
algorithms

Article

A Real-Time Network Traffic Classifier for Online Applications
Using Machine Learning

Ahmed Abdelmoamen Ahmed * and Gbenga Agunsoye

����������
�������

Citation: Ahmed, A.A.; Agunsoye,

G. A Real-Time Network Traffic

Classifier for Online Applications

Using Machine Learning. Algorithms

2021, 14, 250. https://doi.org/

10.3390/a14080250

Academic Editors: Roberto

Carballedo Morillo, Eneko Osaba and

Frank Werner

Received: 9 July 2021

Accepted: 20 August 2021

Published: 21 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Computer Science, Prairie View A&M University, Prairie View, TX 77446, USA;
gagunsoye@student.pvamu.edu
* Correspondence: amahmed@pvamu.edu

Abstract: The increasing ubiquity of network traffic and the new online applications’ deployment has
increased traffic analysis complexity. Traditionally, network administrators rely on recognizing well-
known static ports for classifying the traffic flowing their networks. However, modern network traffic
uses dynamic ports and is transported over secure application-layer protocols (e.g., HTTPS, SSL, and
SSH). This makes it a challenging task for network administrators to identify online applications
using traditional port-based approaches. One way for classifying the modern network traffic is to
use machine learning (ML) to distinguish between the different traffic attributes such as packet count
and size, packet inter-arrival time, packet send–receive ratio, etc. This paper presents the design
and implementation of NetScrapper, a flow-based network traffic classifier for online applications.
NetScrapper uses three ML models, namely K-Nearest Neighbors (KNN), Random Forest (RF), and
Artificial Neural Network (ANN), for classifying the most popular 53 online applications, including
Amazon, Youtube, Google, Twitter, and many others. We collected a network traffic dataset containing
3,577,296 packet flows with different 87 features for training, validating, and testing the ML models.
A web-based user-friendly interface is developed to enable users to either upload a snapshot of
their network traffic to NetScrapper or sniff the network traffic directly from the network interface
card in real time. Additionally, we created a middleware pipeline for interfacing the three models
with the Flask GUI. Finally, we evaluated NetScrapper using various performance metrics such as
classification accuracy and prediction time. Most notably, we found that our ANN model achieves
an overall classification accuracy of 99.86% in recognizing the online applications in our dataset.

Keywords: real-time; traffic classifier; network flow; machine learning; KNN; RF; ANN

1. Introduction

Network traffic analysis is the process of recognizing user applications, networking
protocols, and communication patterns flowing through the network [1]. Traffic analysis is
useful for identifying security threats, intrusion detection, server performance deterioration,
configuration errors, and latency problems in some network components [2]. The rapid
evolution of new online applications, as well as the ubiquitous deployment of mobile and
IoT devices [3], have dramatically increased the complexity and diversity of network traffic
analysis. Moreover, the new security requirements in modern networks, including packet
encryption and port obfuscation, have elevated extra challenges in classifying network
traffic [4].

Despite the importance, the traditional network traffic classification approaches can
only recognize user applications that are running over static well-known network ports
such as FTP, SSH, HTTP, SMTP, etc. However, most online user applications use dynamic
ports, virtual private networks, and encrypted tunnels [5]. Furthermore, these applications
are transported over HTTPS connections and have applied security protocols (e.g., SSH and
SSL) for ensuring QoS provisioning, security, and privacy. This makes it very challenging
for traditional port-based approaches to recognize such applications.

Algorithms 2021, 14, 250. https://doi.org/10.3390/a14080250 https://www.mdpi.com/journal/algorithms

https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-9736-5353
https://doi.org/10.3390/a14080250
https://doi.org/10.3390/a14080250
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/a14080250
https://www.mdpi.com/journal/algorithms
http://www.mdpi.com/1999-4893/14/8/250?type=check_update&version=3


Algorithms 2021, 14, 250 2 of 20

Machine learning (ML), including deep learning (DL), has already enabled game-
changing traffic analysis capabilities by providing the ability to understand network traf-
fic behavior and patterns, and distinguish between benign and abnormal traffic [2,6,7].
For instance, ML-based cybersecurity approaches have made significant contributions in
detecting various types of attacks [8], such as multi-class distinction of Distributed Denial
of Service (DDOS) attacks, DoS Hulk, DoS GoldenEye, Heartbleed, Bot, PortScan, and Web
attacks. Imagine a user-friendly network traffic flow classifier that network administra-
tors can use to identify the different types of online applications flowing their networks
with high accuracy. Such systems would help them to perform administrative decisions,
and detect malicious traffic and secure users’ data.

This paper presents NetScrapper, a lightweight ML-powered traffic flow classifier for
online applications, which can be deployed on-site at the network edge. We compared
three different ML models, namely K-Nearest Neighbors (KNN), Random Forest (RF),
and Artificial Neural Network (ANN), for classifying the most popular 53 online user
applications, including Amazon, Youtube, Google, Twitter, and many others. NetScrapper
uses a network traffic dataset that consists of more than 3.5 M flow packets with different
78 features for training, validating, and testing the KNN, RF, and ANN models.

We developed a web-based interface using Python Flask Framework [9], which enables
users to either upload a snapshot of their traffic history or capture the traffic flow directly
from the network interface card in real time. The GUI displays the confidence percentage
and classification time taken to classify the traffic flow. The web application runs on top of
KNN, RF, and ANN models. To enable seamless interfacing between the three ML models
and the Flask GUI, we built a middleware pipeline that orchestrates the coordination
between the different components of the traffic classifier.

The contributions of this paper are fourfold. First, we propose NetScrapper, an AI-
powered network classifier for real-time flow streams that can help network administrators
to monitor their network performance and detect any suspicious traffic circulating their
networks. NetScrapper can be deployed on networking devices at the network edge with
high prediction accuracy and low response time. Second, we carried out several sets of
experiments for evaluating the classification accuracy and performance of three different
ML models (i.e., ANN, RF, and KNN) implemented as part of NetScrapper. Third, we
developed a user-friendly interface on top of the three ML models to allow users to interact
with the network classifier conveniently. Fourth, the system is designed to be generic,
making it applicable to different fields requiring real-time inference at the network edge
with offline generated ML models.

The rest of the paper is organized as follows: Section 2 presents related work.
Sections 3 and 4 present the design and prototype implementation of NetScrapper, re-
spectively. Section 5 experimentally evaluates NetScrapper in terms of classification time
and accuracy. Finally, Section 6 summarizes the results of this work.

2. Related Work

The evolution of traffic flow classification has gone through three stages: port-based,
payload-based, and flow-based statistical characteristics. Port-based approaches assume
that online applications consistently use well-known TCP or UDP port numbers; however,
the emergence of port camouflage, random port, and tunneling technology makes these
port-based approaches lose productiveness quickly [10]. Payload-based methods, also
called Deep Packet Inspection (DPI) techniques, depend on inspecting both the packet
header and data parts to determine any non-compliance to transportation protocols or the
existence of spam, viruses, or intrusions to take preventative actions by blocking, re-routing,
or logging the packet accordingly. However, payload-based approaches cannot deal with
encrypted traffic as it needs to match packet content to static routing rules [2]. Additionally,
DPI approaches tend to have high computational overhead, which precludes its real-time
usage in mission-critical security tasks [11].



