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1. Introduction

In these supplementary materials, we give a more extensive experimental study of
the tempered EM algorithm (tmp-EM). In Section 2, we perform an in depth experimental
study of the behaviour and performances of tmp-EM to demonstrate that it solves the issues
raised about the EM. In particular, we illustrate on synthetic data, in the GMM case, that
tmp-EM consistently reaches better values of the likelihood than the unmodified EM, in
addition to better estimating the GMM parameters. We demonstrate that, as intended, tmp-
EM is able to escape bad initialisations, unlike EM, and that more diverse configurations are
explored during the procedure before reaching convergence. We confirm these observation
on real data from the scikit learn library [1]. Finally, in Section 3, we test the tmp-EM within
a more complex pipeline: the Independent Factor Analysis model [2] with a hidden GMM.
We illustrate that, with tmp-EM, the identified sources are cleaner, more stable looking, and
closer to the real ones when those are known.

2. Experiments on tmp-EM with Mixtures of Gaussian

In this section, we present more detailed experiments analysing the tempered EM and
comparing it to the regular EM. As in the main paper, we focus on likelihood maximisation
within the Gaussian Mixture Model. From the optimisation point of view, we demonstrate
that tmp-EM does not fall in the first local maximum like EM does but instead consistently
finds better one. From the machine learning point of view, we illustrate how tmp-EM is
able to better identify the real GMM parameters even when they are ambiguous and when
the initialisation is voluntarily tricky.
The only constraints on the temperature profile is that Tn −→ 1 and Tn > 0. We use two dif-
ferent temperature profiles. First, a decreasing exponential: Tn = 1 + (T0 − 1) exp(−r.n).
We call it the "simple" profile, it works most of the time. Second, we examine the ca-
pabilities of a profile with oscillations in addition to the main decreasing trend. These
oscillations are meant to momentarily increase the convergence speed to "lock-in" some of
the most obviously good decisions of the algorithm, before re-increasing the temperature
and continuing the exploration on the other, more ambiguous parameters. Those two
regimes are alternated in succession with gradually smaller oscillations, resulting in a
multi-scale procedure that "locks-in" gradually harder decisions. The formula is taken
from [3]: Tn = th( n

2r ) + (T0 − b 2
√

2
3π ) an/r + b sinc( 3π

4 + n
r ). The profile used, as well as the

values of the hyper-parameters are specified for each experiment. The hyper parameters
are chosen by grid-search.
For the sake of comparison, the following Experiment 1 and 2 are similar to the experiments
of [3] on the tmp-SAEM.

2.1. Experiment 1: 6 clusters

We start by demonstrating the superior performance of the tempered EM algorithm
on an example mixture of K = 6 gaussians in dimension p = 2. The real parameters can
be visualised on Figure S1, where the real centroids are represented by black crosses and
confidence ellipses help visualise the real covariance matrices. In addition, 500 points were
simulated in order to illustrate, among other things, the weights of each class. To quantify
the ability of each EM method to increase the likelihood and recover the true parameters,
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Figure S1. 500 sample points from a Mixture of Gaussians with 6 classes. The true centroid of each
Gaussian are depicted by black crosses, and their true covariance matrices are represented by the
confidence ellipses of level 0.8, 0.99 and 0.999 around the centre.

we generate from this model 20 different datasets with n = 500 observations. For each
of these datasets, we make 200 EM runs, all of them starting from a different random
initialisation. To initialise the mixture parameters, we select uniformly 6 data points to act
as centroids. In each run, EM and tmp-EM start with the same initialisation. The number K
of clusters is known by the algorithms. For this experiment, the simple tempering profile is
used with parameters T0 = 50 and r = 2.

