x,60) € Vit (14)
x,00 we

where t;, Ry and Ly are real-valued, iteration-dependent parameters that balance the min-
imization of the relaxed MP and the distance to the stability center £. Vj represents the
feasible region of the Benders master problem at each iteration, which is defined by the op-
timality (9d) and feasibility cuts (9¢), as well by the first-stage constraints (9b). Stabilization
methods were initially introduced for BD with no integer variables; nonetheless, recent
improvements have adapted the method to mixed-integer problems [31].

Two software packages using the Benders decomposition algorithm, GAMS-
DECIS [44,45] and FORTSP [46] are described in the benchmark in Appendix C.

5. Scenario Decomposition Methods

Scenario decomposition is a popular approach to solve two-stage SP formulations
with mixed-integer recourse, i.e., Y = {y : y; € {0,1},¥j € J1, y; > 0 Vj € J\]1} in
(PNAC). In contrast to the BD algorithm, scenario decomposition methods dualize the
non-anticipativity constraints (NACs) to obtain lower bounds of the original formulation.
Scenario-based decomposition addresses the computational difficulties associated with
the solution of large stochastic problems by considering each scenario independently
and solving the set of subproblems in parallel. Moreover, feasible solutions to the original
problem (P) can be obtained by heuristics based on the optimal solutions of the subproblems.
In this section, we describe the dual decomposition (DD) algorithm and the progressive
hedging (PH) algorithm.

5.1. Dual Decomposition (DD) Method

The dual decomposition algorithm proposed by Caree and Schultz [17] applies the
Lagrangian relaxation to problem (2) and uses a branch-and-bound procedure to restore
the non-anticipativity conditions. The Lagrangian relaxation of the NACs results in the
following dual function:

D(A) = min Z Lo (X, Y, M) (15a)
Y we)
st. (Xw, Yw) € Gw Yw € Q (15b)
where
Lo (Xw, Y, Aw) = Tw(Cwa + dz,yw) + AZ,waw (16)

In Equation (15a), vector A € R"*(I2=1) represents the dual multipliers associated
with the NACs (2b). A, € R™ represents the Lagrangian multipliers for the NACs associ-
ated with scenario w, as given by Equation (3). Given the independence of the variables and
constraints in each scenario, function D can be split into separate subproblems D, (A, ):

D()‘) = E Dw</\w) (17a)

we
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Dw()\w) = {Jg}lgl Lw(xw/yw/ )\a}) s.t. (xw/yw) S Ga}} (l7b)

According to the weak duality theorem, the relaxation (17) is always less than or

equal to the optimal objective value of problem (2). The best lower bound of (PNAC) is

computed by solving the following maximization problem, referred to as the Lagrangian
dual problem:

Zip = m)?xD(A) (18)

The Lagrangian dual is a concave non-smooth program and can be solved by sub-
gradient methods, cutting-plane methods, or column-generation methods. The details of
these methods can be found in Guignard [47]. We illustrate the dual search approaches by
describing the standard cutting-plane algorithm.

5.1.1. Cutting-Plane Method

The cutting-plane algorithm solves the Lagrangian problem iteratively by implement-
ing the outer approximation on (18) and solving the Lagrangian subproblems (17b) to
improve the formulation of the relaxed dual function (RZ p) in Equation (19a). The outer
approximation is given by the Lagrangian master problem (LMP):

(LMP) RZip = max Y ¢o (19a)
wPw we
st o < DEAEY + (Hoxk)T (A —AK) VhkeKweO (19b)

where parameters for iteration k and scenario w, xk, and DK (AK), represent the previous
solution of subproblem (17b), and parameter AX, represents the vector of the previously
considered dual multipliers. The dual search is outlined in Algorithm 2. It should be noted
that (19) can be unbounded, especially in the first few iterations. An approach to avoid the
unboundedness is to add bounds for the A, variables. An alternative way is to use the
bundle method [48] instead of Algorithm 2.

Algorithm 2: Cutting-plane dual search

1 Setk +— 0,z75 +— —coand A «— 0

2 repeat

3 | SOLVE (17b) to obtain (xX, X)) and Dy, (AL,) for given AX, for each w € Q)
4 | setzrp +— max{zrp, D(AF)}

5 | ADD new optimality cut (19b) from x¥, and D,,(AX))

6 | SOLVE (19) to obtain A¥*1 and RZ; p

7 | sethk+—k+1

s until [D(AF) — RZp|/|D(AF) +1e —10| < ¢;

9 return x'(ﬁ,, Ak D(Ak)

Cutting-plane methods present similar drawbacks as the BD algorithm, such as slow
convergence and strong oscillations of the dual variables. This can be explained by the
fact that BD is a special case of the cutting-plane method from the view of nonsmooth
optimization. Various alternatives have been proposed to accelerate this technique, in-
cluding the bundle method and the volume algorithm [47]. Additional strategies consider
the suboptimal solution of the master problem, using an interior-point method (IPM)
in combination with Benders-like cuts to tighten the Lagrangian subproblems (17b) and
exclude infeasible first-stage solutions (see [29,49]). Other methodologies such as cross
decomposition, exchange information with BD to compute additional cuts derived from
feasible first-stage candidates [50].
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5.1.2. Branch-and-Bound Method

The DD algorithm proposed by Caree and Schultz [17] uses the bound Z; p to discard
nodes from the first-stage search domain. Algorithm 3 summarizes the branch-and-bound
procedure. The set P denotes the group of active problems and TC, the lower bound
associated with program P; € P. Commonly, the Lagrangian dual problem yields first-
stage solutions that differ in value from one scenario to another. For those instances,
a candidate % is estimated by applying a rounding heuristic on the average solution
Y wen TwXl,. Note that Algorithm 3 can be applied not only to problems with mixed-binary
variables, but to problems with general mixed-integer variables as well. The branching steps
assume that the integer variables can be nonbinary. More, recently Kim and Dandurand [51]
proposed a new branching strategy based on Dantzig—Wolfe decomposition that allows
reduction in the number of nodes and decreases the overall solution time.