Algorithms 2021, 14, 250 3 of 20

In this paper, we focus on the flow-based approach that relies on network traffic
statistical characteristics using ML algorithms [7]. Flow-based techniques help network
administrators and security personnel to monitor both ingress and egress traffic communi-
cated from/to external networks to/from their enterprise networks [11]. Furthermore, sta-
tistical characterization helps minimize the false positives in automated intrusion detection
systems [5]. This section provides an overview of the most important network traffic classi-
fication methods. In particular, we focus on statistical and machine learning approaches.

Deep Packet [2] is an example of a DL-based scheme for traffic flow classification
that integrates both feature extraction and classification phases into one system. Deep
Packet focuses on traffic characterization, including encrypted traffic, to identify end-user
applications (e.g., BitTorrent and Skype). The proposed method uses two DL models,
namely Stacked Autoencoder (SAE) and Convolution Neural Network (CNN), to classify
the encrypted traffic across VPN networks. Experimental results showed that the CNN
model achieved an overall classification accuracy of 94% in recognizing the flow traffic.
However, Deep Packet can only detect a limited range of online applications due to the
relatively small training dataset.

In the field of cybersecurity, Rezaei et al. [1] proposed a multi-task learning framework
for network traffic classification. The proposed framework can predict the bandwidth
requirement and duration of the traffic flow generated for online applications. The authors
claim that their framework can achieve a high classification accuracy of user applications
using easily obtainable data samples for bandwidth and duration, thus eliminating the
need for a sizeable labeled traffic dataset. Experimental evaluation was conducted using
ISCX and QUIC public datasets showed the efficacy of the proposed approach.

Another DL-based network encrypted traffic classifier and intrusion detection system,
called Deep-Full-Range (DFR), was proposed in [5]. DFR can use CNN, SAE, and Long
Short-Term Memory (LSTM) models to classify encrypted and malware traffic without hu-
man intervention. DFR was compared to some state-of-the-art approaches using two public
datasets. Experimental results showed that DFR slightly outperforms these approaches
in terms of F1 score and storage resource requirements. However, DFR relies on manual
feature extraction to train the DL models, limiting the system’s usability on a large scale.

Focusing on real-world network traffic, Hardegen et al. [7] proposed a processing
pipeline for flow-based traffic classification using machine learning. The proposed system
is trained to predict the characteristics of real-world traffic flows (e.g., throughput and
duration) from a campus network. The pipeline has preprocessing and anonymization
modules that can protect sensitive user information circulating the campus network. A vi-
sualization module was developed to illustrate the network traffic data visually to system
users. Although this work seems promising, no experimental evaluation was conducted to
assess the proposed system’s performance and scalability.

Interesting work was presented in [10] for online classification of user activities using
machine learning on network traffic. The authors proposed a system for classifying
user activities from network traffic using both supervised and unsupervised learning.
The proposed method uses users’ behavior exhibited over the network to classify their
activities within a given time window. An RF model was trained with features extracted
from the network and transport layer headers in the traffic flows. The RF model achieved a
prediction rate of 97.37% in recognizing the user activities over short temporal windows.
However, this system assumes that users are performing a single activity anytime, thereby
obtaining one label for each temporal window. This excludes simultaneous activities
performed by one user, which is an essential requirement in modern networks.

In summary, most of the existing work on statistical [1,7,10] and ML-based traffic
classification [2,5,11] focus on extracting low handcrafted features from the traffic flow,
which always depends on the domain experts’ experience. These flow features must also
be up-to-date to cope with the rapidly changing world of new online applications [3].
Moreover, most of the surveyed DL-based models are designed to work offline, which
is not appropriate for real-time network traffic analysis. Furthermore, to the best of our



Algorithms 2021, 14, 250 4 of 20

knowledge, none of the current ML-based approaches can be deployed on-site at the net-
work edge with a user-friendly interface, which precludes minimizing the communication
delays and enhancing the user experience in using the system.

3. System Design

This section presents the design of NetScrapper, including the system architecture,
dataset, and the three ML models. In the rest of this section, we discuss these parts separately.

3.1. Architecture

As illustrated in Figure 1, the run-time system for NetScrapper is organized with parts
executing on the network and application layers. Layer 1 shows that live traffic flows are
extracted from the Network Interface Card (NIC), stored, and preprocessed in real time.
The traffic stream is then fed into CICFlowMeter [12], an open-source tool that extracts the
time-related features from the network flow stream to train the ML models. CICFlowMeter
can generate these features from bidirectional flows, purifying attributes from an existing
feature set, and control the duration of flow timeout for both TCP and UDP protocols.

System Users
Layer 4:
User Layer

Layer 3:
Application Layer

Layer 2:
ML Layer

Flask Web framework Cloud Servers

NIC

Layer 1:
Network Layer

KNN RF ANN

CICFlowMeter

Traffic Flow Dataset

Figure 1. System architecture.

Layer 2 describes the machine learning models used in NetScrapper, including the
KNN, RF, and ANN models. It also shows the Ml pipeline, which runs underneath the
three ML models. The pipeline automates the ML workflow by enabling live traffic flows
to be transformed and correlated into each ML model to achieve the desired classification
outputs. It also works as a coordination interface between the Flask GUI and the ML models.
The ML pipeline transformed our ML workflows into independent, reusable, modular
components that can then be pipelined together to build a more efficient and simplified real-
time traffic classifier. Layer 3 illustrates the web-based interface of NetScrapper running
on the cloud server. We used Python Flask Framework to develop a user-friendly web
application that enables users (shown in layer 4) to interact with the system.



Algorithms 2021, 14, 250 5 of 20

3.2. Dataset

We collected more than labeled 3.5 M flow packets with different 78 feature attributes
such as header length, flow duration, flow IAT mean, down–up ratio, segment size, ac-
knowledge flag count, etc. As show in Table 1, we categorized these attributes into seven
main attribute categories, namely subflow descriptors (4 attributes), header descriptors
(5 attributes), network identifiers (7 attributes), flow timers (8 attributes), flag features
(12 attributes), interarrival times (15 attributes), and flow descriptors (36 attributes).

Table 1. Attribute categories of our traffic flow dataset.