2.1.1. Illustrative

First, we observe on the left of Figure S2, one example of the final states of the EM
algorithm. The observations can be seen in green, the initial centroids are represented by

blue crosses, and the parameters {µ̂k}K
k=1 and

{
Σ̂k

}K

k=1
estimated by the EM are represented

in orange. In this EM run, one of the estimated clusters became degenerated and, as
counterpart, two different real clusters were fused as one by the method. On the right of
Figure S2, we observe the final state of the tmp-EM on the same dataset, from the same
initialisation. This time all the clusters were properly identified.
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Figure S2. EM and tmp-EM final states on the same simulation with the same initialisation. tmp-EM
positioned correctly the estimated centroides, whereas the regular EM made no distinction between
the two bottom classes and ended up with a degenerate class instead.
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2.1.2. Quantitative

To demonstrate the improvements made by tempering, we present aggregated quanti-
tative results over all the simulated datasets and random initialisations.

Likelihood maximisation

EM and tmp-EM are optimisation methods whose target function is the likelihood of
the estimated mixture parameters. We represent on Figure S3 the empirical distribution of
the negative log-likelihoods reached at the end of the two methods, EM in blue, tmp-EM in
orange. On those boxplots, the coloured "box" at the centre contains 50% of the distribution,
hence it is delimited by the 0.25 and 0.75 quantiles. The median of the distribution is
represented by an horizontal black line inside the box. The space between the whiskers on
the other end, contain 90% of the distribution, its limits are the 0.05 and 0.95 quantiles. The
table provides the numeric values of these statistics.

EM tmp-EM

2200

2300

2400

2500

2600

2700
Negative log-likelihood

EM tmp-EM

median 2230 2215
mean 2247 2219
std 70 35
Q5 2177 2169
Q25 2205 2195
Q75 2262 2236
Q95 2405 2280

Figure S3. Empirical distribution of the negative log-likelihood reached by the EM algorithms. EM is
blue and tmp-EM in orange. The boxplot allow us to identify the quantiles 0.05, 0.25, 0.5, 0.75 and
0.95 of each distribution, as well as the outliers. Their numeric values can be found in the table, the
better ones being in bold. tmp-EM is better overall.

We note that the negative log-likelihood reached by tmp-EM is lower on average
(higher likelihood) than what EM obtains. Moreover, tmp-EM also has a lower variance, its
standard deviation being approximately half of the std of EM. More generally, we observe
that the distribution of the final loss of tmp-EM is both shifted towards the lower values
and less variable. In particular, each of the followed quantiles are lower for tmp-EM, and
both the difference Q95-Q5 (space between whiskers) and Q75-Q25 (size of the box) are
lower for tmp-EM. This illustrates that it obtains better, more consistent results on our
synthetic example.

Parameter recovery

The EM algorithm is an optimisation procedure. Stricto sensu, the optimised metric -
the likelihood - should be the only criterion for success. However, in the case of the Mixture
of Gaussians, the underlying Machine Learning stakes are always very visible. Hence we
dedicate time to assess the relative success parameter recovery of EM and tmp-EM.
The quality of parameter recovery is always dependent on the number of observation.
The larger n, the more the likelihood will describe an actual ad-equation with the real
parameters behind the simulation. Additionally, as n grows, the situation becomes less
and less ambiguous, until all methods yield either the exact same, or at least very similar
solutions, with all of them being fairly close to the truth. All of our simulation are done
with n = 500 data points. Not a very large number, but since the lowest weight of our
K = 6 classes is around 0.09, it is sufficient for all the classes to be guaranteed to contain
several points. The three families of parameters in a GMM are the weights {πk}K

k=1,
the averages (centroids positions) {µk}K

k=1 and the covariance matrices {Σk}K
k=1 of the K

classes. We evaluate the error made on µ with the relative different in squared norm 2:
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∥µ̂k−µk∥2
2

∥µk∥2
2

. For Σ, we compute the KL divergence between the real matrices and the estimates