Algorithm 3: DD Branch and Bound method

Input: Branching tolerance of continuous variables § > 0
1 Set NAC «— false, z;j5, «— o0, P = {PNAC}
2 while |P| > 0do
/* Lower bounding procedure x/
Select problem P; from P and SOLVE (18) to get the lower bound Z! , and xi,
Eliminte problem P; from P

= W

5 if Zi , = —oo (infeasibility of a subproblem) or Zi , > zyp then
6 L go to line 2
7 | elseif Y ,cq Huyxl, = 0then
i i i
8 x%xjforanyjeﬂ
NAC <— true
10 else
11 L NAC <— false

12 perform rounding heuristic to obtain £*

/* Upper bounding procedure */
13 Compute TC;, from %' using Equation (10)
14 if TC;, < zyp then

15 ZUuB — TC;,

16 x* — &

17 eliminate from P all the problems P; with Z{ D = ZUuB
18 else

19 L go to line 2

/* Branching procedure */
20 if not NAC then
21 Select a component x ;) of x and add two new problems to P by adding
constraints: ‘
22 X, (k) < J?Ek) —dand x,, () > fl(k) +¢ forall win Q) (if x(;) is continuous)
23 X k) < Lﬁék)J and x,, () > D?ék)} for all w in Q (if xy) is integer)
24 return Optimal solution x* and zyip

5.2. Progressive Hedging (PH) Algorithm

The progressive hedging (PH) algorithm [9] is a popular approximation for solving
multi-stage stochastic programs. Although it was initially proposed for convex stochastic
problems, it has been successfully applied as a heuristic to solve mixed-integer stochastic
programs [52,53].
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To find a solution of problem (2), PH aggregates a new set of variables £ (also known
as a first-stage policy) that replaces the NACs (2b). Then, it solves the reformulated
program (20) using a specialized variant of the alternating direction method of multipliers
(ADMM) [54,55]:

min TC= ) (cTxe +dlyew) (20a)
oYk wen
sit. (Y, Yw) € Gw, X0 =%, YweQ, £€X (20b)

Related to dual decomposition, PH relaxes the non-anticipativity restrictions on the
first stage. The augmented Lagrangian relaxation Lf of constraints x,, = £, Vw € Q) yields
alower bound D(A) of the original deterministic formulation (20). The best lower bound is
estimated by solving the following problem:

TC > max{D(A) st. Y TwAy =0} (21a)
A we

where

D(A) =min L°(x,%,y,A) st. (Xw, Vo) € Go Yw € Q, £ € X (21b)
X%y
Lp(x/y/xAl)\) - Z TwLw(xu;r]/wrf//\w) (21C)
we)

Leo(Xw, Yeor £ Aw) = €' e + dlyw + AT (x0 — £) + p/2||x — 2|3 (21d)
and p > 0 is a penalty parameter. Constraint } ,cq TwAw = 0 is required to make

L bounded from below. To mitigate the computational difficulties of minimizing the
augmented Lagrangian dual function (21b), PH decomposes the problem by scenarios.
To achieve the complete separability of subproblems, Rockafellar and Wets [9] proposed to
fix the first-stage policy temporarily, and repeatedly solve the program (22) to update the
multipliers and the value of £:

min {cTx, +dlyew + ATxw + p/2]|x0 — £[3} (22)

XwYw

Algorithm 4 summarizes the procedure to solve the dual problem (21).

Algorithm 4: Two-stage progressive hedging algorithm

1setk+—0,AY=0

2 SgLVE (xL,yl) = argmin, {cTxy +dlyw st (Xw, Yw) € G} forall win
3 repeat

4 setk+—k+1

5 set £F «— Y cq Twxk,

6 set AR «— AKSL 4 p(xk1 — gk

7 SOLVE (22) for every w € Q) to compute x5!

8 until k > ka0 o7 \/Zweg Tw(xfi,H —-2)2<e¢

9 return K, xKH1, k1

The termination of the algorithm is achieved when the first-stage policy is non-
anticipative. In the case of convex instances, £¥~* is equivalent to the optimal solution
of the deterministic formulation (2), and the convergence is guaranteed. These conditions
do not hold for mixed-integer programs; however, a high-quality solution and upper
bound can be computed from a non-convergent value of {ﬁk F ey, and TCP(J?k k=Ko
respectively [52].
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Recent investigations have focused on the improvement and acceleration of PH. Vari-
ous studies identify the penalty term as a critical factor in the quality of the solution and
the convergence rate: larger values of p can accelerate the convergence but can lead to
suboptimal solutions. On the other hand, lower values can improve the quality of the
solutions and lower bounds, although with a very slow convergence rate [56]. Numerous
alternatives have been developed to circumvent those problems, from per-component and
cost-proportional heuristics [52], to the dynamic update of the penalty parameter [42,57].

A limitation in applying PH to stochastic mixed-integer programs is the lack of a lower
bound to assess the quality of the computed solution. This disadvantage can be alleviated
by estimating a valid lower bound from the non-convergent set of Lagrangian weights
Ak [56], or by combining the Frank-Wolfe and PH methods [58]. These methodologies
establish a relationship between the dual decomposition and progressive hedging, which
has motivated the development of hybrid solution strategies (see [59]).

6. Software Packages for Scenario Decomposition

In this section, we review two software packages, PySP [52,60] and DSP [49], for sce-
nario decomposition. The two software packages are benchmarked based on the problems
in SIPLIB [61], including the SSLP [62], SSLPR [63], and DCAP [64] test problems.

The SSLP test set consists of 12 two-stage stochastic mixed-integer programs arising in
stochastic server location problems (SSLPs). The base deterministic server location problem
considers building servers in some potential locations to serve clients in given locations.
The stochastic version of the server location problem considers different realizations of
client locations. Each scenario represents a set of potential clients that do materialize.
The decisions in SSLP are all binary variables. In the first stage, we decide whether a server
is located at each given location. The second-stage (recourse) actions decide whether any
given client is served by any given server. SSLPR (stochastic server location problem with
random recourse) is an extension of SSLP. While SSLP assumes fixed demands for the
clients, SSLPR considers the demands of the clients as uncertain parameters.

DCAP consists of 12 two-stage stochastic integer programs arising in dynamic capacity
acquisition and allocation applications. The deterministic model considers a capacity
expansion schedule over T time periods. In each time period, the amount of capacity
expansion for each resource needs to be decided. There is a fixed and a variable cost
for each capacity expansion. In each time period, each task must be assigned to one of
the existing resources, which is represented by binary variables that decide whether a
given task is assigned to a given resource. Since there are multiple periods, the stochastic
version of this problem should, in principle, be formulated as a multi-stage stochastic
program, which is difficult to solve. Ahmed and Garcia [64] proposed to approximate
the multi-stage problem with a two-stage stochastic program in which the first-stage
decisions are the capacity expansions. The second-stage decisions are the assignment
decisions. The uncertainties include the processing requirement for each task and the cost
of processing each task.

The sizes of all the test problems are shown in Table 1. The names of the SSLP and
SSLPR instances are expressed in the form sslp(rf)_m_n, where m is the number of potential
server locations, and n is the number of potential clients. Each instance is tested with a
different number of scenarios. The size is expressed as the number of constraints (Rows),
variables (Cols), and integer variables (Ints) in the first stage and the second stage per
scenario. Note that the SSLP problems have pure binary first-stage variables, and the DCAP
problems have mixed-binary first-stage variables. This difference affects the PH algorithm,
which is discussed in detail later.