Category Attributes

Subflow descriptors (4) Subflow Fwd Packets; Subflow Fwd Bytes; Subflow Bwd Packets; Subflow Bwd Bytes

Header descriptors (5) Fwd Header Length; Bwd Header Length; Average Packet Size; Fwd Header Length

Network identifiers (7) FlowID; Source IP; Source Port; Destination IP; Destination Port; Protocol; Timestamp

Flow timers (8) Active Mean; Active Std; Active max; Active min; Idle Mean; Idle std; Idle max; Idle min

Flag Features (12)
Fwd PSH flags; Bwd PSH flags; Fwd URG flags; Bwd URG flags; FIN Flag Count; SYN Flag

Count; RST Flag Count; PSH Flag Count; ACK Flag Count; URG Flag Count; CWE Flag Count;
ECE Flag Count

Interarrival times (15)
Flow Duration; Flow IAT Mean; Flow IAT std; Flow IAT Max; Flow IAT Min; Fwd IAT Total;
Fwd IAT Mean; Fwd IAT Std; Fwd IAT Max; Fwd IAT Min; Bwd IAT Total; Bwd IAT Mean;

Bwd IAT Std; Bwd IAT Max; Bwd IAT Min

Flow descriptors (36)

Total Fwd Packets; Total Bwd Packets; Total Length of Fwd Packets; Total Length of Bwd
Packets; Fwd Packet Length Max; Fwd Packet Length Max; Fwd Packet Length Min; Fwd

Packet Length Mean; Fwd Packet Length Std; Bwd Packet Length Max; Bwd Packet Length
Min; Bwd Packet Length Mean; Bwd Packet Length Std; Flow Bytes S; Flow Packets S; Min
Packet Length; Max Packet Length; Packet Length Mean; Packet Length Std; Packet Length

Variance; Down Up Ratio; Avg Fwd Segment Size; Avg Bwd Segment Size; Fwd Avg Bytes Bulk;
Fwd Avg Packets Bulk; Fwd Avg Bulk Rate; Bwd Avg Bytes Bulk; Bwd Avg Packets Bulk; Bwd
Avg Bulk Rate; Init Win bytes forward; Init Win bytes backward; act data pkt fwd; min seg size

forward; Label; L7Protocol; ProtocolName

Table 2 shows the number of samples used in the training phase of the ML models
across the 53 online popular applications, including Google, Youtube, Amazon, Microsoft,
Dropbox, Facebook, Twitter, Instagram, Netflix, Apple, Skype, etc. The dataset was col-
lected from different sources such as Kaggle [13], Wireshark analysis [14], and other sources.
Our dataset is divided into three parts: training, validation, and testing. The number of
samples in each phase is determined based on the fine-tuned hyperparameters and struc-
ture of the ML models. Specifically, 70% of the dataset is allocated for the training phase,
while the remaining 30% is equally partitioned between the validation and testing phases.

We applied a series of preprocessing transformations to the training dataset to increase
the training accuracy and minimize the training loss of the ML models. This had a better
effect on learning the 53 classes more effectively and increased our ML models’ stability.
First, we used CICFlowmeter to store the traffic stream into PCAP files temporarily. Then,
the Scapy tool [15] is used to manipulate the captured packets in these PCAP files to weaken
the influence of the network noise factor and eliminate the incomplete records during the
training process. The result data are stored in CSV files. Second, the ML pipeline performs
a deep packet inspection on these CSV files to extract the feature attributes, including
the application protocol (layer 7 in the TCP/IP stack), source IP address, source port,
destination IP address, destination port, etc.



Algorithms 2021, 14, 250 6 of 20

Table 2. The number of samples used in the training phase across the online application classes.

Class # Application Name Number of Samples

1 GOOGLE 959,110

2 HTTP 683,734

3 HTTP_PROXY 623,210

4 SSL 404,883

5 HTTP_CONNECT 317,526

6 YOUTUBE 170,781

7 AMAZON 86,875

8 MICROSOFT 54,710

9 GMAIL 40,260

10 WINDOWS_UPDATE 34,471

11 SKYPE 30,657

12 FACEBOOK 29,033

13 DROPBOX 25,102

14 YAHOO 21,268

15 TWITTER 18,259

16 CLOUDFLARE 14,737

17 MSN 14,478

18 CONTENT_FLASH 8589

19 APPLE 7615

20 OFFICE_365 5941

21 WHATSAPP 4593

22 INSTAGRAM 2415

23 WIKIPEDIA 2025

24 MS_ONE_DRIVE 1748

25 DNS 1695

26 IP_ICMP 1631

27 NETFLIX 1560

28 APPLE_ITUNES 1287

29 SPOTIFY 1269

30 APPLE_ICLOUD 1200

31 EBAY 1192

32 SSL_NO_CERT 856

33 GOOGLE_MAPS 807

34 EASYTAXI 705

35 TEAMVIEWER 527

36 HTTP_DOWNLOAD 516

37 MQTT 302

38 TOR 276

39 FTP_DATA 251

40 UBUNTUONE 249



Algorithms 2021, 14, 250 7 of 20

Table 2. Cont.

Class # Application Name Number of Samples

41 NTP 135

42 SSH 102

43 EDONKEY 95

44 WAZE 79

45 DEEZER 74

46 UNENCRYPED_JABBER 45

47 CITRIX_ONLINE 38

48 TIMMEU 34

49 UPNP 34

50 TELEGRAM 33

51 FTP_CONTROL 25

52 TWITCH 24

53 H323 21

We also altered the Ethernet header for some packets in our dataset because the
transport layer segments in the TCP and UDP protocols vary in header length. For instance,
the TCP and UDP packets’ header lengths are 20 and 8 bytes, respectively. Therefore, we
inserted zeros to the end of the UDP protocol’s packet headers to equalize all packets’
length in our dataset. These preprocessing and feature extraction steps are summarized in
Algorithm 1.

Algorithm 1 Preprocessing and Feature Extraction Algorithm

1: procedure PREPROCESS TRAINING DATASET
2: Input: Raw Dataset (RD)
3: Output 1: Preprocessed Dataset (PD)
4: Output 2: Feature Attributes (FT)
5: /* generate the PCAP files */
6: PCAP-List = generatePCAP(RD);
7: /* purify the PCAP files */
8: for each PCAP file in PCAP-List do
9: /* remove noise and incomplete traffic packets */

10: CSV-File = purifyDataset(file);
11: /* Standardize the length of packets’ headers */
12: packetList = alterPacketHeader(CSV-File);
13: PD.add(packetList);
14: /* extract the feature vector from each packet */
15: v = getFeatureVector(packetList);
16: FT.add(v);
17: end for
18: return PD and FT;

The preprocessing operation was customized for each ML model based on its hyper-
parameters and structure. Furthermore, the size of the training set and the number of
feature attributes were reduced from 16,545,768 to 3,577,296 packet flows and from 86 to
78, respectively. We eliminated the following feature attributes from the dataset because
they could be derived from other exciting attributes: URG Flag Count, CWE Flag Count,
Flow Bytes S, Subflow Fwd Bytes, Subflow Bwd Bytes, Bytes Bulk, Bwd Avg Bytes Bulk,
Init Win bytes forward, Init Win bytes backward.

Figure 2 gives a general overview of the number of samples in our dataset across the



Algorithms 2021, 14, 250 8 of 20

53 classes after the preprocessing stage.

Figure 2. The number of samples in our dataset after the preprocessing stage.