KL(Σk, Σ̂k) = 1
2

(
ln |Θk |

|Θ̂k|
+ tr(ΣkΘ̂k)− p

)
, with Θ := Σ−1 for all those matrices. Finally,

the analysis on π is harder to interpret and less interesting, but reveals the same trend, with
lower errors for the tempering.
The error on the averages µk is usually the most informative and easy to interpret metric,
quantifying how well each methods position the class centres. Figure S4 and Table S1

represent the distribution of the relative error ∥µ̂k−µk∥2
2

∥µk∥2
2

. The results of tmp-EM are much

better with average and median errors often being orders of magnitude below the errors
of EM, with similar or lower variance. The other quantiles of the tmp-EM distribution are
also either equivalent to or order of magnitudes below the corresponding EM quantiles.
The largest errors happen on Class 3 and 6, two of the ambiguous ones, but are always
noticeably smaller and less variable with the tempering.
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Figure S4. Empirical distribution of the relative error in squared norm 2 ∥µ̂k−µk∥2
2

∥µk∥2
2

between the real

centroid positions in µ and the estimations by the EM algorithms.

Table S1. Quantiles and other statistics describing the empirical distribution of the relative error

in squared norm 2 ∥µ̂k−µk∥2
2

∥µk∥2
2

between the real centroid positions in µ and the estimations by the EM

algorithms. The error of tmp-EM is always closer to 0 with lower variance (with the exception of
class 2 where the variance is similar).

Cl. mean std Q5 Q25 Q50 Q75 Q95

1 EM 0.024 0.119 6.10−6 6.10−5 2.10−4 0.002 0.065
tmp-EM 0.002 0.014 6.10−6 4.10−5 1.10−4 4.10−4 0.005

2 EM 0.038 0.066 5.10−5 2.10−4 0.001 0.057 0.169
tmp-EM 0.032 0.070 5.10−5 2.10−4 5.10−4 0.013 0.210

3 EM 0.971 1.153 4.10−4 0.004 0.297 2.467 2.736
tmp-EM 0.743 1.072 3.10−4 0.003 0.235 1.500 2.681

4 EM 0.310 0.487 7.10−5 8.10−4 0.031 0.859 1.158
tmp-EM 0.287 0.476 3.10−5 5.10−4 0.025 0.076 1.188

5 EM 0.735 1.248 8.10−5 5.10−4 0.002 0.814 3.191
tmp-EM 0.432 1.054 6.10−5 4.10−4 7.10−4 0.002 3.180

6 EM 1.940 2.828 7.10−4 0.005 1.158 2.743 6.744
tmp-EM 0.807 1.735 4.10−4 0.002 0.010 1.066 3.243

The KL divergences KL(Σk, Σ̂k) assess whether each the covariances Σk of each class
are properly replicated. Note that since the computation of the KL divergence involves the
matrix inverse Θ̂k = Σ̂−1

k , the outliers cases where a class vanishes in an EM have to be
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removed: they correspond to pathological, non invertible matrices. Figure S5 and Table S2
describe the distribution of the KL divergence. The Figure is cropped and does not show
some of the very rare, most upper outliers (less than 1%). Overall, the results are similar
to what we get on µ: in terms of average KL and median KL, tmp-EM is better than EM,
being either similar on some classes and much better on others. Its standard deviation is
also lower - sometimes by one order of magnitude - on all classes except Class 4. The other
quantiles are also overall better, with one exception on Q95 of class 4.

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6
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Figure S5. Empirical distribution of the KL divergence KL(Σk, Σ̂k) between each covariance matrix
estimated by the EMs and the real covariance matrices Σ.

Table S2. Quantiles and other statistics describing the empirical distribution of the KL divergence
KL(Σk, Σ̂k) between each covariance matrix estimated by the EMs and the real covariance matrices Σ.
On every class but the 4th, the deviation of tmp-EM is closer to 0 with lower or similar variance.