All of the test problems are available in the SMPS format; however, we implement an
interpreter to make the format compatible with PySP. All of the tests are run on a server
with an Intel Xeon CPU (24 cores) at 2.67 GHz and 128 GB of RAM. The whole set of
instances is solved in a synchronous parallel manner to reduce the time of each iteration.
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Table 1. The sizes of the problems tested.
. First Stage Second Stage
Name Scenarios
Rows Cols Ints Rows Cols Ints
sslp_5_25 50, 100 1 5 5 30 130 125
sslp_10_50 50, 100, 500, 1000 1 10 10 60 510 500
sslp_15_45 510,15 1 15 15 60 690 675
sslprf_5_25 100 1 5 5 30 130 125
sslprf_5_50 100 1 10 10 60 510 500
dcap 233 200, 300, 500 6 12 6 15 27 27
dcap 243 200, 300, 500 6 12 6 18 36 36
dcap 332 200, 300, 500 6 12 6 12 24 24
dcap 342 200, 300, 500 6 12 6 14 32 32

6.1. PySP: Pyomo Stochastic Programming

PySP is a software package implemented in the Python programming language using
Pyomo [65] as the optimization modeling framework. PySP enables the user to solve
stochastic programs with a specialized progressive hedging algorithm for stochastic mixed-
integer programs. In order to use PySP, the user only needs to write a deterministic base
model and define the scenario tree structure in Pyomo. With these inputs, PySP is able
to apply the progressive hedging algorithm as an effective heuristic for obtaining feasible
solutions to multi-stage stochastic programs. We highlight that starting from distribution
6.0, PySP will not be part of Pyomo’s source code; however, it will still be available and
maintained. Furthermore, the PySP project will be continued as mpi-sppy, available in
https:/ /github.com/Pyomo/mpi-sppy, accessed on 20 January 2022.

6.1.1. Algorithmic Innovations in PySP

The innovations in PySP for multi-stage mixed-integer stochastic programs were de-
scribed by Watson and Woodruff [52]. Here, we briefly paraphrase those innovations. First,
instead of keeping a fixed p value for all first-stage decisions in Algorithm 4, the authors
proposed several variable-dependent p strategies. The cost-proportional (CP) strategy
sets p(i) to be proportional to the cost parameter c(i), i.e., p(i) = ac(i), where « is a con-
stant multiplier for all first-stage variables i. The other variable-dependent p strategy was
denoted by SEP in [52], where the p(i) for integer variables is calculated by

(i) = )

(xmax — xmin + 1)

After PH iteration 0, for each variable x, x™® = max,cn x?d and ™" = min,cn xow.

For continuous variables, the p(i) is calculated with

pli) = )

max <(ZWEQ Tow|xd, — 3?0|),1)

where £° is the weighted average of x0, i.e., 0 = ¥, cq TwxY,.

The authors also proposed some heuristics for accelerating convergence. One heuristic
is called “variable fixing”. The values of some of the first-stage decisions x,, ; are fixed after
they stay at a given value z; for a few iterations for all scenarios. In order to apply this
heuristic, the authors introduced a lag parameter . At a given PH iteration k, the value
of x'&]’i is fixed to z; for all subsequent iterations [ > k, if xc(f)l = z; for all w € O and
m € {k—pulQ)|,..., k}, such that m > u|Q)|. Additionally, the authors proposed another
more aggressive variable fixing heuristic called “variable slamming”, where the x%, is fixed
if they are “sufficiently converged”, i.e., there can be some discrepancies for x¥, across
all scenarios. In order to decide when variable slamming should be applied, the authors
proposed several termination criteria based on the deviations of the first-stage variables.
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In solving stochastic mixed-integer programs with PH, the cyclic behavior can be
found in some instances. In order to detect the cyclic behavior, the authors proposed a
strategy based on the values of the u,, vectors, i.e., the weights associated with the first-
stage decision variable x,,. The authors proposed a simple hashing scheme. Let hash value
h(i) = Yweq Zwkw,i, Where z,, is an integer hash weight for each scenario w € Q) when the
PH is initialized. If equal hash weights are detected, they are interpreted as evidence for a
potential cycle. Variable x; can be fixed if cyclic behaviors are found.

The heuristics, including variable fixing and slamming and cyclic behavior detection,
are denoted as WW (Watson-Woodruff) heuristics in the software distribution of PySP.

6.1.2. Computational Results for PySP

We use PySP (Pyomo 5.0.0) to solve the SSLP, SSLPR, and DCAP problems. Each
subproblem is solved with the CPLEX (12.7.0) quadratic solver. We use the cost-proportional
(CP) heuristic to set the values of p(i). The multipliers « in the CP heuristic are set to 0.1,
0.3, 0.5, and 1.0, respectively. Note that the main results shown in this section are not using
WW heuristics, i.e., we do not use the variable fixing and slamming, or cycle-detection
heuristics. We will make a comparison of PySP with WW heuristics and PySP without WW
heuristics at the end of this section.

The number of iterations and the walltime for different multipliers are shown in
Figures 1 and 2, respectively. If the PH algorithm reaches iteration limit, there is an “(i)”
label at the top of the column. If the PH algorithm reaches the time limit, there is a “(¢)”
label on top of the column. From Figures 1 and 2, one can observe that setting the « value
to 0.1 makes PH take the largest number of iterations and largest amount of walltime to
converge in most of the instances, which may be due to the small step size. On the other
hand, setting « to the largest value, i.e., 1.0, takes fewer iterations and less walltime than
using other a values in most instances. However, it runs out of the iteration limit in two of
the instances. Overall, setting a to 0.3 seems to be a robust choice because cp-0.3 always
converges within a reasonable walltime and number of iterations. The details of the SSLP
and SSLPR results are shown in Tables A1 and A2 in Appendix A.

We also apply PySP to solve DCAP instances. We observe that for all the DCAP
instances, PySP is unable to converge within 300 iterations. The details of the results
are shown in Table A3 in Appendix A where the walltime of the upper bound for those
instances is reported.We compare the upper bound obtained by PySP with those obtained
by DSP in the next subsection. From this experiment, we can see that it is more difficult for
PySP to solve problems with mixed-binary first-stage variables than problems with pure
binary first-stage variables because it is more difficult for the continuous variables to satisfy
the NACs.

Scenario bundling [66-68] is a technique that has been used in dual decomposition
algorithms. The main idea is to dualize only “some” of the non-anticipativity constraints,
rather than dualizing all of them. In other words, the individual scenario subproblems are
bundled into larger subproblems in which the NACs are preserved. Ryan et al. [67] used
PH with scenario bundling to solve stochastic unit commitment problems. The authors
showed that with the use of scenario bundling, PH can obtain solutions with a smaller
optimality gap. In order to test the effectiveness of the scenario bundling, we test several
instances from the SSLP and DCAP libraries. The computational results are shown in
Table 2. For each instance, we try a different number of bundles. For the SSLP instances,
PH with a different number of bundles can obtain the same upper bound. However,
the number of bundles has a significant impact on the computational time. For example,
for SSLP_10_50 with 1000 scenarios, PH with 50 bundles can reduce the walltime of the
original PH with 1000 bundles to 3%. Additionally, it only takes PH with 50 bundles one
iteration to converge. For DCAP problems, PH does not converge within 300 iterations
for most cases, even with scenario bundling. However, PH is able to obtain better feasible
solutions with scenario bundling (see UB in Table 2).
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Figure 1. Number of iterations for PH to solve SSLP instances using different cost proportional multipliers.
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Figure 2. Walltime for PH to solve SSLP instances using different cost proportional multipliers.