We had to normalize the range of values of the feature attributes in the dataset
before training the ML models. This step was necessary because all dimensions of feature
vectors extracted from input traffic data should be in the same range. This made the
convergence of our ML models faster during the training phase. Statistical normalization
(Z-transformation) was implemented by subtracting the input mean value µ from each
attribute’s value I(i), and then dividing the result by the standard deviation σ of the input
feature vector. The distribution of the output traffic values would resemble a Gaussian
curve centered at zero. We used the following formula to normalize each feature vector in
our training set:

O(i) =
I(i)− µ

σ
(1)

where I and O are the input and output feature vectors, respectively; and i is the current
feature vector’s index to be normalized.

3.3. ML Models
3.3.1. ANN Structure

We trained a feed-forward ANN model with 2 hidden layers, one input layer and
one output layer. I = [i1, i2, . . . , ir] and O = [o1, o2, . . . , oh] represent the input and output
vectors, respectively, where r represents the number of elements in the input feature set
and h is the number of classes. The main objective of the network is to learn a compressed
representation of the dataset. In other words, it tries to approximately learns the identity
function F, which is defined as:

FW,B(I) ' I (2)

where W and B are the whole network weights and biases vectors.
A log sigmoid function is selected as the activation function f in the hidden and

output neurons. The log sigmoid function s is a special case of the logistic function in the t
space, which is defined by the following formula:

s(t) =
1

1 + e−t
(3)



Algorithms 2021, 14, 250 9 of 20

The weights of the ANN network create the decision boundaries in the feature space,
and the resulting discriminating surfaces can classify complex boundaries. During the
training process, these weights are adapted for each new training image. In general,
feeding the ANN model with more samples can recognize the online applications more
accurately. We used the back-propagation algorithm, which has a linear time computational
complexity, for training the ANN model.

The input value Θ going into a node i in the network is calculated by the weighted
sum of outputs from all nodes connected to it, as follows:

Θi = ∑(ωi,j ∗ Υj) + µi (4)

where ωi,j is the weight on the connections between neuron j to i; Υj is the output value of
neuron j; µi is a threshold value for neuron i, which represents a baseline input to neuron i
in the absence of any other inputs. If the value of ωi,j is negative, it is tagged as inhibitory
value and excluded because it decreases net input.

The training algorithm involves two phases: forward and backward phases. Dur-
ing the forward phase, the network’s weights are kept fixed, and the input data is propa-
gated through the network layer by layer. The forward phase is concluded when the error
signal ei computations converge as follows:

ei = (di − oi) (5)

where di and oi are the desired (target) and actual outputs of ith training image, respectively.
In the backward phase, the error signal ei is propagated through the network in

the backward direction. During this phase, error adjustments are applied to the ANN
network’s weights for minimizing ei.

We used the gradient descent first-order iterative optimization algorithm to calculate
the change of each neuron weight ∆ωi,j, which is defined as follows:

∆ωi,j = −η
δε(n)
δej(n)

yi(n) (6)

where yi(n) is the intermediate output of the previous neuron n, η is the learning rate,
and ε(n) is the error signal in the entire output. ε(n) is calculated as follows:

ε(n) =
1
2 ∑

j
e2

j (n) (7)

As shown in Figure 3, the ANN model generated more than 81 k parameters during
the training phase. The Adam optimization algorithm is used to update the network
weights iteratively based on training data. We used the categorical cross-entropy as a loss
function, Γ, which is defined as follows:

Γ(W, B) = ‖I − FW,B(I)‖2 (8)



Algorithms 2021, 14, 250 10 of 20

Figure 3. The structure of the ANN model.

3.3.2. RF Structure

RF is a supervised learning algorithm that constructs multiple decision trees. To get
an accurate and stable prediction, the final model’s prediction is derived by voting on the
class prediction of the individual trees in the forest. Each branch of the tree represents a
possible decision, occurrence, or reaction. FR model can be used for both classification and
regression problems with a high classification rate.

We built an RF model with a maximum tree depth of 60 and 8 node splits. For an
ensembles construct f that has a collection of ensemble classifiers h1(x), . . . , hn(x), the en-
semble predictor f for a class x is calculated as follows:

f (x) = argmax
n

∑
i=1

I(hi(x)) (9)

where f (x) is the most frequently predicted class determined by voting between the outputs
of h1(x), . . . , hn(x) and I is the indicator function that measures the extent to which the
average number of votes for the right class exceeds the average vote for any other class.
An immense margin value gives more confidence in the classification results.

We used an entropy-based splitting criterion that controls how each tree node splits
the data. This has a significant effect on how each decision tree in the forest draws
its boundaries.

3.3.3. KNN Structure

We built a KNN model with a K value of 7, which gave us a slightly better classification
accuracy. We validated the KNN model using the cross-validation strategy that assesses
how our model’s prediction results will generalize to an independent dataset. To recognize
an individual class using KNN, we select the K nearest classes to the feature vector by
comparing their Euclidean distances. We used the following similarity equation between
the two comparable feature vectors (x1, y2):

S(x1, y2) = 1− d(x1, y2) (10)

where d(x1, y2) ∈ [0, 1] is the Euclidean distance between x1 and y2, and d is calculated as:

d(x, y) =

√
n

∑
i=1

(xi − yi)2 (11)

where xi and yi are the Euclidean feature vectors, and n is the n-space dimension of xi
and yi.



Algorithms 2021, 14, 250 11 of 20

4. Implementation

This section presents the implementation details of NetScrapper, including the imple-
mentation details of the ML models and the web-based graphical user interface.

4.1. ML Models

Both the RF and ANN models are implemented using Keras development environ-
ment [16]. Keras is an open-source neural network library written in Python, which uses
TensorFlow [17] as a back-end engine. Keras libraries running on top of TensorFlow make
it relatively easy for developers to build and test deep learning models written in Python.
The KNN model is implemented using Python programming language.

We set the batch size and number of epochs to be 150 k packet flows and 10 epochs,
respectively. The model training was carried out using a server computer equipped with a
4.50 GHz Intel Core™ i7-16MB CPU processor, 16 GB of RAM, and CUDA GPU capability.
The training phase took approximately 2 days to run 10 epochs. We took a snapshot of the
trained weights every 2 epochs to monitor the progress.

The training error and loss of the ML models are calculated as follows:

M =
1
n

n

∑
i=1

(yi − xi)
2 (12)

where M is the mean square error of the model, y is the value calculated by the model,
and x is the actual value. M represents the error in class detection.

Figure 4 illustrates the calculated training error and loss of the ANN model graphically.
As shown in the figure, the mean squared error loss decreases over the ten training epochs,
while the accuracy increases consistently. We can see that our ANN model converged after
the 8th epoch, which means that our dataset and the fine-tuned parameters were a good fit
for the model.

Figure 4. The training accuracy and loss of the ANN model.

