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Abstract: The shortest unique substring (SUS) problem is an active line of research in the field of
string algorithms and has several applications in bioinformatics and information retrieval. The initial
version of the problem was proposed by Pei et al. [ICDE’13]. Over the years, many variants
and extensions have been pursued, which include positional-SUS, interval-SUS, approximate-SUS,
palindromic-SUS, range-SUS, etc. In this article, we highlight some of the key results and summarize
the recent developments in this area.
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1. Introduction

Let S be a string of length n and S [i, j] be the substring which starts at position i and ends at
position j of S . The substring S [i, j] is a repeat if it occurs more than once in S ; otherwise, it is a unique
substring of S . Since finding the shortest unique substrings is a non-trivial problem that has several
applications for different purposes, variants of this problem have been studied. Table 1 shows the
variants of the Shortest Unique Substring (SUS) problem that we focused on in this survey.

Table 1. This table categorizes the main papers which are reviewed and discussed in this survey.

Variant SUS Queries

Position-SUS Interval-SUS Approximate-SUS Palindromic-SUS Range-SUS

Pei et al. 2013 [1] Hu et al. 2014 [2] Hon et al. 2017 [3] Inoue et al. 2018 [4] Abedin et al. 2019 [5]
Ileri et al. 2014, 2015 [6,7] Mieno et al. 2016 [8] Allen et al. 2018, 2020 [9,10] Wantabe et al. 2019, 2020 [11,12]
Tsuruta et al. 2014 [13] Mieno et al. 2019 [14] Schultz et al. 2018, 2020 [15,16]
Hon et al. 2015, 2017 [3,17]
Ganguly et al. 2016 [18]
Mieno et al. 2019 [14]

In 2005, Haubold et al. [19] explained how the shortest unique substring is a useful construct for
alignment-free genome comparison. Unique substrings can help to determine the distinctness and
difference between a group of closely related organisms [1,19]. In addition, an algorithm for finding
a unique substring can be helpful to build a unique genetic fingerprint from a DNA sample or can
help designing polymerase chain reaction (PCR) primer technique in molecule biology [1,20]. In 2015,
Adas et al. [21] investigated the usage of shortest unique substrings for alignment and compression
of DNA sequences. In addition to the applications in bioinformatics, the shortest unique substrings
can be used in information retrieval for document search. The position based shortest unique substring
(position-SUS) queries was first proposed by Pei et al. [1]. Given a string S of length n and a query
point p in the string, the problem is to find a shortest unique substring covering p. They presented an
algorithm which costs O(n2) time and O(n) space. In 2014, several publications have revisited this
problem. İleri et al. [6] and Tsuruta et al. [13] proposed an optimal O(n) time and space algorithm
for solving this problem. In addition, Hon et al. [3] and Ganguly et al. [18] presented compact data
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structures that can answer a position-SUS query using less than 2n words of space, where a word size
is Ω(log n). Several variations of the original problem have been proposed in the following years.

In 2014, Hu et al. [2] generalized the position-SUS problem by considering the positions in an
interval rather than a single position in the string. For the interval-SUS problem, they preprocess the
input string in O(n) time and space to answer any interval SUS query in constant time and return all
SUSs in O(occ) time, where occ is the number of outputs. In 2019, Mieno et al. [14] improved the space
complexity of this problem by providing a compact data structure.

In 2016, Mieno et al. [8] considered SUS queries on run-length encoded(RLE) strings.
Their motivation was to reduce space and time complexity of processing the input string. They showed
how to construct a data structure of size O(m + πs(N, m)) in O(m log m + πc(N, m)) time that can
answer interval-SUS queries in O(πq(N, m) + occ) time, where occ is the output size, and πs(N, m),
πc(N, m) and πq(N, m) are the size, construction time and the query time for a predecessor/successor
query on m elements from a universe of [1, N].

In 2017, Hon et al. [3] proposed the approximate version of SUS queries, where mismatches are
allowed. This version can be applied in computational biology, where factors such as genetic mutation
and experimental error make approximate string matching necessary [9]. They presented an in place
algorithm for both exact and approximate versions of the problem. Afterwards, different trade-offs
have been presented for k-mismatch SUS problem [9,10,15,16].

In 2018, Inoue et al. [4] proposed a palindromic variant of interval SUS problem. A palindromic
string or substring is an important structure in DNA, RNA or protein sequence analysis [22]. In biology
data, palindromic structures show the ability of molecules to fold and form double-stranded stems [23].
Given a string S , a shortest unique palindromic substring (SUPS) for an interval [s, t] of S is the
shortest substring that is palindromic and unique in S which contains [s, t]. For solving the interval
SUPS problem, they preprocess S in O(n) time and space to output SUPSs in O(occ + 1) time.
There are other works on SUPS queries by Watanabe et al. [11,12] based on the RLE which are
space economical solutions.

In 2019, Abedin et al. [5] focused on the range version of SUS queries (Range-SUS) and generalized
the problem. Range queries are a classic data structure topic, which has a great motivation in string
processing problems [5,24–26]. Given a range [α, β], the problem is to return a shortest substring with
exactly one occurrence in [α, β]. They presented an O(n log n)-word data structure which answers rSUS
queries in O(logw n) time per query in the word RAM model, where w = Ω(log n) is the word size [5].

In this survey, we are going to discuss all approaches mentioned above on SUS queries. The focus
of this work is on techniques applicable to SUS queries and is to compare all the main results in terms
of complexities, restrictions, problem definitions, motivations, and applications. The main papers that
we are going to focus on have been categorized in Table 1. In the last section, we discuss the related
open questions on the variant topics related to SUS queries.