Finally, we evaluate how the use of WW heuristics can affect the performance of PySP
on the SSLP and SSLPR libraries. The results on DCAP library are omitted here since PySP
does not converge for DCAP instances. The solution time improvements by using WW
heuristics for each SSLP and SSLPR instance are shown in Figure 3. Note that there are
three cases where the improvements are omitted in the figure: case (1)—neither PH nor
PH with WW heuristics can converge in 300 iterations; case (2)—only PH-WW fails to
converge in 300 iterations; and case (3)—both PH and PH-WW exceed the time limit of
3 h (10,800 CPU seconds). Using WW heuristics gives significant improvements for small
cost-proportional multipliers, i.e., 0.1 and 0.3. As we have described in Table 1, PH with
small multipliers usually takes more iterations to converge. Therefore, the WW heuristics
can accelerate convergence for those instances, more effectively. However, there are also a

few instances where PH can converge, but PH with WW heuristics cannot converge, which
are denoted by case (2) in Figure 3.
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Table 2. Computational results for PySP with scenario bundling.

Instances Scenarios Bundles Iterations Time UB
50 10 4 3.73 —121.60
50 24 17.59 —121.60

SSLP_5_25
100 10 2 3.99 —127.37
50 7 10.03 —127.37
50 10 4 30.55 —364.64
50 68 254.15 —364.64
10 2 83.67 —354.19
100 50 49 263.59 —354.19
100 95 540.21 —354.19
SSLP_10_50

10 1 476.13 —349.13
500 50 2 162.54 —349.14
500 174 4322.45 —349.14
10 1 7137.61 —351.71
1000 50 1 313.07 —351.71
1000 180 9984.56 —351.71
10 >300 342.97 1854.36
200 50 >300 232.21 1861.63
200 >300 456.18 2206.68

10 147 >10,800 —
DCAP233 300 50 >300 317.28 1679.80
300 >300 1515.27 2498.12
10 >300 634.60 1749.87
500 50 >300 400.59 1858.98
500 >300 1494.13 1893.83
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Figure 3. Solution time improvement by using WW heuristics for SSLP and SSLPR instances.

6.2. DSP: Decompositions for Structured Programming

DSP [49] is an open-source software package implemented in C++ that provides dif-
ferent types of dual decomposition algorithms to solve stochastic mixed-integer programs
(SMIPs). DSP can take SMPS files, and JuMP models as input via a Julia package Dsp.jl.

6.2.1. Algorithmic Innovations in DSP

From the description of the dual decomposition algorithm in Section 5, one can observe
that the lower bounds of the dual decomposition algorithm are affected by the way the



Algorithms 2022, 15,103

16 of 30

Lagrangian multipliers are updated. One advantage of DSP is that the authors have
implemented different dual-search methods including the subgradient method, the cutting
plane method, and a novel interior-point cutting-plane method for the Lagrangian master
problem. The authors observed that if the simplex algorithm is used, the solutions to the
Lagrangian master problem can oscillate significantly, especially when the Lagrangian dual
function is not well approximated. Therefore, the authors proposed to solve the Lagrangian
master problem suboptimally using an interior point method, which follows from the work
of Mitchell [69].

The authors also proposed some tightening inequalities that are valid for the La-
grangian subproblems. These valid inequalities, including feasibility and optimality cuts,
are obtained from Benders subproblems, where the integrality constraints are relaxed. Com-
putational results show that the Benders-like cuts can be effective in practice. The latest DSP
distribution is able to complete Algorithm 3 using the Dantzig—Wolfe decomposition-based
branching strategy described in [51].

6.2.2. Computational Results for DSP in Comparison with PySP

We test the dual decomposition algorithm on the SSLP, SSLPR, and DCAP libraries.
Each subproblem is solved with CPLEX (12.7.0) mixed-integer linear solver. The interior
point method proposed by the authors [49] is used to solve the Lagrangian master prob-
lem, which is solved with CPLEX as well. Benders-like cuts are not used because the
implementation of Benders cuts in DSP only works with SCIP.

In Figures 4 and 5, we evaluate the best feasible solution (the upper bound) obtained
by PySP, and the upper and lower bounds obtained by DSP. For each instance, we include
three different gaps. The upper and lower bounds from Ref. [61] are used to evaluate the
bounds from PySP and DSP. Note that the bounds from literature are close to the global
optimality of each instance. The first column for each instance in both Figures 4 and 5
is the gap between the upper bound from PySP (PySP,;) and the lower bound from the
literature (Literatureyy). The second column represents the gap between the upper bound
from DSP (DSP,;,) and the lower bound from the literature (Literaturej;). The third column
represents the gap between the upper bound from literature (Literature,;) and the lower
bound from DSP (DSPy,).

For the SSLP and SSLPR instances shown in Figure 4, although PySP can converge
within the time and iteration limit, the best feasible solution obtained from PySP (PySP,;)
may not be optimal. There are about 1% gaps for some of the SSLP instances (see the first
column of each instance in Figure 4). DSP can solve more instances to optimality than
PySP (see the second column of each instance in Figure 4). The lower bounds obtained
by DSP are also quite tight, usually less than 0.01% (see the third column of each instance
in Figure 4). Note that the literature values for SSLPRF5_50_100(1), SSLPRF5_50_100(2),
and SSLPRF5_50_100(3) do not match the values from our experiment. Therefore, we try
to solve the deterministic equivalent of these instances to obtain bounds. The literature
bounds of SSLPRF5_50_100(3) come from solving the deterministic equivalent. The gaps of
SSLPRF5_50_100(1) and SSLPRF5_50_100(2) are omitted since the corresponding determin-
istic equivalent cannot be solved within 3 h.

For the DCAP instances where we have mixed-integer first-stage variables, the best
feasible solutions from PySP (PySP,;) and DSP (DSP,;) are quite far from optimality.
The gaps of the first two columns are around 10%. On the other hand, the lower bounds
obtained from DSP (DSPy;,) are tight. The gaps between (Literature,;,) and (DSPy,) are
around 0.1%. Therefore, in order to improve the relative optimality gap of DSP, the focus
should be on designing more advanced heuristics to obtain better feasible solutions.
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Figure 4. Comparison of optimality gaps from PySP, DSP, and literature for SSLP and SSLPR library—
instances with only binary in the first stage.
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Figure 5. Comparison of the optimality gaps from PySP, DSP, and literature for DCAP library—
instances with mixed-integer variables in the first stage.