4.2. User Interface

The user interface is developed as a responsive, mobile-first, and user-friendly web
application to enhance user experience using the system. We built the web application
using Python Flask Framework, HTML5, CSS3, JavaScript, and JSON. All web pages
are designed to be device-agnostic that can accommodate visitors using mobile devices,
desktops, or televisions to visit the web site.

To run the web application on top of the RF and ANN models, we had to wrap
both models, implemented on Keras, as a Representational State Transfer (REST) API
using the Flask web framework. REST is a software architectural style used to provide
interoperability between heterogeneous computer systems connected via the internet. All
communication between Keras and Flask is coordinated through that REST API. When
the user captures fresh traffic flow, Flask uses the POST method to send the traffic data
from the user browser to Keras via an HTTP header. The Flask service can be accessed
by the IP address and port number of the web server without an extension as follows:
http://127.0.0.1:5000, accessed on 9 July 2021.

http://127.0.0.1:5000
http://127.0.0.1:5000


Algorithms 2021, 14, 250 12 of 20

Figure 5 shows a snapshot of the homepage of the web application, which is divided
into three modules: ANN, RF, and KNN. Each module allows users to upload a saved
snapshot of the traffic flows or capture fresh traffic steam directly from NIC. Figure 6 shows
a snapshot of the inference result of the RF model on the web-based GUI. As illustrated
in the figure, the web interface displays the flow predictions for all the testing datasets
(30 k flow packets × 78 feature attributes), along with the confidence score and prediction
time. The additional two columns: ProtocolName and Prediction represent the actual
and predicated class names, respectively.

Figure 5. A snapshot of the web-based GUI of NetScrapper.

Figure 6. A snapshot of the inference result of the RF model on the web-based GUI.

Figure 7 shows a snapshot of the packet sniffing result on the web-based GUI.



Algorithms 2021, 14, 250 13 of 20

As shown in the figure, the packet sniffing module can capture and display live net-
work traffic directly from the NIC’s ethernet network peripheral (enp0s3). This raw data
is then processed using the CICFlowMeter to extract the required feature vector for the
classification phase via the ML pipeline.

Figure 7. A snapshot of the packet sniffing result on the web-based GUI.

5. Experimental Evaluation

We experimentally evaluated our prototype implementation regarding classification
accuracy and performance. We installed instrumentation in the web application running on
the server to measure the processor time taken to perform various tasks, including packet
capturing, traffic flow preprocessing, and prediction processes. Each experiment presented
in this section is carried out for ten trials, then we took the average of these trials’ results.

Figure 8 shows the RF model’s confusion matrix, with a heat map for clarity. The ma-
trix gives a detailed analysis of how the model performance changes for different online
application classes. The matrix rows represent the actual (true) application classes, and the
columns correspond to the predicted application classes. The diagonal cells show the pro-
portion of the correct predictions of our RF model, whereas the off-diagonal cells illustrate
the error rate of our model.

Figure 8. The confusion matrix for the RF Model with heat map.

The confusion matrix demonstrates that our model, in most cases, can differentiate
between the application classes and achieve high levels of prediction accuracy. For the
three most common types of online applications, Google, Youtube, and Amazon, the model
achieves classification accuracies above 95%, 96%, and 98%, respectively.

We noticed that the application classes in the video streaming category (e.g., Youtube,
Netflix, and Twitch) appear easier to identify than the e-commerce (e.g., Amazon and eBay)
and social media (e.g., Facebook and Twitter) categories. This seems to make sense as video
streaming applications usually use the Secure Reliable Transport (SRT) protocol [18], which
is normally carried on UDP connections with low latency and minimal buffering. The SRT
protocol relies on establishing a logical channel of communication in which messages
flow between the broadcasting server and client, called message stream. Message stream



Algorithms 2021, 14, 250 14 of 20

attributes appear more straightforward to identify than those generated by the encrypted
communication carried out by e-commerce and social media applications.

As shown in the confusion matrix, our FR model, in some cases, confuses the online
applications within the same category (e.g., social media) as they share some common
networking attributes such as header and flow descriptors. Note that our ML models
can still identify emailing applications (e.g., Gmail and Yahoo) quite well because of their
discriminative characteristics compared to the other classes in our dataset. Most notably,
although SSL and SSL are considered non-linearly separable classes because of their similar
security attributes, our ML models could separate them effectively.

The precision, recall, and F1-score ratios, shown in Table 3, summarize the trade-off
between the true-positive rate and the positive predictive value for our RF model using
different probability thresholds. Precision represents the positive predictive value of our
model, while recall is a measure of how many true positives are identified correctly, and F1-
score takes into account the number of false positives and false negatives. The support
metric represents the number of samples of the application class in the dataset. As shown
in the table, most of the precision vs. recall values tilts towards 1.0, which means that our
RF model achieves high accuracy while minimizing the number of false negatives.

Table 3. The precision, recall and F1-score of the RF model.

Class Precision Recall F1-Score Support

AMAZON 0.95 0.95 0.95 2958

APPLE 0.92 0.91 0.92 2977

APPLE_ICLOUD 0.97 0.99 0.98 2950

APPLE_ITUNES 0.96 0.97 0.96 3062

CITRIX_ONLINE 1.00 1.00 1.00 11

CLOUDFLARE 0.98 0.98 0.98 3046

CONTENT_FLASH 1.00 0.99 0.99 2950

DEEZER 1.00 0.33 0.50 18

DNS 1.00 1.00 1.00 2990

DROPBOX 0.90 0.87 0.89 3028

EASYTAXI 0.97 0.99 0.98 3083

EBAY 0.97 0.98 0.98 3025

EDONKEY 1.00 0.67 0.80 27

FACEBOOK 0.93 0.94 0.94 2932

FTP_CONTROL 0.78 0.78 0.78 9

FTP_DATA 0.99 1.00 0.99 3008

GMAIL 0.84 0.84 0.84 2966

GOOGLE 0.95 0.99 0.97 2948

GOOGLE_MAPS 0.97 0.97 0.97 3014

H323 0.00 0.00 0.00 7

HTTP 1.00 1.00 1.00 3010

HTTP_CONNECT 0.98 1.00 0.99 3064

HTTP_DOWNLOAD 0.99 0.99 0.99 3010

HTTP_PROXY 0.96 0.99 0.98 2958

INSTAGRAM 0.98 0.96 0.97 3164

IP_ICMP 1.00 1.00 1.00 3010



Algorithms 2021, 14, 250 15 of 20

Table 3. Cont.