2. Preliminaries

2.1. Definitions

Let S [1, n] be a string of length n (i.e., |S| = n) over an alphabet set Σ and S [i] is the ith character
of S . The substring of S which starts at position i and ends at position j of S is denoted by S [i, j].
We have 1 ≤ i ≤ j ≤ n. If j < i, then S [i, j] is an empty string. A prefix of S is a substring S [1, i] of
S for some 1 ≤ i ≤ n. S [1, i] is a proper prefix if i 6= n. A suffix of S is a substring [j, n] for some
1 ≤ j ≤ n. It is a proper suffix if j 6= 1. We say S [i, j] covers position p, if i ≤ p ≤ j. S [i′, j′] is a proper
substring of S [i, j] if i ≤ i′ ≤ j′ ≤ j and |S [i, j]| > |S [i′, j′]|. A substring S [i, j] is a unique substring
if there is no other substring S [i′, j′] such that S [i, j] = S [i′, j′], where = indicates the identicality of
two strings. The shortest unique substring (SUS) covering position p is a unique substring of S that
contains S [p], and there is no other unique substring with shorter length containing S [p]. Note that
there might exist more than one SUS covering position p. S [i, j] is a minimal unique substring (MUS) if
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it is a unique substring and there is no proper substring of S [i, j] that is also unique. S [p, j] is called
the left-bounded SUS for position p, LSUS(p), if S [p, j] is unique and there is no other substring S [p, j′]
which is also unique for p ≤ j′ < j. Symmetrically, S [j, p] is right-bounded SUS for position p, RSUS(p),
if it is a unique substring and there is no other unique substring S [j′, p], where j < j′ ≤ p.

H(S1,S2) denotes the Hamming distance between two strings S1 and S2 of equal length, defined as
the number of string positions where characters differ. S [i, j] is a k-mismatch unique substring if there
is no substring S [i′, j′] such that i′ 6= i, j − i = j′ − i′ and H(S [i, j],S [i′, j′]) ≤ k. The k-mismatch
left-bounded shortest unique substring LSUS starting at position p, denoted as LSUSp , is a k-mismatch
unique substring S [p, j], such that either p = j or any proper prefix of S [p, j] is not k-mismatch unique.
k-mismatch RSUS and k-mismatch MUS can be defined similarly.

The longest common prefix of two suffixes S [p, n] and S [q, n] denoted by LCP(S [p, n],S [q, n]),
is the longest common prefix between S [p, n] and S [q, n]. The k-mismatch longest common prefix of
S [p, n] and S [q, n] denoted as LCPk(S [p, n],S [q, n]) is the longest prefix which has Hamming distance
≤k between two suffixes.

2.2. Data Structures

The suffix tree data structure of string S [1, n] is a compact trie of the n suffixes of S appended
with a letter $ /∈ Σ [27]. This suffix tree consists of n leaves (one for each suffix of S) and at most
n− 1 internal nodes. The edges are labeled with substrings of S . We denote the suffix tree of string
S with ST(s). The Suffix Array of string S of length n is denoted by SA, which is a permutation of
{1, · · · , n}, such that SA[i] = j if S [j, n] is the ith lexicographically smallest suffix of S . The Inverse
Suffix Array of string S of length n, is a permutation of {1, · · · , n}, such that SA−1[SA[i]] = i. SA of S
can be constructed in linear time and space [28,29]. The longest common prefix (lcp) array of a string S of
length n is an integer array of length n such that lcp[1] = 0 and lcp[i] stores the length of the longest
common prefix between S [SA[i− 1], n] and S [SA[i], n]. Given the suffix array of S , lcp array can be
constructed in O(n) time. Let A[1, n] be an array of length n. A range minimum query (RMQ) with an
input range [i, j] asks to report RMQ(i, j) = arg mink{A[k] | k ∈ [i, j]}. By maintaining a data structure
of size 2n + o(n) bits, any RMQ on A can be answered in O(1) time [30] (even without accessing A).

Consider s as a subset of {1, 2, . . . , n}. Then, s can be preprocessed into an O(|s|) space data structure,
such that for any query p, we can return pred(p, s) and succ(p, s) in O(log log n) time [31], where

pred(p, s) = max {i | i ≤ p and i ∈ s ∪ {−∞}}

succ(p, s) = min {i | i ≥ p and i ∈ s ∪ {∞}}

The eertree of a string S , is a pair of two rooted trees Todd and Teven that represent all distinct
palindromic substrings of S [32]. Todd and Teven store the palindromic substrings of odd and even
length, respectively. There is a directed edge (r, a, v) from root r of Todd if v represents a single character
a ∈ Σ. For any non-root node u in either Todd or Teven, there is a labeled directed edge (u, a, v) from u to
v with character label a if aua = v. There are no two out-going edges from a node with the same label.

3. Position-SUS Queries

3.1. Motivation

Consider the procedure a search engine performs. Once a search query is given into a search
engine by users, all the related pages should be identified and ranked properly. An indexing process
is needed to organize information before each search query. There are algorithms such as inverted
indexing to keep track of the documents with the pointers to text elements. The modern search engines
may use a snippet, which is a short summarized content of a whole website and is shown in the
search results. Finding a proper length for a snippet is critical. Either too short length and too long
length would be problematic for making the text elements distinguishable and not overwhelming



Algorithms 2020, 13, 224 4 of 18

for users [1]. If the snippet for each result of a search is the shortest possible text including the query
term and different from all other snippets, the search would be optimized. Thus, providing a fast
algorithm for finding a shortest snippet is crucial. In addition to information retrieval purposes,
there are some motivations in bioinformatics. In 2005, Haubold et al. [19] explained how the shortest
unique substring is a useful construct for alignment-free genome comparison. Unique substrings can
help to determine the distinctness and difference between a group of closely related organisms [1,19].
Another application is in event analysis when one wants to understand how an event differs from
other events of the same type in a long sequence of historical events while extracting the context of the
event. The shortest unique substring of the selected event may be helpful to proceed with the event
analysis [1].

Regarding these motivations, Pei et al. [1] introduced the following problem.

Problem 1. Position-SUS Queries
Input: String S [1, n] and a position p ∈ {1 · · · n}.
Output: SUS covering p: Substring S [i, j] containing position p, i.e., i ≤ p ≤ j , such that S [i, j] is unique and
as short as possible

Example 1. Given S = c
1

a
2

a
3

b
4

a
5

a
6

d
7

d
8

a
9

a
10

c
11

a
12

d
13

d
14

a
15

a
16

a
17

a
18

b
19

a
20

c
21

and a query position p = 5, we need to find a shortest
substring S [i, j], with exactly one occurrence in S such that i ≤ 5 ≤ j. One possible output is S [4, 6] = baa.
Note that we may have multiple answers for Problem 1. S [5, 7] = aad is another output.