6.3. Results from Branch-and-Bound Algorithm in DSP

As we were completing this paper, a new version of DSP [51] was developed that uses
the branch-and-bound algorithm similar to Algorithm 3. We test the branch-and-bound
decomposition on the SLSP, SSLPR, and DCAP test instances. The computational setting is
the same as the one described in the previous section. Tables 3-5 show the results obtained
by DSP. We highlight that almost all the instances were solved to optimality within the
walltime limit.

In all the SSLP instances (except SSLP15_45), DSP using the DW-based branch-and-
bound (DSP-DW) is able to solve the instances to optimality in times lower than the ones
from the DSP implementing only the first iteration of DD. The same trend is replicated on
the SSLPREF instances.

On the other hand DSP-DW is remarkably slower in attaining algorithmic convergence
in the DCAP test set. This behavior can be explained by looking at the DSPy, vs. Literature,,
gap in Figures 4 and 5. The standard implementation of DSP is able to close the optimality
gap in the SSLP and SSLPR instances by solving the Lagrangian relaxation problem (15a)
and using heuristics to compute a primal bound. Nonetheless, this strategy does not work
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in the DCAP set for which additional computation is devoted by DSP-DW to close the gap

via branch-and-bound.

Table 3. Results of DSP with DW-based branch-and-bound on SSLP instances.

Instances Scenarios Time Solution

50 1.70 —121.6

SSLP5_25 100 3.16 —127.37
50 103.9 —364.64
100 101.62 —364.191
SSLP10_50 500 1110.64 —349.136
1000 3021.83 —351.711

5 11.22 —262.4

SSLP15_45 10 151.79 —260.5
15 377.65 —253.601

Table 4. Results of DSP with DW Branch-and- Bound on SSLPRF instances.

Instances Time LB UB GAP [%]
SSLPRF_5_25_100_1 697.74 —74,005.8 —74,005.8 0
SSLPRF_5_25_100_2 1021.76 —72,675 —72,675 0
SSLPRF_5_25_100_3 673.04 —75,666.9 —75,666.9 0
SSLPRF_5_50_100_1 3071.82 138,900 138,900 0
SSLPRF_5_50_100_2 9083.39 163,931 163,931 0
SSLPRF_5_50_100_3 - - -

Table 5. Results of DSP with DW Branch-and- Bound on DCAP instances.

Instances Scenarios Time LB UB GAP [%]
200 417.08 1834.57 1834.57 0

DCAP233 300 512.97 1644.25 1644.25 0
500 898.05 1834.57 1834.57 0
200 370.68 2322.5 2322.5 0

DCAP243 300 525.91 2559.19 2559.19 0
500 1523.61 2167.4 21674 0
200 949.64 1060.75 1060.75 0

DCAP332 300 1379.98 1252.77 1252.77 0
500 - 1588.660 1589.203 0.03
200 2732.97 1619.61 1619.61 0

DCAP342 300 1970.75 2067.5 2067.5 0
500 3958.25 1904.74 1904.74 0

7. Conclusions

We presented a summary of the state-of-the-art methodologies for the solution of

two-stage linear stochastic problems. First, we introduced the mathematical formulation of
such programs and highlighted features in their structure, which enable the development of
decomposition algorithms. These methodologies are classified in two groups: node-based
decomposition and scenario-based decomposition.

For two-stage stochastic programs with continuous recourse, we summarized Benders
decomposition, which partitions the problem according to its time structure. BD may
present computational problems, which can be alleviated by reducing the cost of each
iteration, and/or decreasing the number of iterations.

Scenario decomposition methodologies are popular alternatives in the case of (mixed)
integer recourse. The progressive hedging algorithm and dual decomposition relax the
nonanticipatity restrictions and provide the user with valid bounds. Our numerical results
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show that the performance of PH is strongly affected by the constant penalty multiplier.
Furthermore, its performance and the quality of the approximate solution may be enhanced
by grouping the scenarios in large bundles (or scenario sets). We also tested the dual
decomposition algorithm with the DSP package. The computational results show that
DSP is able to provide a tight lower bound on the instances that we tested. However,
the optimality gaps can be as large as 10%, relative to the upper bound from literature.
Therefore, for those tested instances, future effort should be focused on developing more
advanced heuristics to improve the best feasible solution. Moreover, we tested the newest
DSP implementation, which incorporates a Dantzig—Wolfe decomposition-based branch-
and-bound algorithm to close the optimality gap. In most of the instances, it is able to
retrieve a global solution in the given walltime limit. We highlight that its computational
performance depends on the strength of the dual decomposition.

At the time we completed this paper, several new developments were made in stochas-
tic programming software. These software packages have the capability of solving multi-
stage stochastic programs, e.g., SDDP. j1 [70], StochasticPrograms. j1 [71], and MSPPy [72].
In the terms of algorithmic development, recent works have extended the capability to solve
nonlinear problems [4,73-78]. Furthermore, it should be noted that the paper focuses on
the risk-neutral setting of two-stage stochastic programs. However, the studied approaches
can be easily extended to the risk-averse setting [79], e.g., by including some risk measures,
such as the conditional value at risk (CVar).
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Appendix A. Computational Results for PySP

Table A1l. Computational results for PySP on SSLP.

Instances Scenarios cp Multiplier Iterations Time UB
cp 0.1 24 17.59 —121.60
50 cp 0.3 11 8.16 —121.60
cp 0.5 13 8.53 —121.60
cp 1.0 12 7.80 —121.60
SSLP_5_25
cp 0.1 19 27.38 —127.37
100 cp 0.3 11 15.27 —127.37
cp 0.5 18 21.26 —127.37
cp 1.0 >300 303.53 —125.59
cp 0.1 68 254.15 —364.64
50 cp 0.3 22 71.57 —364.64
cp 0.5 15 49.19 —364.64
cp 1.0 13 4191 —364.64
SSLP_10_50
cp 0.1 95 540.21 —354.19
100 cp 0.3 31 149.33 —354.19
cp 0.5 19 88.54 —354.19

cp 1.0 12 57.98 —-354.19
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Table Al. Cont.

Instances Scenarios cp Multiplier Iterations Time UB
cp 0.1 174 4322.45 —349.14
500 cp 0.3 61 1265.18 —349.14
cp 0.5 35 688.90 —349.14
cp 1.0 19 379.64 —349.14
cp 0.1 180 9984.56 —351.71
1000 cp 0.3 59 2849.90 —357.71
cp 0.5 35 1604.27 —357.71
cp 1.0 18 845.16 —351.71
cp 0.1 9 12.48 —262.40
5 cp 0.3 4 5.85 —261.20
cp 0.5 >300 197.35 —261.20
cp 1.0 10 9.65 —261.20
cp 0.1 155 485.38 —260.50
cp 0.3 55 108.15 —260.50
SSLP_15_45 10 cp 0.5 33 58.23 —259.30
cp 1.0 >300 463.63 —259.30
cp 0.1 186 1416.21 —253.60
15 cp 0.3 74 286.78 —253.60
cp 0.5 38 126.79 —253.60
cp 1.0 22 65.08 —253.20
Table A2. Computational results for PySP on SSLPR.