Cl. mean std Q5 Q25 Q50 Q75 Q95

1 EM 2.741 39.879 0.003 0.009 0.017 0.136 3.222
tmp-EM 0.845 8.683 0.003 0.008 0.013 0.055 1.745

2 EM 0.852 9.006 0.004 0.015 0.042 0.636 1.015
tmp-EM 0.412 9.072 0.004 0.011 0.027 0.34 0.782

3 EM 1.185 14.636 0.015 0.078 0.183 0.414 1.742
tmp-EM 0.648 4.435 0.014 0.066 0.174 0.408 1.331

4 EM 2.008 13.156 0.008 0.043 0.386 1.034 4.553
tmp-EM 2.998 20.1 0.006 0.028 0.374 0.637 5.468

5 EM 1.772 12.175 0.005 0.015 0.035 0.664 5.813
tmp-EM 0.791 7.088 0.005 0.011 0.026 0.058 2.57

6 EM 2.909 59.913 0.012 0.045 0.195 0.676 4.371
tmp-EM 2.072 25.898 0.008 0.023 0.062 0.34 2.883

Conclusion

We saw that tmp-EM achieved better average and median results with lower variances
both on likelihood maximisation and parameter recovery for every Class (with very rare
exceptions). A more global look at the overall distributions confirms this trend: the
error of tmp-EM are more centred on 0 with less spread than EM. This indicates that the
tempering allows the EM algorithm to avoid falling into the first local maximum available
and consistently find better ones. From the Machine Learning point of view, we highlighted
that with our GMM parameters and n = 500 observations, it was able to better identify
the different centroids, despite their ambiguity than the regular EM procedure. Table S3
presents a comparative synthesis of the results of EM and tmp-EM.
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Table S3. Synthetic table focusing solely on the average and standard deviation (in parenthesis) of
the losses and parameter reconstruction errors made by EM and tmp-EM. We note that the likelihood
reached is higher with lower variance, and similarly, the parameter metrics on almost every class are
better with lower variance for tmp-EM.

Metric class EM tmp-EM

− ln pθ̂ 2 247.08 (69.62 ) 2 218.80 (35.21 )
ln pθ0

−ln pθ̂
ln pθ0

0.12 (0.04 ) 0.13 (0.04 )

1 −0.19 (0.36 ) −0.17 (0.29 )
2 0.11 (0.57 ) 0.04 (0.33 )

π̂k−πk
πk

3 0.56 (0.81 ) 0.45 (0.83 )
4 0.10 (0.57 ) 0.10 (0.43 )
5 −0.08 (0.48 ) −0.02 (0.31 )
6 −0.20 (0.43 ) −0.13 (0.40 )

1 0.02 (0.12 ) 2.10−3 (0.01 )
2 0.04 (0.07 ) 0.03 (0.07 )

∥µ̂k−µk∥2

∥µk∥2 3 0.97 (1.15 ) 0.74 (1.07 )

4 0.31 (0.49 ) 0.29 (0.48 )
5 0.73 (1.25 ) 0.43 (1.05 )
6 1.94 (2.83 ) 0.81 (1.74 )

1 2.74 (39.88 ) 0.84 (8.68 )
2 0.85 (9.01 ) 0.41 (9.07 )

KL(Σ, Σ̂) 3 1.18 (14.64 ) 0.65 (4.44 )
4 2.01 (13.16 ) 3.00 (20.10 )
5 1.77 (12.17 ) 0.79 (7.09 )
6 2.91 (59.91 ) 2.07 (25.90 )