Class Precision Recall F1-Score Support

MICROSOFT 0.95 0.97 0.96 2928

MQTT 1.00 1.00 1.00 3042

MSN 0.94 0.93 0.93 3016

MS_ONE_DRIVE 1.00 0.99 0.99 2979

NETFLIX 0.96 0.96 0.96 2967

NTP 1.00 1.00 1.00 2977

OFFICE_365 0.98 0.97 0.98 2879

SKYPE 0.88 0.87 0.88 2913

SPOTIFY 0.98 0.96 0.97 3025

SSH 1.00 1.00 1.00 2990

SSL 0.93 0.95 0.94 2990

SSL_NO_CERT 0.99 0.99 0.99 2988

TEAMVIEWER 1.00 1.00 1.00 3039

TELEGRAM 1.00 0.82 0.90 11

TIMMEU 0.75 0.27 0.40 11

TOR 0.98 0.99 0.98 3002

TWITCH 0.00 0.00 0.00 7

TWITTER 0.84 0.82 0.83 2994

UBUNTUONE 0.99 1.00 1.00 2937

JABBER 0.91 0.83 0.87 12

UPNP 1.00 0.83 0.91 12

WAZE 0.94 0.74 0.83 23

WHATSAPP 0.95 0.90 0.92 3038

WIKIPEDIA 0.97 0.95 0.96 3087

MS_UPDATE 0.95 0.94 0.94 3080

YAHOO 0.91 0.86 0.89 2931

YOUTUBE 0.89 0.96 0.92 3048

Macro Average 0.92 0.88 0.89 126,151

Weighted Average 0.96 0.96 0.96 126,151

The precision ratio describes the performance of our model at predicting the positive
class. It is calculated by dividing the number of true positives by the sum of the true
positives and false positives, as follows:

Precision =
TruePositives

TruePositives + FalsePositives
(13)

The recall ratio is calculated as the ratio of the number of true positives divided by the
sum of the true positives and the false negatives, as follows:

Recall =
TruePositives

TruePositives + FalseNegatives
(14)

F1-score ratio is calculated by a weighted average of both precision and recall, as follows:

F1− score = 2 ∗ Precision ∗ Recall
Precision + Recall

(15)



Algorithms 2021, 14, 250 16 of 20

We also observed that our model delivers good results even when flow packets are
captures directly from NIC in real time. Figure 9 shows a snapshot of the classification
report of the RF model on the web-based GUI. The figure shows that traffic flows from 12
different online applications are captured and predicted using the RF model. Furthermore,
our GUI shows the precision, recall, and F1-score ratios of these live streams.

Figure 9. A snapshot of the classification report of the RF model on the web-based GUI.

Table 4 compares the KNN, RF, and ANN models in terms of classification accuracy
and prediction time across the 53 classes. For instance, the ANN model achieved an
overall average classification accuracy of 99.86%. The average prediction time of the model
was measured to be 0.25 s. This is evident that administrators can detect any security
vulnerability in their networks using a handy web-based GUI in a quarter of a second.
Furthermore, we noted that the prediction accuracy of many classes (e.g., Netflix, Dropbox,
and WhatsApp) was 100%. This shows that our model is robust and can operate in real-time
inference in real-world network settings with high accuracy.

Compared to ANN and RF, KNN is considered a significantly slower model in the
case of having a large dataset because it needs to scan all the training databases each time a
prediction is required; thus, it cannot generalize over the dataset in advance. That is why we
believe that the KNN model is not adequate to be used for real-time inference. In contrast,
on average, the ANN model requires around 250 ms only to detect a security thread in a
traffic flow. To put these numbers in some context, consider a firewall service installed in a
gateway router; our ANN model can inspect around four applications’ flow streams per
second, which would have a negligible latency overhead over the network stream.



Algorithms 2021, 14, 250 17 of 20

Table 4. The average classification accuracy (%) and prediction time (second) of KNN vs. RF vs. ANN.

Classification Accuracy Prediction Time

Class KNN RF ANN KNN RF ANN

AMAZON 97.01 98.79 99.57 283 0.74 0.29

APPLE 86.02 98.62 100 181 0.79 0.28

APPLE_ICLOUD 70.24 99.76 100 190 0.7 0.28

APPLE_ITUNES 97.94 99.43 100 178 0.73 0.28

CITRIX_ONLINE 56.63 100 97.85 92 0.01 0.05

CLOUDFLARE 95.01 98.61 99.97 188 0.66 0.27

FLASH 99.58 99.69 100 251 0.58 0.28

DEEZER 55.5 85.14 99.99 106 0.02 0.05

DNS 99.59 99.82 100 220 0.53 0.3

DROPBOX 91.92 97.35 100 197 0.69 0.39

EASYTAXI 99.3 99.6 100 125 0.75 0.44

EBAY 84.51 99.33 100 163 0.79 0.4

EDONKEY 72.08 90.53 100 202 0.02 0.04

FACEBOOK 98.9 98.96 100 197 0.65 0.4

FTP_CONTROL 49.00 88.00 99.99 144 0.01 0.09

FTP_DATA 99.35 99.9 100 171 0.66 0.34

GMAIL 96.3 97.38 99.92 193 1.01 0.28

GOOGLE 99.46 99.82 99.96 306 0.69 0.29

GOOGLE_MAPS 94.3 99.61 100 159 0.76 0.27

H323 56.54 66.67 99.96 136 0.01 0.04

HTTP 99.24 99.63 100 334 0.65 0.31

HTTP_CONNECT 99.03 99.93 99.89 302 0.67 0.29

HTTP_LOAD 99.79 99.72 100 146 0.68 0.3

HTTP_PROXY 99.45 99.81 99.95 124 0.65 0.33

INSTAGRAM 88.52 98.45 100 145 0.69 0.33

IP_ICMP 99.99 100 100 248 0.48 0.3

MICROSOFT 98.27 98.96 99.56 274 0.68 0.28

MQTT 91.22 99.91 100 168 0.6 0.27

MSN 94.92 98.16 100 162 0.71 0.27

MS_ONE_DRIVE 77.07 99.11 100 149 0.79 0.28

NETFLIX 97.27 99.32 100 141 0.88 0.27

NTP 99.9 100 100 307 0.54 0.27

OFFICE_365 88.34 98.49 100 173 0.76 0.28

SKYPE 94.98 98.25 100 139 0.77 0.28

SPOTIFY 98.75 99.26 100 152 0.75 0.28



Algorithms 2021, 14, 250 18 of 20

Table 4. Cont.

Classification Accuracy Prediction Time

Class KNN RF ANN KNN RF ANN

SSH 98.29 100 100 238 0.58 0.27

SSL 99.36 98.87 100 236 0.71 0.27

SSL_NO_CERT 99.70 99.61 100 203 0.7 0.29

TEAMVIEWER 98.45 99.94 100 269 0.59 0.27

TELEGRAM 93.06 90.91 98.82 134 0.01 0.04

TIMMEU 79.35 73.53 98.81 104 0.01 0.05

TOR 99.18 99.85 100 193 0.76 0.27

TWITCH 43.60 70.83 99.07 155 0.01 0.04

TWITTER 89.95 96.90 99.67 161 0.79 0.27

UBUNTUONE 99.63 99.97 100 234 0.65 0.33

JABBER 58.43 95.56 99.91 187 0.01 0.06

UPNP 63.77 88.24 99.99 159 0.01 0.05

WAZE 81.00 92.41 99.91 146 0.02 0.04

WHATSAPP 97.48 98.24 100 158 0.78 0.28

WIKIPEDIA 87.11 98.85 100 170 0.82 0.28

WIN_UPDATE 98.85 99.19 100 250 0.66 0.28

YAHOO 99.67 97.54 100 174 0.76 0.27

YOUTUBE 96.82 99.43 99.81 129 0.77 0.27

Mean 88.86 96.33 99.86 187.66 0.56 0.25

6. Conclusions and Future Work

This paper presented the design and implementation of NetScrapper, an AI-enabled
network classifier for real-time flow streams. The developed prototype showed that
NetScrapper could be deployed on networking devices at the edge with high prediction
accuracy and low response time. It is expected that NetScrapper would make a better
opportunity for network administrators to monitor their network performance and detect
any suspicious traffic that could harm the network components and legitimate users.
Unlike most of the existing ML-based classifiers, NetScrapper can automatically extract the
feature attributes of the online traffic flow without human intervention, which undoubtedly
makes it a highly desirable traffic classification approach, especially for mobile services
encrypted traffic.