3.2. Suffix Trees Based Approach

Pei et al. [1] stated Problem 1 and presented an algorithm to answer this problem in O(n) time
and space. They construct ST(S) in O(n) space and time [33]. Then, they use ST(S) to get LSUS(p) in
constant time by the following steps:

• Find the leaf node corresponding to the suffix S [p, n]
• If the label of the leaf edge is $, it means that LSUS(p) does not exist and we return null;

Otherwise, we continue.
• Let l be the length of the label of the leaf edge (excluding $).
• S [p, n− l + 1] is LSUS(p).

All of the above steps can be completed in O(1) time using the suffix tree properties. They make
clever use of Lemma 1 and, consequently, they can find a SUS covering p by the following Lemma.

Lemma 1 ([1,6]). Every SUS is either an LSUS or an extension of an LSUS.

They start with assuming that LSUS(p) = S [i, j] is a candidate answer, then they look for a
LSUS(k) where k < p and k ≥ j− i with the shortest length. Fore each LSUS(k) = S [k, e], if e < p,
instead of S [k, e], S [k, p] should be considered as a candidate answer since it should cover p. This is
called an extension of an LSUS. Thus, they always make sure that a new candidate covers p. At the end,
since there may exist more than one answer, they output the leftmost SUS containing p.

In addition, they show how to preprocess S in O(n2) time and O(n) space to compute the SUS

corresponding to every position in the string. By doing so, SUS queries for any position can be
answered in constant time. Their technique is based on the fact that each SUS should fall into one of
MUS, LSUS, or RSUS. By this observation, SUS corresponding to each position can be precomputed
using their propagation procedure [1].

From the space complexity point of view, corresponding to each position p, their algorithm keeps
track of a currently shortest MUS that covers p. The total space needed to store this information for all
positions is O(n). At the end, they apply their algorithm on real data sets to show the effectiveness of
their algorithm. Theorem 1 summarizes their result.
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Theorem 1. The position- SUS problem can be answered in O(n2) time and O(n) space for every location of a
string of length n.

3.3. Linear Time Approaches

Ileri et al. [6,7] and Tsuruta et al. [13] independently improved the time complexity of the
Theorem 1 from O(n2) to O(n) time. They showed that, by preprocessing the string S of length n in
O(n) time, Problem 1 can be answered in constant time, which concludes a linear total time complexity
for all positions in the string [6,7,13]. First, we discuss Ileri et al.’s approach.

3.3.1. Ileri et al.’s Framework

Their framework includes two cases; SUS finding for one position, and SUS finding for every
position. In the first case, they present an algorithm for finding all the SUSs covering a specific location
p in O(n) time. Similar to the approach explained in Section 3.2, they make this observation that each
SUS is an extension of an LSUS. Instead of using suffix tree structure to find LSUSs, they use inverse
suffix array and lcp array to compute LSUS(i) for i = 1, 2, · · · n as follows:

LSUS(i) =

{
S [i, i + li] i f i + li ≤ n

null otherwise
,

where li = max{lcp[SA−1[i]], lcp[SA−1[i] + 1]} and null means LSUS does not exist. Using the above
equation, for each string position p, they simply compute LSUS(1) · · · , LSUS(p) in O(p) time and
maintain the shortest one for position p. Note that, if for some k < p, LSUS(k) does not cover p, we can
extend it up to position p. In case of multiple shortest answers, they keep the leftmost candidate.
Then, by Lemma 1, they prove their first theorem as follows:

Theorem 2 ([6]). For any location p in the string S , they can find SUS covering p using O(n) time and space.
If multiple answers exist, the leftmost one is returned.

In the second case, they extend their algorithm to find all the SUSs for every location
p ∈ {1, 2 · · · n}. Instead of iteratively running the algorithm for finding a SUS of a specific position
n times, they use the following lemma to reduce the time complexity to the amortized cost for finding
each SUS in O(1) time.

Lemma 2 ([6]). For any k ∈ {2, 3, · · · , n}, if SUS for position k is an extension of an LSUS, then (1) SUS for
position k− 1 must be a substring whose right boundary is the character S [k− 1], and (2) SUS for position k is
the substring SUS for position k− 1 appended by the character S [k].

For finding SUS of every position, they begin with SUS of the first position which is LSUS of
that position; then, by Lemma 2, they compute SUS of position k using the already calculated SUS

of position k− 1. Their algorithm costs O(occ) for reporting the SUSs covering a particular location.
By providing an efficient constant time algorithm for computing the shortest LSUS covering each string
position, they prove the following theorem.

Theorem 3. All SUSs corresponding to all the positions of string S [1, n] can be computed in O(n) time
and space.

For the implementation, they use libdvsufsort library for implementing the suffix array and lcp
array. They compare their results with Tsuruta et al.’s work and shows that, in terms of time complexity,
both algorithms have almost the same processing time; however, their space usage is at least four times
less for finding a single SUS and two times less for finding all SUSs.
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3.3.2. Tsuruta et al.’s Framework

Tsuruta et al. [13] improved Pei et al.’s (ICDE 2013) upper bounds for the shortest unique substring
problem as well. They consider two types of SUS queries. The first one computes a SUS for any position
in the string S in constant time after preprocessing S in O(n) time. Thus, reporting a SUS for all
positions in S takes O(n) time in total. Their next algorithm outputs all the SUSs covering a query
position. Note that Pei et al.’s algorithm reports only one SUS for a query position. By preprocessing S
in O(n) time, Tsuruta et al. provided an algorithm which reports all SUSs containing a query position
in O(occ) time, where occ is the number of output.

Although their algorithm follows a similar technique to Ileri et al. [6], their work was independent.
Their main idea is finding SUSs from MUSs using the following lemma.

Lemma 3 ([13]). Every position-SUS contains exactly one MUS.

They use lcp array data structure to compute all MUSs of S in linear time. We summarize their
results in the following lemma.

Lemma 4. All the LSUS, RSUS, and MUS can be computed from S in O(n) time.

In order to compute SUSs from MUSs, they define the concept of meaningful and meaningless MUSs,
where meaningful MUSs drive SUSs corresponding to some positions. Then, they present an algorithm
to collect all the SUSs from the meaningful MUSs in linear time. Theorem 4 summarizes their results.

Theorem 4. A string S of length n can be preprocessed in O(n) time and space so that the shortest unique
substring queries can be answered in O(occ) time, where occ is the number of shortest substrings returned.
Notably, outputting a single SUS can be done in O(1) time.