2.2. Experiment 2: 3 clusters

In this section, we will assess the capacity of tmp-EM to escape from sub-optimal
local maxima near the initialisation. The experimental protocol is the same as in the main
paper. Let us recall it here. We confront the algorithm to situations where the true classes
have increasingly more ambiguous positions, combined with initialisations designed to
be hard to escape from. Even though we still follow the log-likelihood as a critical metric,
for illustrative purposes we put more emphasis in this section on visualising whether the
clusters were properly identify and following the paths in the 2D space of the estimated
centroids towards their final values during the EM procedures.
The setup is the following: we have three clusters of similar shape and same weight. One is
isolated and easily identifiable. The other two are next to one another, in a more ambiguous
configuration. Figure S6 represents the three, gradually more ambiguous configurations.
We use two different initialisation types to reveal the behaviours of the two EMs. The
first - which we call "barycenter" - puts all three initial centroids at the centre of mass of
all the observed data points. However, none of the EM procedures would move from
this initial state if the three GMM centroids were at the exact same position, hence we
actually apply a tiny perturbation to make them all slightly distinct. The blue crosses on
Figure S7 represent a typical barycenter initialisation. With this initialisation method, we
assess whether the EM procedures are able to correctly estimate the positions of the three
clusters, despite the ambiguity, when starting from a fairly neutral position, providing
neither direction nor misdirection. On the other hand, the second initialisation type - which
we call "2v1" - is voluntarily misguiding the algorithm by positioning two centroids on the
isolated right cluster and only one centroid on the side of the two ambiguous left clusters.
The blue crosses on Figure S8 represent a typical 2v1 initialisation. This initialisation is
intended to assess whether the methods are able to escape the potential well in which
they start and make theirs centroids traverse the empty space between the left and right
clusters to reach their rightful position. For each of the three parameter families represented
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on Figure S6, 1000 datasets with 500 observations each are simulated, and the two EMs
are ran with both the barycenter and the 2v1 initialisation. In the case of tmp-EM, the
oscillating temperature profile is used with parameters T0 = 5, r = 2, a = 0.6, b = 20
for the barycenter initialisation, and T0 = 100, r = 1.5, a = 0.02, b = 20 for the 2v1
initialisation. Although in the case of 2v1, the oscillations are not critical, and the simple
temperature profile with T0 = 100 and r = 1.5 works as well. We have two different sets of
tempering hyper-parameters values, one for each of the two very different initialisation
types. However, these values then remain the same for the three different parameter
families and for every data generation within them. Underlining that the method is not
excessively sensitive to the tempering parameters. The experiment with 6 clusters in
Section 2.1, already demonstrated that the same hyper parameters could be kept over
different initialisation (and different data generations as well) when they were made in
a non-adversarial way, by drawing random initial centroids uniformly among the data
points.
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Figure S6. 500 sample points from a Mixture of Gaussians with 3 classes. The true centroid of each
Gaussian are depicted by black crosses, and their true covariance matrices are represented by the
confidence ellipses of level 0.8, 0.99 and 0.999 around the centre. There are three different versions of
the true parameters. From left to right: the true µk of the two left clusters (mu1 and mu2) are getting
closer while everything else stays identical.

2.2.1. Illustrative

First we illustrate on unique examples how tmp-EM is able to avoid falling for the
tricky initialisations we set up.
As previously stated, the focus will be less on the likelihood optimisation for these illustra-
tive examples. Indeed, they are meant to demonstrate that tmp-EM is able to cross the gaps
and put the clusters in the right place even with the disadvantageous initialisation. The
more relevant metric to assess success in this task is the error on µ (and in a lesser way, the
error on Σ). One reason why the likelihood looses its ability to discriminate between failure
and success in escaping the traps set by the initialisations is that there may not be a big
likelihood gap between being completely wrong and mostly right. For instance placing two
centroids (one of which is linked to an empty class) on the isolated left cluster and putting
only one where the two ambiguously close clusters are could have a decent likelihood
while being blatantly wrong.

On Figure S7, we represent the results of each EM after convergence for every of the
three parameter set, when the start at the barycenter of all data points (blue crosses). The
estimated means and covariance matrices of the GMM are represented by orange crosses
and confidence ellipses respectively. In those examples, tmp-EM correctly identified the
real clusters whereas EM put two centroids on the right, where only the isolated cluster
stands, and only one on the left, where the two ambiguous clusters are. Figure S8 shows
similar results, with the same conventions in the case of the "2v1" initialisation.