Instances cp Multiplier Iterations Time UB
cp 0.1 33 722.61 —74,005.84
cp 0.3 20 461.1 —74,005.84
SSLPRE_5_25_100_1 cp 0.5 19 427.04 —74,005.84
cp 1.0 16 315.67 —74,005.84
cp 0.1 28 852.75 —72,671.95
cp 0.3 18 517.33 —72,671.95
SSLPRE_5_25.100_2 cp 0.5 15 436.16 —72,671.95
cp 1.0 21 539.61 —72,671.95
cp 0.1 34 735.9 —75,664.19
cp 0.3 21 41291 —75,664.19
SSLPRF_5.25_100_3 cp 0.5 20 397.01 —75,664.19
cp 1.0 18 348.75 —75,664.19
cp 0.1 59 2457.66 138,900.12
cp 0.3 20 814.04 138,900.12
SSLPRE_5_50_100_1 cp 0.5 12 429.35 138,900.12
cp 1.0 6 200.07 138,900.12

cp 0.1 94 >10,800 —
cp 0.3 95 7382.14 245,424.96
SSLPRF_5_50_100_2 cp 0.5 114 4315.02 245,424.96
cp 1.0 75 3008.51 500,144.07

cp 0.1 88 >10,800 —
cp 0.3 83 6984.09 258,578.79
SSLPRE_5_50_100_3 cp 0.5 50 3887.54 258,578.79
cp 1.0 24 1727.73 258,578.79
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Table A3. Computational results for PySP on DCAP.

Instances Scenarios cp Multiplier Iterations Time UB
cp 0.1 >300 456.18 2206.7
200 cp 0.3 >300 457.5 2431.8
cp 0.5 >300 458.23 1966.1
cp 1.0 >300 455.88 1952.6
cp 0.1 >300 734.23 1862.0
cp 0.3 >300 726.59 1943.3
DCAP233 300 cp 0.5 >300 726.77 1831.6
cp 1.0 >300 741.17 1815.4
cp 0.1 >300 1515.27 2498.1
500 cp 0.3 >300 1492.59 2000.0
cp 0.5 >300 1467.64 1939.2
cp 1.0 >300 1494.13 1893.8
cp 0.1 >300 481.96 2465.9
200 cp 0.3 >300 478.34 24542
cp 0.5 >300 481.51 2369.3
cp 1.0 >300 466.95 2383.2
cp 0.1 >300 792.01 2825.8
cp 0.3 >300 756.17 2802.8
DCAP243 300 cp 0.5 >300 710.44 2755.0
cp 1.0 >300 776.97 2743.1
cp 0.1 >300 1690.74 2196.0
500 cp 0.3 >300 1622.8 2235.2
cp 0.5 >300 1674.76 2216.7
cp 1.0 >300 1536.42 2323.3
cp 0.1 >300 456.58 1362.7
200 cp 0.3 >300 427.65 1529.1
cp 0.5 >300 450.88 1278.0
cp 1.0 >300 460.35 1171.0
cp 0.1 >300 714.83 1332.1
cp 0.3 >300 698.52 1948.9
DCAP 332 300 cp 0.5 >300 709.21 1904.4
cp 1.0 >300 706.75 1766.3
cp 0.1 >300 1464.11 1768.6
500 cp 0.3 >300 1451.73 1822.8
cp 0.5 >300 1473.66 1846.6
cp 1.0 >300 1452.64 1861.6
cp 0.1 >300 449.9 1993.4
200 cp 0.3 >300 476.77 1990.4
cp 0.5 >300 445.11 1870.6
cp 1.0 >300 470.82 1830.8
cp 0.1 >300 722.6 2260.3
cp 0.3 >300 739.94 2371.1
DCAP 342 300 cp 0.5 >300 690.76 2497.7
cp 1.0 >300 702.23 22559
cp 0.1 >300 1582.9 2198.1
500 cp 0.3 >300 1604.98 2317.5
cp 0.5 >300 1555.9 2290.6

cp 1.0 >300 1593.41 2097.5
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Appendix B. Computational Results for DSP
Table A4. Computational results for DSP on SSLP.
Instances Scenarios Iterations Time LB UB Gap [%]
50 16 3.86 —121.60 —121.60 0.00
SSLP_5.25 100 17 6.00 —127.37 —125.59 1.42
50 57 204.63 —364.64 —357.98 1.86
100 44 213.95 —354.19 —341.33 3.77
SSLP_10_50 500 69 2439.58 —349.14 —344.02 1.49
1000 60 2960.55 —351.71 —336.23 4.60
5 15 14.14 —262.40 —261.20 0.46
SSLP_15_45 10 41 152.25 —260.50 —260.50 0.00
15 44 207.39 —253.60 —253.60 0.00
Table A5. Computational results for DSP on SSLPR.

Instances Iterations Time LB UB Gap [%]
SSLPRF_5_25_100_1 36 1239.55 —74,005.84  —74,005.84 0.00
SSLPRF_5_25_100_2 38 1783.89 —72,671.95  —72,671.95 0.00
SSLPRF_5_25_100_3 40 1541.41 —75,664.19  —75,664.19 0.00
SSLPRF_5_50_100_1 88 6776.87 138,900.12 138,900.12 0.00
SSLPRF_5_50_100_2 57 9357.49 163,943.96 245,427.14 33.20
SSLPRF_5_50_100_3 85 >10,800 189,569.71 254,469.62 25.50

Table A6. Computational results for DSP on DCAP.

Instances Scenarios Iterations  Time LB UB Gap [%]
200 59 17.65 1833.40 2053.77 10.73

DCAP 233 300 69 35.45 1642.73 1812.89 9.39
500 60 29.57 1735.09 2257.81 23.15
200 54 17.81 2321.17 2447.75 5.17

DCAP 243 300 50 23.62 2556.68 2600.56 1.69
500 62 58.24 2165.48 2481.84 12.75
200 59 16.25 1059.09 1337.71 20.83

DCAP 332 300 79 39.58 1250.91 1431.11 12.59
500 66 55.94 1587.07 1802.24 11.94
200 52 14.32 1618.07 1804.57 10.34

DCAP 342 300 46 21.19 2065.42 2252.33 8.30
500 56 51.59 1902.98 2059.87 7.62

Appendix C. Software Packages for Benders Decomposition

In this section, we review two software packages, GAMS-DECIS [44,45] and
FORTSP [46] for Benders decomposition. Both packages are benchmarked with 20 in-
stances from the random [80] and SAPHIR [81] test collections. All of the test problems are
available in the SMPS format; however, specific modifications need to be done in order to
make the format compatible with DECIS. The computational experiments are performed
on a Linux machine with a 2.67 GHz Intel Xeon CPU, 128 GB of RAM, and a limit of 3h
of walltime.