3.4. In Place and Compact Data Structures’ Approaches

The suffix tree of a string S of length n occupies space almost 20 times larger than the space
needed to store S , which is n log |Σ| bits. All aforementioned data structures in Section 3.3 require Θ(n)
words, where n is the length of the string S . When n is large, the memory usage would be problematic.
In order to avoid this issue, Hon et al. [3] proposed a data structure including the input string and
two integer arrays for storing the starting positions and ending positions of SUSs. The preprocessing
time for their algorithm is linear and takes O(log n) bits of additional working space. If we want to
consider the space needed to store all SUSs for all positions, their algorithm takes the least amount of
space to do that, which is 2n words to maintain the starting and ending positions of SUSs and another
n bytes to store the input string. Previous works need O(n) space while the hidden constant is large;
however, that overhead does not exist in Hon et al.’s work. They use suffix arrays instead of suffix
trees in their construction. Moreover, they handle all computations in the place of two integer arrays.
As a result, their algorithm can find the position-SUS for every string position in O(n) time.

There was still a question of whether we can solve SUS problem in sub-linear space. To answer
this question, Ganguly et al. [18] presented the first time-space trade off algorithm which uses
O(n/τ) words of additional space. Given a position p ∈ {1 · · · n}, their algorithm answers Problem 1
in O(nτ2 log n

τ ) time, where parameter τ ≥ 1. Another query is reporting SUSs for all positions
of S . For this type of query, they present an O(nτ2 log n) algorithm using O(n/τ) words and
4n + o(n) bits of additional working space. In addition to these deterministic algorithms, they present
a randomized algorithm in which the time complexity is O(nτ logc+1 n) by using additional n/ logc n
words, where c ≥ 0 is an arbitrary constant. There is a chance of at most n−O(1) that the reported
substring is unique and covers the query position but not the shortest one.



Algorithms 2020, 13, 224 7 of 18

In their deterministic algorithms, their intuition is that each SUS for a position k is definitely
the shortest unique prefix of S [i, n] for some i ≤ k, or the smallest right extension till position k of
such prefix. For each suffix S [i, n], they define LSi as the shortest unique prefix of S [i, n]. In order to
reduce the space complexity, instead of storing LSis for all S [i, n], i ∈ {1 · · · n}, they choose a set of
O(n/τ) suffixes and compute the corresponding LSs. After computing all the LSs of the suffixes in the
chosen set, using a brute force approach, for any suffix S [j, n], they can compute LSj. Their results are
summarized in Theorem 5.

Theorem 5 ([18]). For any given string position p ∈ {1 · · · n}, an SUS covering p can be computed in
O(nτ2 log n

τ ) time and additional O(n/τ) working space. In addition, computing any SUS for every position
in the string can be reported in O(nτ2 log n) time and additional O(n/τ) words and 4n + o(n) bits of
additional working space.

Ganguly et al.’s algorithm reports only one SUS for each given query. In 2019, Mieno et al. [14]
presented a data structure of size d(log2 3 + 1)n)e+ o(n) bits, which can answer Problem 1 in O(occ)
time, where occ is the number of SUSs for the given query point. The main intuition of their algorithm
is based on Lemma 3. Their data structure includes two bit arrays MBS and MES , each of length n,
to keep track of the starting and ending positions of the MUSs . As a result, they prove that there exists
a data structure of size d(log2 3 + 1)n)e+ o(n) bits that can answer SUSs in O(occ) time. Given the bit
arrays MBS and MES , the data structure can be constructed in O(n) time using 3n + dn log2 3e+ o(n)
bits of total working space.

4. Interval-SUS Queries

In this section, we discuss a generalization of position-SUS problem which is defined as follows:

Problem 2. Interval SUS Queries
Input: String S [1, n] and a query interval [s, t] ∈ [1, n].
Output: All SUSs of S containing [s, t]

Example 2. Given S = c
1

a
2

a
3

b
4

a
5

a
6

d
7

d
8

a
9

a
10

c
11

a
12

d
13

d
14

a
15

a
16

a
17

a
18

b
19

a
20

c
21

and an interval query position [14, 16], we need to find
a shortest substring S [i, j], with exactly one occurrence in S such that i ≤ 14 < 16 ≤ j. The output here is
S [14, 17] = daaa which includes S [14, 16] = daa and it does not have any other occurrence in S .

4.1. Linear Time Approaches

Hu et al. [2] generalized Problem 1 to Problem 2 and presented a linear time and space data
structure which can solve Problem 2 in O(occ) time, where occ is the number of all SUSs containing
the query interval. The interval SUS problem is more difficult to be solved in O(occ) time, since there
exist Θ(n2) intervals and we cannot store the candidate answer for every possible interval. In order to
deal with this issue, Hu et al. use the concept of LSUS, RSUS, MUS, and Corollary 1 to prove Lemma 5.

Corollary 1 ([34]). There exists a data structure of O(n) size which can be constructed in O(n) time that can
check whether a given substring of S is unique in O(1) time.

Lemma 5 ([34]). The answer of the interval-SUS problem with the query interval [x, y] must be the shortest of
the following candidates:

1. S [x, y] if it is unique. This can be checked in constant time and linear space.
2. LSUS(x): This can be computed in constant time using linear space by Lemma 4.
3. RSUS(y): This can be computed in constant time using linear space by Lemma 4.
4. The shortest MUS containing [x, y]: It remains to show their structure of computing this candidate.
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Let M be the set of all MUSs in S . For presenting their data structure, they define a set of intervals
denoted by I, such that [i, j] ∈ I iff S [i, j] is in M. Then, they reduce the interval-SUS problem to
Containment Min. Given an interval [x, y], a containment min query returns the shortest interval in I
which contains [x, y]. Hu et al. [2] proposed a data structure of size O(n) in which RMQ is performed
to answer a containment min query in O(1) time.

In addition, they show how to report all SUSs in the case that interval SUS has more than one
answer. For this purpose, they use an auxiliary problem which is defined below.

Position Constraint Query. Given a substring S [x, y] and two ranges rangestart = [s1, s2] and
rangeend = [e1, e2] both in [1, n], the problem is to return a unique substring S [i, j] with the minimum
length that contains S [x, y] such that i ∈ [s1, s2] and j ∈ [e1, e2].