These different outcomes are exactly what one would expect: unlike the classical EM,
tmp-EM is by design supposed to avoid the local minima close to the initialisation by
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taking a more exploratory stance during its first steps. To demonstrate that point, we detail
in Figure S9 to S12 the paths taken by the estimated centroids by tmp-EM in those simula-
tions. The paths of the regular EM are straightforward convergences towards their final
positions, and are not represented in these supplementary materials. Figure S9 represents
the paths of the three cluster centroids during the iterations of tmp-EM. The parameter
family is the least ambiguous (the two left cluster are well separated) with the "barycenter"
initialisation. On Figure S10, the initialisation is "2v1" instead. The two following Figures,
S11 and S12, also features the initialisations "barycenter" and "2v1" respectively, but with
the most ambiguous parameter set, where the two left clusters are very close to one another.
These graphs are made of several rows of figures, each row representing a step in the
EM procedure. In order to make the Figures informative, the number of steps between
each row is not fixed, instead the most interesting steps are represented. Convergence
is always achieved within 20 to 50 steps, so there are never big differences between the
step gaps anyway. The first row is always the initial stage without any EM step, and the
last one is the stage after convergence. Each of the three columns corresponds to one of
the three centroids estimated by the EM procedure and represents its evolution in the 2D
space, from initialisation to convergence. The corresponding estimated covariance matrix
is represented by confidence ellipses. For each of the centroids, the observed data points
are coloured accordingly to their (un-tempered) posterior probability of belonging to the
associated class at this stage of the the algorithm. Plain blue being a low probability while
bright green is a high probability.
We make the following observations on the steps taken by tmp-EM: with a "barycenter"
initialisation (Figure S9 and S11), the three centroids gradually converge towards their final
position (which correspond to true class centres in these cases) without too much hesitation.
We also note that, since the three initial points are slightly distinct, there appears to be
preferences at the very beginning, with each class having different high probability points
right at the initialisation stage. However those preferences are not respected after a couple
EM step, we generally see the centroids directing themselves towards different points than
their initial favoured ones. This can be attributed to the tempering reshuffling the positions
and preferences at the beginning. The "2v1" initialisation illustrates this phenomenon more
clearly and in doing so, showcases the true power of the tempering. The very first steps
after this very adversarial initialisation are not very remarkable: the single centroid on
the left solidifies its position at the centre of the two ambiguous clusters, while the two
centroids on the right try to share the single cluster they started in. However, very quickly
this status quo is shattered and every estimated centroid jumps to a completely different
position. On both Figure S10 and S12 we see the positions being completely reversed with
the lonely centroid moving from the two left clusters to the isolated right one whereas the
two close centroids make the inverse trip to reach the two clusters on the left. This jump is
an indication that the tempering flattened the likelihood enough to allow each centroid to
escape their potential wells. Effectively redoing the initialisation and allowing itself to start
from more favourable positions. This behaviour is unattainable with the classical EM.

2.2.2. Quantitative

The quantitative analysis can be found in the main paper.

2.3. Experiment on real data: Wine recognition dataset

To further validate tmp-EM, we compare it once more to the unmodified EM, this time
on real observations from the scikit learn [1] classification data base "Wine" [4]. This dataset
contains p = 13 chemical measurements of n = 178 wines each belonging to one of K = 3
families. Despite being in high dimension, this dataset is known as not very challenging
(the classes are separable) and useful for testing new methods. We expect the unmodified
EM to perform quite well already. For tmp-EM, we use the simple decreasing temperature
profile, with no oscillations, the tempering parameters are T0 = 100, r = 4. Table S4 shows
the result of 500 runs of the EMs from different random initial points. We focus on the
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Figure S7. Typical final positioning of the centroids by EM (left column) and tmp-EM (right column)
when the initialisation is made at the barycenter of all data points (blue crosses). The three rows
represent the three gradually more ambiguous parameter sets. Each figure represents the positions of
the estimated centroids after convergence of the EM algorithms (orange cross), with their estimated
covariance matrices (orange confidence ellipses). In each simulation, 500 sample points were drawn
from the real GMM (small green crosses). In those example, tmp-EM managed to correctly identify
the position of the three real centroids.