The random collection consists of 15 instances artificially generated with the test
problem generator GENSLP [82]. The instances are grouped into three sets of problems
(rand0, rand1, rand2), each one of them with five instances with 2000, 4000, 6000, 8000 and
10,000 scenarios. None of the instances represent a real-world problem; nonetheless, they
are successfully used to assess the performance of stochastic solvers (see [83]). All problems
in this collection present uncertainty only in the right-hand side (RHS) coefficients h,,.
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The SAPHIR collection consists of five instances of the optimization of a gas-purchase
portfolio, considering the cost of purchase, as well as underground storage capacities
and transportation, under uncertain demand conditions [84]. In this family of problems,
the random elements are located in both the RHS and constraint matrices W, and T,,.

The sizes of all of the test problems are shown in Table A7. The size is expressed as the
number of constraints (Rows) and variables (Cols) in the first stage and the second stage
per scenario. None of the test instances consider integer variables in the first-stage.

Table A7. Sizes of SLP instances tested.

First Stage Second Stage
Name Scenarios
Rows Cols Rows Cols
rand0 2000, 4000, 6000, 8000, 10,000 50 100 25 50
rand1 2000, 4000, 6000, 8000, 10,000 100 200 50 100
rand2 2000, 4000, 6000, 8000, 10,000 150 300 75 150
saphir 50, 100, 200, 500, 1000 32 53 8678 3924

Appendix C.1. FortSP: A Stochastic Programming Solver

FortSP is a solver for the solution of linear and mixed-integer linear stochastic pro-
grams. It accepts input in the SMPS format, or through a separate SAMPL translator
(an AMPL extension for stochastic programming). In addition, FortSP can be used as a
library with an application programming interface (API) in C. FortSP enables the user to
solve stochastic two-stage linear programs with four variants of Benders decomposition,
and provides three different solution approximations for mixed-integer instances.

Appendix C.1.1. Algorithmic Innovations in FortSP

The innovations in FortSP for two-stage linear and mixed-integer linear stochastic
programs are described by Ellison et al. [46]. FortSP incorporates five methods to solve
two-stage stochastic linear programs: (i) solving the deterministic equivalent via the interior-
point method (IMP), (ii) Benders decomposition with aggregated cuts (see problem (A1)),
(iii) regularized decomposition [85] (see problem (12)), (iv) Benders decomposition with
regularization of the expected recourse by the level method [86] (see problem (14)), and (v)
the trust region (regularization) method [41] (see problem (13)).

To solve mixed-integer instances, FortSP uses the deterministic equivalent with both
implicit and explicit representations for the NACs. In addition, it incorporates a specialized
L-shaped algorithm based on branch-and-cut for instances with mixed-integer variables in
the first-stage and continuous and complete recourse. This method might be accelerated
with the variable neighborhood decomposition search heuristic (VNDS) [87].

All of the Benders variants in FortSP are formulated in the aggregated form shown in
Equation (Al). Disagregated formulations (i.e., problem (9)) store larger information in the
master problem, which yields a reduction in the number of iterations. However, this is done
at the expense of larger master problems. As a rule of thumb, the disaggregated approach is
expected to be more effective when the number of scenarios |()] is not significantly larger
than the number of constraints m; of the first-stage program [1].

(BMP) TCy;= rgclivnch +0 (Ala)
st. Ax<b, xeX, veR (Alb)
(hj—Tix)"; <0 Vj€E (Alc)

Y. tw(he — Tox)T7nt, <v VkeK (Ald)

we()
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Appendix C.1.2. Computational Results for FortSP

We use FortSP to solve the random [80] and SAPHIR [81] test instances. The number of
iterations and walltime for different solution methodologies are shown in Table A8, where
IPM stands for interior-point method, RD for regularized decomposition, and TR for trust
region. The CPLEX (12.5.1) linear and quadratic solver is used to solve the set of master
problem and subproblems. For decomposition methodologies, a stopping optimality gap
of 1 x 1072 is used. FortSP automatically selects the methodology used to solve the set
of master problem and recourse instances, from primal and dual simplex, as well as an
interior-point method. In addition, FortSP considers the warm-start of linear programs.

From Table A8, one can observe that solving the deterministic equivalent via IPM is
an effective alternative, outperforming BD in most of the instances considered; nonetheless,
it fails to solve the larger instances in the SAPHIR set. Regularized decomposition and the
trust region method perform better than BD in the SAPHIR set, effectively decreasing the
number of iterations and the solution time. However, RD fails on the whole set of RAND
test problems. Decomposition with the level method presents the best performance on both
of the benchmark sets, yielding computational times close to the interior-point method and
effectively reducing the number iterations of the standard BD method.

Table A8. Computational results for FortSP.

IPM Benders Level RD TR
Instances Scenarios
Iter Time Iter Time Iter Time Iter Time Iter Time
2000 128 38.21 80 10.57 44 7.53 - - 103 13.56
4000 46 26.18 69 20.02 32 11.50 - - 84 24.60
rand0 6000 57 46.30 108 41.10 51 21.53 - - 136 51.36
8000 64 66.28 127 65.34 50 34.00 - - 159 81.33
10,000 80 95.32 230 153.99 71 53.39 - - 311 207.46
2000 37 34.74 391 237.40 74 52.86 - - 502 307.87
4000 46 79.92 502 528.99 59 69.90 - - 624 655.29
rand1 6000 47 116.40 385 576.33 58 94.25 - - 484 728.86
8000 50 160.58 453 818.78 65 126.08 - - 611 1126.22
10,000 51 414.21 430 1064.25 52 526.53 - - 558 1388.47
2000 36 63.78 886 1643.40 65 133.59 - - 1239 2415.88
4000 40 140.56 414 1355.37 42 152.27 - - 573 1936.61
rand2 6000 48 245.89 514 3067.92 52 318.58 - - 675 4172.58
8000 51 329.10 454 3036.40 44 310.44 - - 681 4638.54
10,000 51 418.11 686 6774.75 52 528.81 - - 988 9733.37
50 - - 127 527.06 39 215.72 22 82.30 33 77.18
100 - - 122 768.42 44 503.87 29 216.37 34 97.01
Saphir 200 - - - - - - 30 163.66 19 84.15
500 326 555.35 122 847.17 42 426.28 29 231.10 25 85.62
1000 - - 138 1153.40 51 655.66 29 259.29 86 289.53

Appendix C.2. DECIS: A System for Solving Large-Scale Stochastic Programs

DECIS is a software platform for the solution of large-scale two-stage stochastic pro-
grams. It accepts problems in SMPS format. To use DECIS in GAMS, the user needs to
formulate the deterministic problem and time distribution of the constraints and variables
in the GAMS interface, which automatically constructs the core and tim files. The uncertain
components and realization probabilities are set from an external stochastic file (.sto exten-
sion in SMPS format), which is written by the user. Recent developments in GAMS allow
to use the extended mathematical programming (EMP) framework to define a stochastic
program for DECIS, as well as setting the optimization of two additional risk measures:
value at risk (VaR) and conditional value at risk (CVaR).
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Appendix C.2.1. Algorithmic Innovations in DECIS

DECIS incorporates multiple alternatives to solve linear two-stage stochastic pro-
grams, including (i) Benders decomposition with aggregated cuts, and, (ii) a regularized
decomposition variant. The latter uses MINOS to solve the quadratic master problem (12),
and requires the user to select a proper constant penalty parameter (t; > 0). The overall
algorithm performance and convergence are strongly affected by the value of t.