This problem is a constraint version of the interval SUS problem where the starting and ending
positions of the answer substring should be contained in the two intervals specified in the problem.
They start with the normal interval-SUS query. Given the input interval [x, y], let S [i, j] be the answer
of the interval-SUS. They consider two intervals [1, i − 1] and [i + 1, x]. Now, using two position
constraint queries, the next answers can be found. First, they run a position constrained query with
S [x, y], rangestart = [1, i − 1] and rangeend = [y, n] to return the other possible answers. The other
query corresponding to [i + 1, x] is symmetrical. In total, their algorithm takes O(occ) time to report
all the SUSs.

The mentioned algorithms are in the RAM model. They also consider solving Problem 2 in the
standard external memory model [35]. They follow a similar technique. Assume that O(SORT(n))
is the number of I/Os needed to sort n elements and B is the number of words in a block of a disk.
They pre-compute an index structure from S in O(SORT(n)) I/Os in external memory that occupies
O(n/B) blocks and can answer any shortest unique substring query in O(1) I/Os [2].

4.2. RLE-Based Approaches

The Run Length Encoding (RLE) of a string is a compressed representation in which each maximal
run of a character c of length ` is encoded as c`. For instance, the RLE of string aaaaaaabbbbaaac is
a7b4a3c1. Mieno et al. [8] considered solving Problem 2 in the case where the input string is given
in RLE representation. Their motivation was to reduce space and time complexity of processing the
input string. They presented a data structure of size O(m + πs(N, m)) that can be constructed in
O(m log m + πc(N, m)) time to answer interval-SUS queries in O(πq(N, m) + occ) time, where occ is
the output size, and πs(N, m), πc(N, m) and πq(N, m) are the size, construction time and the query
time for a predecessor/successor query on m elements from a universe of [1, N]. In their approach,
they use combinatorial properties on MUSs and RLE strings. Let m be the length of the string S in
RLE representation. We denote RLE representation of S by RLE(S). They show that the number of
MUSs in RLE(S) is 2m− 1. Thus, instead of dealing with Θ(n) MUSs like the previous related results,
a considerable amount of space and time would be reduced if there exist runs in the string. By doing
so, they were able to build an O(m) size data structure for the RLE version of SUS problem, which is
formally defined as follows:

Problem 3. RLE-SUS Queries
Preprocess: RLE(S) = c`1

1 c`2
2 · · · c

`m
m

Query: An interval [s, t] ∈ [1, n]
Return: All SUS of S containing the query interval [s, t]

For solving Problem 3, they show how to precompute all the MUSs using a specific type of suffix
arrays for RLE strings [36]. Before discussing their techniques, we bring some definitions. Let bpos(i),
epos(i) and exp(i) be the beginning position, ending position, and exponent of the ith run of RLE(S).
Let P be be any subset of positions of S . The sparse suffix array of S w.r.t P denoted by SSAP is an
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array of size |P| such that SSAP[i] ∈ P for all 1 ≤ i ≤ |P| and also like a normal suffix array SSAP[i] is
lexicographically smaller than SSAP[i + 1]. They use trancated RLE suffix array for RLE(S) denoted by
tRLESA, in which P is the set of epos(i) for 1 ≤ i ≤ m. In addition, let EXP be an array of length m
such that EXP[i] = exp(k), where tRLESA[i] = epos(k). Given RLE(s), all the defined arrays can be
computed in O(m log m) time with O(m) working space [14].

In order to compute MUSs from RLE(S), they consider three disjoint partitions of MUS,
M1, M2, M3. The first partition consists of MUSs which are contained in runs. The second one is
MUSs that start at the last characters of runs, and all the other MUSs considered to be in the third
partitions. By the fact that each MUS cannot be a proper substring of another MUS and discussing the
size of each partition separately, they prove that |M| ≤ 2m− 1. Then, they show how to find MUS in
O(m log m) time and O(m) space, by computing the partitions.

In order to compute M1, for each character used in S , they check whether there exists a run of that
character with a unique maximum exponent, since the number of distinct character used in S is≤ m, this
procedure can be done in O(m log m) time and O(m) space using a sorting algorithm. For computing
M2 and M3, they use tRLESA , tRLESA−1 (inverse of tRLESA), and EXP arrays. Similar to M1, M2

and M3 can be computed in O(m log m) time and O(m) space. After the preprocessing step, they could
answer Problem 3 using RMQ, predecessor and successor queries on the array MUSlen that stores the
lengths of the MUSs. Their results were summarized in the following theorem.

Theorem 6 ([8]). Given RLE(S) of size m, there is a data structure of size O(m + πs(N, m)) that can be
computed in O(m log m + πc(N, m)) time which can answer interval SUS queries in O(πq(N, m) + occ)
time, where occ is the output size, and πs(N, m), πc(N, m), and πq(N, m) are the size, construction time and
the query time for a predecessor/successor query on m elements from a universe of [1, N].

4.3. Compact Data Structures’ Approaches

In Section 3.4, we have discussed Mieno et al’s work [8] for solving Problem 1. They also presented
a compact data structure for Problem 2 [14]. Their data structure has the size of 2n + 2m + o(n) bits and
outputs an interval SUS query in O(occ) time, where m is the number of minimal unique substrings
(MUSs) of the input string which is at most n. Their technique is based on Mieno et al.’s work [8],
which is discussed in Section 4.2. Similar to the technique for solving position-RSUS, their structure
is based on the two bit arrays MB and ME. In addition, they use array MUSlen which has been used
in Mieno et al.’s work for storing the length of the MUSs [8]. On the top of MB and ME, a successor
and a predecessor data structures are maintained. MUSlen is also endowed with RMQ data structure.
Now, once an interval query [s, t] comes, first we can find g = predME(y) and r = succMB(s), then we
can find the range of SUS covering [s, t]. Consequently, it is sufficient to answer RMQ queries on the
corresponding range on MUSlen. The space needed for MB and ME and the predecessor and successor
data structure is 2n + o(n) bits. The RMQ data structure on MUSlen takes 2m + o(m) bits of space.
Thus, using the constant query time of the RMQ data structure (see Section 2.2), their results can be
summarized as follows:

Theorem 7. There exists a data structure of size 2n + 2m + o(n) bits that can answer interval SUS problem in
O(occ) time, where occ is the number of the answers corresponding to the given interval.