S10 of S18

10 5 0 5 1010

5

0

5

10 0

EM

10 5 0 5 1010

5

0

5

10 0

tmp EM

10 5 0 5 1010

5

0

5

10 0

EM

10 5 0 5 1010

5

0

5

10 0

tmp EM

10 5 0 5 1010

5

0

5

10 0

EM

10 5 0 5 1010

5

0

5

10 0

tmp EM

Figure S8. Typical final positioning of the centroids by EM (left column) and tmp-EM (right column)
when the initialisation is made by selecting two points in the isolated cluster and one in the lower
ambiguous cluster (blue crosses). The three rows represent the three gradually more ambiguous
parameter sets. Each figure represents the positions of the estimated centroids after convergence
of the EM algorithms (orange cross), with their estimated covariance matrices (orange confidence
ellipses). In each simulation, 500 sample points were drawn from the real GMM (small green crosses).
In those examples, although EM kept two centroids on the isolated cluster, tmp-EM managed to
correctly identify the position of the three real centroids.
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Figure S9. Paths of the centroids for tmp-EM with the "barycenter" initialisation. Parameter set 1
(least ambiguous).
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Figure S10. Paths of the centroids for tmp-EM with the "2v1" initialisation. Parameter set 1 (least
ambiguous).
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Figure S11. Paths of the centroids for tmp-EM with the "barycenter" initialisation. Parameter set 3
(most ambiguous).
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Figure S12. Paths of the centroids for tmp-EM with the "2v1" initialisation. Parameter set 3 (most
ambiguous).
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likelihood and the error on µk, the other relevant metrics, not presented here, show the
same tendencies. We observe, as usual, that tmp-EM reaches in average a lower negative
log-likelihood with lower variance. The class centres are also better estimated. As expected,
the errors made by the EM are already fairly small, however tmp-EM manages to go further
and lower the errors on each class by approximately 17%, 18% and 11% respectively.
The results demonstrate that tmp-EM can improve the EM result on real data. Since this
is an easy dataset, the difference is not as drastic as in the hard synthetic cases we ran the
EMs by. Still, there was room to improve the EM results, and tmp-EM found those better
solutions.

Table S4. Average and (standard deviation) of the EM and tmp-EM results over 500 random
initialisation on the Wine recognition dataset. The classes on this dataset are easily identifiable
hence the errors are low. Yet tmp-EM still improved upon the solutions of EM

metric cl. EM tmp-EM

− ln pθ̂ 2923 (77) 2905 (71)

∥µ̂k−µk∥2

∥µk∥2

1 0.017 (0.030) 0.014 (0.028)
2 0.026 (0.034) 0.021 (0.033)
3 0.089 (0.165) 0.079 (0.156)

3. Experiments on tmp-EM with Independent Factor Analysis

In this section, we present another application of the tmp-EM with Gaussian Mixture
Models, but this time as part of a more complex model. The Independent Factor Analysis
(IFA) model was introduced by [2] as an amalgam of Factor Analysis, Principal Component
Analysis and Independent Component Analysis to identify and separate independent
sources mixed into a single feature vector. From a practical standpoint, the mixing coeffi-
cient of each source is assumed to be drawn from a GMM, hence the EM. After estimation
of the GMM parameters, the sources are recovered with an optimal non linear estimator.
This is a complex model in which the EM plays a key part, works like [5] and [3] use it to
assess new variants of the EM on a very practical application. The model is described as
follows:

∀i = 1, ..., L′, yi =
L

∑
j=1

Hijxj + ui .

Where y ∈ RL′
is one vector of observations, H ∈ RL′L is the fixed matrix of the sources,

u ∈ RL′
the vector of noise, and x ∈ RL the random mixing coefficient. Each component xj

is assumed to be drawn from its own GMM.
An EM that converges too soon towards a local extremum has every chance to yield sub-
optimal estimated sources. We demonstrate in this section that an IFA method with tmp-EM
can recover sources closer to the original when they are known, and cleaner, more stable
looking sources in general.