The system implementation compared three ML models, namely ANN, RF, and KNN,
in terms of classification accuracy and performance. To increase the system usability, we
developed a user-friendly interface on top of these models to allow users to interact with
the system conveniently. We carried out several sets of experiments for evaluating the
performance and classification accuracy of our system, paying particular attention to the
prediction time. Our ANN model could most notably inspect four applications’ flow
streams per second, which proves that NetScrapper is suitable for real-time inference at the
edge with offline generated ML models.

We expect that this research would increase the open-source knowledge base in the
area of traffic analysis and machine learning on the network edge by publishing the source
code and dataset to the public domain. Both the source code and dataset are available
online: https://github.com/ahmed-pvamu/NetScrapper (accessed on 9 July 2021).

https://github.com/ahmed-pvamu/NetScrapper


Algorithms 2021, 14, 250 19 of 20

In on-going work, we are looking into opportunities for generalizing our approach
to be deployed locally at all types of network devices at the edge, where administrators
can use to monitor their network from any point in the network topology. This would give
them a richer picture of their network performance and reduce the time associated with
detecting security threats and intrusions.

We also plan to train a multi-level classification algorithm to enable NetScrapper to
identify traffic flows from unknown application sources. If an unknown packet is detected,
the system will automatically add it to our training database of unknown classes. This
technique would also use an unsupervised clustering algorithm to label the unknown pack-
ets as discrete classes. We are also working on using the Actor model of concurrency [19],
leveraging multi-threaded computation for massive live traffic streams. It will be useful for
supporting the sensing needs of a wide range of researches [20–30] and applications [31–40].
Finally, experiments with more massive datasets are needed to study the robustness of
our system at a large scale, and improve the prediction accuracy of the less performing
application classes.

Author Contributions: Conceptualization, A.A.A. and G.A.; methodology, A.A.A.; software, G.A.;
validation, A.A.A. and G.A.; formal analysis, A.A.A.; investigation, A.A.A. and G.A.; resources,
A.A.A.; data curation, G.A.; writing—original draft preparation, A.A.A. and G.A.; writing—review
and editing, A.A.A.; visualization, G.A.; supervision, A.A.A.; project administration, A.A.A.; funding
acquisition, A.A.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research work is supported in part by the National Science Foundation (NSF) under
grant # 2011330. Any opinions, findings, and conclusions expressed in this paper are those of the
authors and do not necessarily reflect NSF’s views.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data and source code that support the findings of this study are
openly available at: https://github.com/ahmed-pvamu/NetScrapper (accessed on 9 July 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rezaei, S.; Liu, X. Multitask learning for network traffic classification. In Proceedings of the International Conference on Computer

Communications and Networks (ICCCN), Honolulu, HI, USA, 3–6 August 2020; pp. 1–9.
2. Lotfollahi, M.; Zade, R.S.H.; Siavoshani, M.J.; Saberian, M. Deep packet: A novel approach for encrypted traffic classification

using deep learning. Soft Comput. Springer Link 2020, 24, 1999–2012. [CrossRef]
3. Lopez-Martin, M.; Carro, B.; Sanchez-Esguevillas, A.; Lloret, J. Network traffic classifier with convolutional and recurrent neural

networks for internet of things. IEEE Access 2017, 5, 42–50. [CrossRef]
4. Moamen, A.M.A.; Hamza, H.S. On securing atomic operations in multicast aodv. Ad-Hoc Sens. Wirel. Netw. 2015, 28, 137–159.
5. Zeng, Y.; Gu, H.; Wei, W.; Guo, Y. Deep-Full-Range: A deep learning based network encrypted traffic classification and intrusion

detection framework. IEEE Access 2019, 7, 182–190. [CrossRef]
6. Moḿen, A.M.A.; Hamza, H.S.; Saroit, I.A. A survey on security enhanced multicast routing protocols in mobile ad hoc networks.

In Proceedings of the IEEE International Symposium on High-capacity Optical Networks and Enabling Technologies, Cairo,
Egypt, 19–21 December 2010; pp. 262–268.

7. Hardegen, C.; Pfülb, B.; Rieger, S.; Gepperth, A. Predicting network flow characteristics using deep learning and real-world
network traffic. IEEE Trans. Netw. Serv. Manag. 2020, 17, 662–676. [CrossRef]

8. Moamen, A.A.; Hamza, H.S.; Saroit, I.A. Secure multicast routing protocols in mobile ad-hoc networks. Int. J. Commun. Syst.
2014, 27, 2808–2831. [CrossRef]

9. Flask Framework: A Web-Based Framework Written in Python. Available online: https://flask.palletsprojects.com/en/1.1.x/
(accessed on 9 July 2021).

10. Labayen, V.; Magana, E.; Morato, D.; Izal, M. Online classification of user activities using machine learning on network traffic.
Comput. Netw. 2020, 181, 557–569. [CrossRef]

11. Chang, L.-H.; Lee, T.-H.; Chu, H.-C.; Su, C.-W. Application-based online traffic classification with deep learning models on sdn
networks. Adv. Technol. Innov. 2020, 5, 216–229. [CrossRef]

12. Cicflowmeter: An Open Source Traffic Flow Generator. Available online: https://github.com/ahlashkari/CICFlowMeter
(accessed on 9 July 2021).

https://github.com/ahmed-pvamu/NetScrapper
http://doi.org/10.1007/s00500-019-04030-2
http://dx.doi.org/10.1109/ACCESS.2017.2747560
http://dx.doi.org/10.1109/ACCESS.2019.2908225
http://dx.doi.org/10.1109/TNSM.2020.3025131
http://dx.doi.org/10.1002/dac.2508
https://flask.palletsprojects.com/en/1.1.x/
http://dx.doi.org/10.1016/j.comnet.2020.107557
http://dx.doi.org/10.46604/aiti.2020.4286
https://github.com/ahlashkari/CICFlowMeter


Algorithms 2021, 14, 250 20 of 20

13. Kaggle. Available online: https://www.kaggle.com/jsrojas/labeled-network-traffic-flows-114-applications (accessed on 9
July 2021).