5. Approximate-SUS Queries

5.1. Motivation

In molecular biology, shortest unique substrings found in DNA sequences can be used to compare
similar organisms and determine unique patterns. It also helps to design polymer chain reaction
(PCR) [1,15]. If we just consider exact shortest unique substrings while comparing distinct organisms,
possible patterns might be disregarded due to errors or mutations. In this section, we discuss the
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approximate version of SUS problem which is proposed by Hon et al. [3], in which the uniqueness
constraint is more strict. In this variant of SUS problem, the unique substrings are allowed for up to
k mismatches. This version can be applied in computational biology, where factors such as genetic
mutation and experimental error make approximate string matching necessary [9]. Another useful
application of this approximate version is in computing average common substring, which has
been considered as an approach to phylogenomic reconstruction [37,38]. In order to estimate the
evolutionary distance between pairs of primate genomes, Thankachan et al. [39] showed that adding a
similar k-mismatch parameter to average common substring finding equation leads to better results [9].
A k-mismatch shortest unique substring covering a position p, denoted by SUSk

p, is a k-mismatch
unique substring S [i, j] such that satisfies the condition i ≤ p ≤ j and there is no other k-mismatch
unique substring with shorter length which satisfies the condition. Note that, similar to the definition
of k-mismatch SUS in Section 2.1, we also consider the Hamming distance for the k-mismatch SUS

problem. The problem is formally defined as follows:

Problem 4. k-mismatch SUS Queries
Input: String S [1, n] and integer k
Output: Two integer arrays A and B s.t S [A[i] · · · B[i]] is the rightmost SUSk

i for every index i

Example 3. If S = c
1

a
2

a
3

b
4

a
5

a
6

d
7

d
8

a
9

a
10

c
11

a
12

d
13

d
14

a
15

a
16

a
17

a
18

b
19

a
20

c
21

, SUS1
5 = S [4, 7] = baad. Note that SUS0

5 = S [4, 6] = baa
as we saw in Example 1. Since there exists a substring caa such that H(baa, caa) = 1, S [4, 6] = baa cannot be
a SUS1

5.

5.2. Hon et al.’s Framework

Hon, Thankachan, and Xu considered solving Problem 4 in the place of S, A, and B, where S
is for storing string S , A and B are two empty arrays for storing the starting and ending positions
of the rightmost k-mismatch SUS of each position. They prove the k-mismatch version of Lemma 2.
Here, we explain the high level of their in-place framework for solving both Problems 1 and 4 which
has three stages.

Let LSUSk
p be the k-mismatch left bounded shortest unique substring starting at position p. In the

first stage, they compute LSUSk
i for all is, in place of A and B. At the end of this step, each B[i] stores

the ending position of LSUSk
i . This procedure takes linear time when k = 0 and O(n2) time for k ≥ 1

because of their dynamic programming approach. Let SLSk
p be the shortest k-mismatch LSUS covering

position p. In the second stage, they use array B, computed from the previous stage, to find the
rightmost SLSk

i for all i in place of A and B. Each A[i] stores the largest j such that LSUSk
j is an SLSk

j .

Thus, if SLSk
i exists, it is equal to S [A[i] · · · B[i]]. This takes O(n) time for all k ≥ 0. At the last stage,

they use both A and B to compute SUSk
i for all i, in the place of A and B. At the end of the stage,

A[i] and B[i] store the starting and ending positions of the rightmost SUSk
i . This step also takes linear

time for any k ≥ 0. Note that only one stage requires the quadratic time. They implemented their
algorithm in C using libdivsu f sort library for the suffix array construction. Their contribution can be
summarized as follows:

Theorem 8. Using an additional 2n words each of size dlog2(n)e bits, and n bytes of space for storing the
input string, Hon et al. [3] provided a theoretically in-place framework to solve both exact and the approximate
position SUS using a total of O(n) and O(n2) time, respectively.

5.3. Allen et al.’s Framework

In order to reduce the quadratic time complexity for solving k-mismatch SUS queries,
Allen et al. [9] presented an average time complexity of O(n logk n) using O(kn) space. They follow
the technique provided by Thankachan et al. [39] for solving k-mismatch average common substring.
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Let the k-mismatch left-bounded longest repeat starting at position i denoted by LLRk
i be a

k-mismatch repeat substring S [i, j] such that either j = n or S [i, j+ 1] is a k-mismatch unique. Consider L
as an array of length n where L[i] = |LLRk

i |. Now, the algorithm discussed in Section 5.2 can be applied
to compute SUSk

i for each position i in S in linear time and space. Computing array L can be a
substitution for stage one of the Hon et al.’s work [3]. To avoid O(n2) time, instead of comparing every
pair of suffixes of S , they presented an expected O(m logk m) time for calculating each entry of L using
the technique in [39], where m is the total length of two suffixes used in computing L[i] as follows:

L[i] = max{|LCPk(Si,Sj)|j 6= i}

The total time complexity to compute every entry of L would be expected O(n logk n).
In 2020, Allen et al. [10] published a new version of their work which provides algorithmic

bounds for k-mismatch SUS problem. They presented an algorithm which can solve Problem 4 using
O(n logk n) time and O(n) space. This worst-case bound is asymptotically much better than the
practical algorithm. In comparison to Hon et al’s experimental results [3], their new implementation
shows that the practical algorithm is easy to implement and it takes less time when k is small relative
to n.

5.4. GPU Based Approach

All the works that have been discussed on k-mismatch SUS query were focusing on improving
the time and space complexity for SUS computation in the sequential CPU model. In 2018, Schultz and
Xu [15] presented the first parallel approach for k-mismatch SUS problem in the shared-memory model,
particularly leveraging on the massive multi-threading GPU technology. Obviously, this approach is
experimentally faster than the CPU solutions. Their experimental results on a mid-end GPU show that
the GPU approach is at least six times faster than the CPU approach in the case of k = 0 (exact match),
and at least 23 times faster in the general case (k > 0). This is essential when the input string is massively
long as genomic sequences are studied. In terms of memory usage, this approach is almost the same as
the sequential CPU approaches. Their algorithms totally happen on GPU except a transferring input
string to GPU, which is done by the CPU host. When there are no mismatches (k = 0), they implicitly
use the efficient data structures like suffix array and lcp array. However, when k > 0, using these
data structures would be problematic since they do not have enough information such as k-mismatch
LCPs. To solve this issue, Schultz and Xu [15] designed a method that can be parallelized in the
GPU architecture.