3.1. Synthetic IFA

We start with a toy example, where the true sources are two easily distinguishable
images. As shown on Figure S14, one is a white square on a black background and the
other is a white cross on a similar black background but positioned differently. However,
once these two sources are mixed and noised, it becomes much harder to identify them
with the naked eye - as illustrated by Figure S14 - and a quantitative method is required to
properly separate them. To separate the sources, the identification model assumes that the
coefficients used to mix the two sources are drawn from mixtures of gaussian. The outputs
were voluntarily generated in a different way to show the generalisation capabilities of the
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Figure S13. The two real sources of a synthetic source mixing model. They are images of size 20 × 20
made of a black background with a white symbol localised either on the bottom left or top right
corner.

Figure S14. 6 typical observation obtained with the source mixing model. With the noise, the sources
are harder to identify.
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mixture of gaussian assumption. We run an EM and a tmp-EM algorithm to estimate the
parameter of those mixtures, recovering in the process an estimation of the mixing matrix
H. Figure S15 illustrates the sources typically estimated by each of the two procedure.
Although there is noise, tmp-EM essentially identified and corrected the sources correctly.
Whereas EM did not manage to completely turn off the square symbol in the estimated
sources supposedly dedicated to the cross. Figure S16 displays the quantitative results of
several runs over different simulated datasets. It represents the empirical distribution of l2
errors made on the estimation of the source matrix H by the two EMs. As illustrated by the
table in Figure S16, the solutions of tmp-EM have lower mean and median.

Figure S15. Estimated sources by EM (up) and tmp-EM (down). The two real sources were correctly
identified by tmp-EM, but EM did not fully separate the cross and the square.

EM tempered EM
2

3

4

5

6

7

8

l2 error on the source matrix

EM tmp-EM

median 6.36 4.07
mean 6.01 4.75
std 1.05 1.65
Q5 3.72 2.79
Q25 5.78 3.44
Q75 6.65 6.17
Q95 7.13 7.64

Figure S16. Empirical distribution of the l2 error on the source matrix H made by EM and tmp-EM.
With tmp-EM, we shift the distribution towards the lower errors, with smaller average and median.
The numeric values of the quantiles and other statistics can be found in the table, the better ones
being in bold.
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3.2. ZIP code

We apply this IFA algorithm to the ZIP code dataset from Elements of Statistical
learning. This dataset contains handwritten digits between 0 and 9. In this study, we keep
only the digits 0,3, 8 (all three being ambiguously similar) and 7 (very different from the
three others). We make all classes even by removing half of the 0 which are originally more
numerous. When applying Independent Factor Analysis to such data, one hopes that the
distinct digits will be identified as the separable sources making up the signal. We run the
IFA model with a Mixture of Gaussians model with a regular and a tempered EM. In the
mixing model used, each mixture is composed of two classes. The tempering was made
with the oscillating profile, with hyper-parameters: T0 = 50, b = 20, r = 3, a = 0.02.
Figure S17 displays the estimated sources by the IFA procedure with either EM or tmp-EM
at their core. EM did not really identify an "8" source. Instead, its "3" is a bit ambiguously
close to and "8", and the rightmost source in Figure S17 seems like an amalgamation of
the four digits. Moreover, the source "7" estimated by EM is actually a mix between a "7"
and a "0". On the other hand, the sources estimated by tmp-EM each correspond clearly
to a different digit. There is an "8", the "7" is not fused with a "0", the "3" is sharper and
more distinct from an "8" then the corresponding EM source, and even the "0" is more
symmetrical with tmp-EM than with EM. Tempering the EM within the IFA algorithm
allowed for a cleaner separation of the sources. One can infer that tmp-EM was able to
identify and reach a better local maximum of the loss function.

Figure S17. Estimated sources by EM (up) and tmp-EM (down). The "8" and the "7" in particular
were much better identified by tmp-EM. Moreover, with tempering the "0" has a more symmetrical
shape and the "3" is sharper and less ambiguous.
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