14. Wireshark: A Network Protocol Analyzer. Available online: https://www.wireshark.org/ (accessed on 9 July 2021).
15. Scapy: A Packet Manipulation Tool for Computer Networks. Available online: https://scapy.net/ (accessed on 9 July 2021).
16. Keras: A Python Deep Learning Api. Available online: https://keras.io/ (accessed on 9 July 2021).
17. Tensorflow: A Machine Learning Platform. Available online: https://www.tensorflow.org/ (accessed on 9 July 2021).
18. SRT: Secure Reliable Transport Protocol. Available online: https://github.com/Haivision/srt (accessed on 9 July 2021).
19. Agha, G. Actors: A Model of Concurrent Computation in Distributed Systems; MIT Press: Cambridge, MA, USA, 1986.
20. Moḿen, A.M.A.; Hamza, H.S.; Saroit, I.A. New attacks and efficient countermeasures for multicast aodv. In Proceedings of the

7th International Symposium on High-capacity Optical Networks and Enabling Technologies, Cairo, Egypt, 19–21 December
2010; pp. 51–57.

21. Moamen, A.A.; Nadeem, J. ModeSens: An approach for multi-modal mobile sensing. In Companion, Proceedings of the 2015 ACM
SIGPLAN International Conference on Systems, Programming, Languages and Applications: Software for Humanity, Pittsburgh, PA, USA,
25–30 October 2015; SPLASH Companion 2015 Series; ACM: Pittsburgh, PA, USA, 2015; pp. 40–41.

22. Abdelmoamen, A. A modular approach to programming multi-modal sensing applications. In Proceedings of the IEEE Interna-
tional Conference on Cognitive Computing, Series ICCC ’18, San Francisco, CA, USA, 2–7 July 2018; pp. 91–98.

23. Moamen, A.A.; Jamali, N. Coordinating crowd-sourced services. In Proceedings of the IEEE the Mobile Services Conference,
Anchorage, AK, USA, 27 June–2 July 2014; pp. 92–99.

24. Moamen, A.A.; Jamali, N. An actor-based approach to coordinating crowd-sourced services. Int. J. Serv. Comput. 2014, 2, 43–55.
[CrossRef]

25. Moamen, A.A.; Jamali, N. CSSWare: A middleware for scalable mobile crowd-sourced services. In Proceedings of the MobiCASE,
Berlin, Germany, 12–13 November 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 181–199.

26. Moamen, A.A.; Jamali, N. Supporting resource bounded multitenancy in akka. In Proceedings of the ACM SIGPLAN International
Conference on Systems, Programming, Languages and Applications: Software for Humanity (SPLASH Companion 2016),
Amsterdam, The Netherlands, 30 October 2016–4 November 2016; ACM: Pittsburgh, PA, USA, 2016; pp. 33–34.

27. Moamen, A.A.; Wang, D.; Jamali, N. Supporting resource control for actor systems in akka. In Proceedings of the International
Conference on Distributed Computing Systems (ICDCS 2017), Atlanta, GA, USA, 5–8 June 2017; pp. 1–4.

28. Abdelmoamen, A.; Wang, D.; Jamali, N. Approaching actor-level resource control for akka. In Proceedings of the IEEE Workshop
on Job Scheduling Strategies for Parallel Processing, Vancouver, BC, Canada, 25 May 2018; Springer: Berlin/Heidelberg, Germany,
2018; pp. 1–15.

29. Moamen, A.A.; Jamali, N. ShareSens: An approach to optimizing energy consumption of continuous mobile sensing workloads.
In Proceedings of the 2015 IEEE International Conference on Mobile Services (MS ’15), New York, NY, USA, 27 June–2 July 2015;
pp. 89–96.

30. Moamen, A.A.; Jamali, N. Opportunistic sharing of continuous mobile sensing data for energy and power conservation. IEEE
Trans. Serv. Comput. 2020, 13, 503–514. [CrossRef]

31. Moamen, A.A.; Jamali, N. CSSWare: An actor-based middleware for mobile crowd-sourced services. In Proceedings of the 2015
EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services (Mobiquitous ’15),
Coimbra, Portugal, 22–24 July 2015; pp. 287–288.

32. Ahmed, A.A.; Olumide, A.; Akinwa, A.; Chouikha, M. Constructing 3d maps for dynamic environments using autonomous
uavs. In Proceedings of the 2019 EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and
Services (Mobiquitous ’19), Houston, TX, USA, 12–14 November 2019; pp. 504–513.

33. Moamen, A.A.; Jamali, N. An actor-based middleware for crowd-sourced services. Eai Endorsed Trans. Mob. Commun. Appl. 2017,
3, 1–15.

34. Abdelmoamen, A.; Jamali, N. A model for representing mobile distributed sensing-based services. In Proceedings of the IEEE
International Conference on Services Computing, Ser. SCC ’18, San Francisco, CA, USA, 2–7 July 2018; pp. 282–286.

35. Ahmed, A.A. A model and middleware for composable iot services. In Proceedings of the International Conference on Internet
Computing & IoT, Ser. ICOMP ’19, Las Vegas, NV, USA, 26–29 July 2019; pp. 108–114.

36. Ahmed, A.A.; Eze, T. An actor-based runtime environment for heterogeneous distributed computing. In Proceedings of the
International Conference on Parallel & Distributed Processing, Ser. PDPTA ’19, Las Vegas, NV, USA, 27–30 July 2019; pp. 37–43.

37. Ahmed, A.A.; Omari, S.A.; Awal, R.; Fares, A.; Chouikha, M. A distributed system for supporting smart irrigation using iot
technology. Eng. Rep. 2020, 3, 1–13.

38. Ahmed, A.A. A privacy-preserving mobile location-based advertising system for small businesses. Eng. Rep. 2021, e12416.
[CrossRef]

39. Ahmed, A.A.; Echi, M. Hawk-eye: An ai-powered threat detector for intelligent surveillance cameras. IEEE Access 2021, 9,
63283–63293. [CrossRef]

40. Ahmed, A.A.; Reddy, G.H. A mobile-based system for detecting plant leaf diseases using deep learning. AgriEngineering 2021, 3,
478–493. [CrossRef]

https://www.kaggle.com/jsrojas/labeled-network-traffic-flows-114-applications
https://www.wireshark.org/
https://scapy.net/
https://keras.io/
https://www.tensorflow.org/
https://github.com/Haivision/srt
http://dx.doi.org/10.29268/stsc.2014.2.3.4
http://dx.doi.org/10.1109/TSC.2017.2705685
http://dx.doi.org/10.1002/eng2.12416
http://dx.doi.org/10.1109/ACCESS.2021.3074319
http://dx.doi.org/10.3390/agriengineering3030032

	Introduction
	Related Work
	System Design
	Architecture
	Dataset
	ML Models
	ANN Structure
	RF Structure
	KNN Structure


	Implementation
	ML Models
	User Interface

	Experimental Evaluation
	Conclusions and Future Work
	References