In 2019, they published an extension of their paper [16], providing more experimental results
on exact SUS and approximate SUS computation. They show the speedup gained by the GPU-based
approach against the sequential solution, including or excluding suffix array construction. It is
important to observe the difference of speedup in case of whether the suffix array is given or not.
Corresponding to their results, almost 50% of the time of the sequential approach is to spend on suffix
array construction. Thus, if the suffix array is given, it can be copied to the GPU memory directly to
achieve a better speedup.

6. SUPS Queries

6.1. Motivation

We call a substring S [i, j] is a palindrome if it is identical with its reverse. There have been many
studies on palindromic strings and their combinatorial properties [32,40,41]. A palindromic string or
substring is an important structure in DNA, RNA, or protein sequence analysis [22]. In biology data,
palindromic structures show the ability of molecules to fold and form double-stranded stems [23].
In addition, by the similar palindromic structures of the protein strands, we can guess their similar
secondary structures. Another application of palindromic substructures is in gene editing and gene
regulation in species [22,42]. In this section, we are going to discuss a new version of SUS queries
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named shortest unique palindromic substring(SUPS) problem. A shortest unique palindromic substring
SUPS for an interval [s, t] is the shortest substring S [i, j] such that it is unique in S and contains [s, t],
and any other palindromic substring of S , which contains [s, t] and is shorter than S [i, j], which occurs
more than once in S . The SUPS problem is formally defined as follows:

Problem 5. SUPS Queries
Preprocess: S [1, n]
Query: An interval [s, t] ∈ [1, n]
Return: All SUPS of S containing the query interval [s, t]

Example 4. If S = c
1

a
2

a
3

b
4

a
5

a
6

d
7

d
8

a
9

a
10

c
11

a
12

d
13

d
14

a
15

a
16

a
17

a
18

b
19

a
20

c
21

, given the query interval [8, 9], SUPS problem outputs
S [6, 9] = adda, which is the shortest palindrome containing S [8, 9] = da.

6.2. Optimal Approaches

In 2018, Inoue et al. [4] introduced Problem 5, which is a version of SUS queries focusing on
palindromes. They propose an optimal algorithm which takes O(n) time to preprocess the string
S and can return all SUPS for any interval query in O(occ + 1) time, where occ is the number of
outputs. For any interval [i, j], checking whether S [i, j] is a palindromic substring or not takes O(n)
preprocessing time and constant query time using O(n) space. Similar to the approach for solving
position/interval SUS, they define Minimal Unique Palindromic substring(MUPS). MUPS S [i, j] is a
unique palindrome substring in S such that S [i + 1, j− 1] is a repeat in S or 1 ≤ |S [i, j]| ≤ 2. Similar to
MUSs, MUSPs cannot contain each others. In addition, for each SUPS S [i, j] for some interval, there
exists exactly one MUPS that is contained in [i, j] with the same center as S [i, j] ( i+j

2 ). Using this fact,
they could preprocess S in linear time to report all SUPSs.

In addition, they provided some bounds on the number of SUPSs. They showed the maximum
number of point and interval SUPS in S , which is a string from an arbitrary size alphabet, is at most n.
For a binary alphabet, they gave a lower bound for the number of point SUPS. Let PSS and ISS be
the set of substrings of S where each of the substrings in PSS is an SUPS for some point and each of
the substrings in ISS is an SUPS for some interval.

Theorem 9 ([4]). There exists a binary string Sk of length 6k + 8 such that PSSk = ISSk = 4k + 6 for any
k ≥ 0. Thus, Sk contains at least 2

3 n point and interval SUPSs where n = |Sk|

In the end, they discuss the number of point and interval SUPSs on palindromic rich strings.
A string is a palindromic rich if it has n + 1 distinct palindromic substring including an empty string.
They consider the palindromic rich string Rk = a1b1 · · · akbk and prove two following theorems.

Theorem 10 ([4]). There exists a binary string of length n such that the number of interval SUPSs is
n−
√

1 + 4n + 3.

Theorem 11 ([4]). There exists a binary string Rk of size k(k + 1) s.t ISRk = k(k− 1) + 2 for any k ≥ 1.
Thus, Rk contains n−

√
1 + 4|Rk|+ 3 interval SUPS.

6.3. RLE-Based Approaches

Watanabe et al. [11] considered the shortest unique palindromic substring when the input string
is given in its RLE representation. They showed how to preprocess a given RLE(S) of length m in
O(m) space and O(m log σRLES + m

√
log m/ log log m) time, where σRLEs is the umber of distinct

runs of RLEs. Their work is the first space-economial for SUPS problem and can answer queries in
O(

√
log m/ log log m + occ) time.
Similar to the technique for solving the normal SUPS problem which is discussed in the previous

subsection, they compute MUPSs of S in the preprocessing step. Their idea is based on the fact that
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the number of MUPSs of any string S is at most m [11]. They first compute the palindromic substrings
whose center is the same as the center for some run in the string. These palindromic substrings
are called run-centered palindromes. In order to compute these substrings, they utilize Manacher’s
algorithm [43]. This algorithm scans the string and constructs an array MaxPal of length 2n + 1 in
which the ith entry is the length of the maximal palindrome with center i. Using this technique, they
compute all the RLE-maximal palindromes of S in O(m) time and space.

In order to improve the space complexity, they build a data structure which is a modified eertree
of the input string to deal with the run-length encoded string instead of the original one. They prove
that this new data structure, RLE-eertree (e2rtre2), has 2m + 1 nodes which is linear to the length of the
RLE(S). Thus, it takes less space complexity compared with the original eertree. The construction
time for e2rtre2 is O(m log σRLE). They used this tree to compute all the MUSPSs of S . Using the list
of MUSPSs, they present their algorithm for SUPS queries. Their technique is similar to Inoue et al.’s
work [4] with the difference that the space complexity should be O(m).

In 2020, Watanabe et al. [12] published an extension of their work by considering a variant of SUPS
problem where a query interval is also given in a run-length encoded representation. Their technique
is similar to their previous approach [11]. They used combinatorial properties of maximal palindromes
and presented an O(m) space data structure to answer queries in O(log log m + occ) time [12].