When the number of realizations is large, DECIS can employ advanced Monte Carlo
sampling techniques to compute good approximate solutions. Instead of considering the
whole set of possible outcomes to estimate the expected cost, DECIS uses an independent
sample drawn from the distribution of random parameters. In addition to crude Monte
Carlo sampling, DECIS incorporates importance sampling and control variates, variance
reduction techniques which enhance the estimation of the expected cost. In addition, DECIS
computes a confidence interval in which the optimal objective function value lies.

Appendix C.2.2. Computational Results for DECIS

We use DECIS to solve the random and SAPHIR test instances. The number of
iterations and walltime for different solution methodologies are shown in Table A9. Two
initialization strategies are tested on Benders decomposition: (U) where the initial first-
stage candidate solution is 0, and (EV+U) where BD is employed to solve the EV (expected
value) problem. The EV optimal solution is then used as a starting point for the stochastic
instance. Iter-EV and Iter-U stand for the number of iterations required to solve the EV
and stochastic problem, respectively. A stopping optimality gap of 1 x 10~° is considered.
DECIS-CPLEX (12.7.0) uses primal simplex in both the MP and subproblems in Benders
decomposition. DECIS-MINOS (5.6) is used in the quadratic MP and linear subproblems in
regularized decomposition.

Table A9. Computational results for DECIS.

Benders (U) Benders (EV+U) RD — 1 (U) RD — 10 (U)
Instances Scenarios
Iter Time Iter-EV Iter-U Time Iter Time Iter Time
2000 82 29.72 31 77 27.98 50 13.17 72 18.30
4000 71 53.77 35 58 48.49 42 22.11 58 30.16
rand0 6000 105 112.36 47 106 120.96 58 40.6 85 58.83
8000 121 170.25 38 111 155.61 59 54.23 102 91.64
10,000 229 410.76 40 213 389.04 110 133.2 135 163.31
2000 391 459.29 91 384 448.74 120 264.43 255 551.64
4000 488 1051.82 87 487 1031.35 117 448.65 296 1175.35
rand1 6000 396 1269.56 118 363 1158.85 100 533.02 146 781.95
8000 443 1763.46 100 436 1688.43 106 679.39 153 1004.85
10,000 449 2356.12 115 437 2353.02 113 983.68 193 1736.57
2000 885 3213.08 125 870 3225.03 142 1147.62 265 2620.33
4000 411 2784.49 136 405 2786.91 93 1696.08 212 3879.52
rand2 6000 496 5470.71 165 520 5764.87 132 4196.52 223 6981.10
8000 457 6151.33 173 459 6277.49 97 3631.94 140 5224.19
10,000 - - - - - - - - -
50 167 362.21 163 80 317.21 - - - -
100 151 568.44 151 83 539.73 - - - -
Saphir 200 - - - - - - - - -
500 138 1357.83 109 73 917.47 - - - -
1000 - - - - - - - - -

To exemplify the effects of the constant penalty term on the performance of regularized
decomposition, two p values, 1 and 10, are tested. From Table A9, it can be observed that
regularized decomposition may significantly reduce the number of iterations, and thus the
solution time of the overall decomposition algorithm. In addition, stronger penalization
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might increase the number of iterations, as it restricts the movement of the first-stage
candidate to be close to the best incumbent solution. Furthermore, this methodology might
present numerical issues, such as bad scaling in the master problem, which makes the
algorithm stop without closing the optimality gap. For instance, regularized decomposition
fails to solve the whole set of SAPHIR problems.

Using the (EV+U) initialization can accelerate the convergence of Benders decomposi-
tion. In 14 of 17 instances where BD converged, (EV+U) had fewer iterations than the (U)
strategy, as well as less solution time. The reduction in the iteration number alleviates the
time spent computing an appropriate starting point.

Appendix C.2.3. Computational Results for FortSP in Comparison with DECIS

From the results in the previous subsections, it can be observed that the algorithms
implemented in FortSP (Table A8) outperforms the decomposition implementations in
GAMS-DECIS (Table A9) in terms of solution time. The strength of FortSP resides in the use
of multiple strategies that can accelerate the convergence of the standard BD algorithm and
regularization solved with MINOS. In fact, we observed that the best FortSP methodology
is at least 37.3% faster than the best algorithmic implementation evaluated with DECIS for
each test problem (see Figure Al). In the instances in which none of the DECIS solvers
converge, the solution time is noted as 3 h of walltime.

As expected, the performance of the BD algorithm in both FortSP and DECIS be-
haves similarly, having a difference of fewer than 10 iterations in each test instance. Both
implementations use BD with aggregated cuts but differ in the initialization procedure.
However, the BD algorithm is on average two times faster in the FortSP’s implementation
than DECIS’s implementation.
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Figure A1. Maximum relative improvement of the solution time by using FortSP’s solvers over
DECIS'’s solvers.

In this particular set of instances, the most time-consuming part of the algorithm is
the cumulative solution of scenario subproblems, as can be observed in Figures A2 and A3,
which is explained by the large number of scenario subproblems. This difference is espe-
cially pronounced in the SAPHIR group, where the recourse problem is larger than the
first-stage program, in terms of constraints and variables. In most of the test instances, DE-
CIS with initialization in the EV solution is the methodology that spends more time solving
the master problem, as it uses BD to obtain a proper starting point. Following the general
trend, FortSP is faster in the solution of both the master problem and the subproblems
separately, indicating that differences in the implementation play an important role in the
performance of the decomposition strategies. Warm-starting and automatic selection of the
linear solver might contribute to the acceleration of the convergence of BD in FortSP.
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Figure A2. Cumulative solution time of masters problem in BD, where **, *** means the algorithm
fails to solve the instance in 10,800 CPU seconds.
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Figure A3. Cumulative solution time of scenario instances in BD, where **, *** means the algorithm
fails to solve the instance in 10,800 CPU seconds.
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