7. Range-SUS

Range queries are a classic data structure topic, which has a great motivation in string processing
problems [5,24–26]. In 2019, Abedin et al. [5] studied the local shortest unique substring which starts in
a specific region or range of the string. Given a range [α, β], the problem is to return a shortest substring
S [k, k + h− 1] of S with exactly one occurrence in [α, β]; i.e., k ∈ [α, β], there is no k′ ∈ [α, β] such
that S [k, k + h− 1] = S [k′, k′ + h− 1], and h is minimal. Abedin et al. presented an O(n log n)-word
data structure which answers rSUS queries in O(logw n) time per query in the word RAM model,
where w = Ω(log n) is the word size [5]. The Range Shortest Unique Substring problem is formally
defined as follows:

Problem 6. rSUS Queries
Preprocess: String S [1, n].
Query: Range [α, β], where 1 ≤ α ≤ β ≤ n.
Output: (p, `) such that S [p, p + `− 1] is a shortest string with exactly one occurrence in [α, β].

If α = β, the answer (α, 1) is trivial. Thus, in the rest, we assume that α < β.

Example 5 ([5]). Given S = c
1

a
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a
3

b
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c
5
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d
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9

a
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c
11

a
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d
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a
15

a
16

a
17

a
18

b
19

a
20

c
21

and a query [α, β] = [5, 16], we need to find
a shortest substring of S with exactly one occurrence in [5, 16]. The output here is (p, `) = (10, 2) since
S [10, 11] = ac is the shortest substring of S with exactly one occurrence in [5, 16].

For each position k ∈ [1, n], Abedin et al. [5] provide a data structure to keep track of the last
and next occurrence of substring S [k, k + h− 1], denoted by Prev(k, h) and Next(k, h), respectively.
They define λ(a, b, k) and Ck as follows:

λ(a, b, k) = min{h | Prev(k, h) < a and Next(k, h) > b}.

Ck = {h | (Next(k, h),Prev(k, h)) 6= (Next(k, h− 1),Prev(k, h− 1))}.

Their main result is providing an upper bound on the size of all Cks, which is given in the
following lemma.
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Lemma 6 ([5]). ∑k |Ck| = O(n log n)

By the definition, λ(a, b, k) is the length of the shortest substring that starts at position k, and Ck is
the set of candidate length for the RSUS answer, which starts at position k.

Abedin et al. solved rSUS queries by reducing the problem to an top-1 rectangle stabbing query
on a set of rectangles with input point (α, β). Assume that the answer for Problem 6 is (p, `). Given a
query range [α, β], the answer (p, `) we are looking for is the pair (k, h) with the minimum h under the
following conditions: k ∈ [α, β], h ∈ Ck, Prev(k, h) < α and Next(k, h) > β. Equivalently, (p, `) is the
pair (k, h) with the minimum h, such that h ∈ Ck, α ∈ (Prev(k, h), k], and β ∈ [k,Next(k, h)).

In the preprocessing step, they map each h ∈ Ck into a weighted rectangle Rk,h with weight h and
defined as follows:

Rk,h = [Prev(k, h) + 1, k]× [k,Next(k, h)− 1].

After query [α, β] comes, the lowest weighted rectangle which stabbed by the point (α, β) is Rp,`.
By combining the optimal data structure for top-1 rectangle stabbing presented by Chan et al. [44] and
the bound on the number of candidate lengths in Lemma 6, they prove the following result.

Theorem 12. There exists an O(n log n)-word data structure which answers rSUS queries in O(logw n) time
per query in the word RAM model, where w = Ω(log n) is the word size.

8. Discussion and Future Work

In this paper, we reviewed several types of shortest unique substring queries and their
corresponding solutions. All the discussed problems in this manuscript are highly motivated topics
in string processing and computational biology research areas. Although we discussed more than
10 approaches for variants of SUS queries, there still exist related topics which have not been studied,
or there is no efficient algorithm to solve them. In this section, we discuss some of such topics and
open questions for future work:

• We discussed all the solutions to solve approximate SUS queries in Section 5. However, there is
no efficient in-place algorithm which can find LSUSs to get SUSs afterward. Another technique
that can be applied to solve approximate SUS queries is considering the RLE representation of the
input string. Section 4.2 shows this technique for solving interval-SUS queries. To our knowledge,
an RLE based approach for solving approximate SUS queries has not been studied. In addition,
there is no work considering the standard external memory model for solving an approximate
SUS problem. As the I/O-efficient construction of the suffix array and lcp array exist [45–48],
it seems to be possible to change the RAM model algorithm for the construction of these arrays to
the external memory model.

• In Section 4.2, the πq(N, m) in the query time of Theorem 6 is
√

log m/ log log m, which is
actually the time for performing dynamic predecessor/successor queries using O(|RLE(S))
space [8]. In order to make the query time faster using the same space, the question is if there
exists a data structure of size O(|RLE(S)|) that can efficiently answer Problem 3 without using
predecessor/successor.

• As we discussed in Section 6, palindromic substrings have great motivations in computational
biology. All the reviewed works are on finding the exact SUPSs. Similar to the approximate SUS

problem, approximate SUPS query is also important to be studied for considering errors and
mutations. Besides the definition of Problem 5, the following definition has a great motivation
in bioinformatics. A nucleotide sequence is considered as a palindrome if the reverse of its
complementary strand is equal to the original sequence [49]. The question is if the methods
discussed in Section 6 can be applied to efficiently solve this problem.

• The last topic that we discussed was the rSUS problem. According to Theorem 12, rSUS queries
can be solved in O(logω n) time using a data structure of size O(n log n) word. The question
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is whether we can design an efficient O(n)-word data structure for the rSUS problem.
In addition, the approximate version of rSUS queries has not been studied. It is possible to
combine the technique discussed in Section 7 and the framework of Thankachan et al. [50]
to provide an efficient algorithm for approximate rSUS problem.

• Besides shortest unique substrings, Maximal Unique Matches is an important concept in
computational biology for aligning two long genome sequences [51]. Ganguly et al. [18] applied a
similar technique discussed in Section 3.4 to find maximal unique matches of two strings. As far
as we are aware, the dynamic version (when mismatches are allowed) of this problem has not
been studied yet. We believe that, by modifying the techniques on the dynamic longest common
substring problem (LCS after k mismatches) [52–54], the approximate Maximal Unique Matches
problem can be solved in subquadratic time.
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