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Abstract: Superhydrophobic coatings have increasingly become the focal point of research due
to their distinctive properties like water resistance, wear resistance, and acid-base resilience. In
pursuit of maximizing their efficiency, research has primarily revolved around refining the fab-
rication process and the composition of emulsion/nanoparticle coatings. We innovatively de-
vised a superhydrophobic coating by employing a spraying technique. This involved integrating
a γ-Methacryloyloxypropyltrimethoxysilane (KH570)-modified ZrO2/SiO2/silicone-modified acrylic
emulsion. A comprehensive evaluation of this coating was undertaken using analytical instruments
such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron
microscopy (SEM), energy dispersive spectroscopy (EDS), and confocal laser scanning microscopy
(CLSM). The coating demonstrated exceptional performance across a range of tests, including wear,
immersion, and anti-icing cleaning, showcasing notable wear resistance, sodium chloride corro-
sion resistance, self-cleaning efficiency, and thermal stability. In particular, one coating exhibited
super-hydrophobic properties, with a high contact angle of 158.5 degrees and an impressively low
rolling angle of 1.85 degrees. This remarkable combination of properties is attributed to the judicious
selection of components, which significantly reinforced the mechanical strength of the coating. These
enhancements make it highly suitable for industrial applications where self-cleaning, anti-icing, and
anti-contamination capabilities are critical.

Keywords: super hydrophobic coating; spray-coating method; silica; modified zirconium dioxide;
silicone-modified acrylic emulsion

1. Introduction

Superhydrophobic coatings are notable for their ability to achieve contact angles
greater than 150◦ for droplets, while simultaneously maintaining a rolling angle below
5◦ [1]. Such characteristics render them invaluable in various applications, including oil-
water separation [2,3], anti-icing mechanisms [4,5], chemical analysis [6,7], antimicrobial
medical solutions [8], and solar panels [9]. These coatings are engineered by combining
emulsion surfaces with nanoparticle overlays, ensuring both optimal surface roughness for
air entrapment and minimal surface activation energy to repel water molecules.

Different methodologies, such as etching [10–12], templating [13–15], sol-gel [16–18],
spray coating [19–21], spin coating [22–24], and electrospinning [25–27], have been investi-
gated to develop superhydrophobic coatings. Among the materials employed, nanoparti-
cles are favored for their inherent hardness and distinct micro-nanostructures, which have
proven pivotal in generating superhydrophobic surfaces. In terms of industrial production,
it is imperative that these coatings exhibit both robust adhesion to substrates and remark-
able mechanical resilience. To ensure these features, silicone-modified acrylic emulsion are
utilized as binders, effectively binding the nanoparticles to the substrate. This structure is
known as the “substrate/binder/superhydrophobic nanoparticle” system.
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However, there remain challenges to address, especially when considering appli-
cations like medical implants, seawater desalination, and cable transmission. These ap-
plications demand coatings that resist acids and bases, exhibit anti-icing efficiency, and
maintain self-cleaning attributes. To address these challenges, the researchers prepared
superhydrophobic coatings with excellent acid and alkali resistance, ice resistance and self-
cleaning capability by adding nanoparticles such as SiO2 [28,29], TiO2 [30,31], ZnO [32,33],
Fe3O4 [34,35] and Al2O3 [36,37] to various polymer matrices. Yang et al. [38] synthe-
sized a superhydrophobic coating by combining ZrO2 with polydimethylsiloxane (PDMS).
This PDMS-ZrO2 composite coating exhibited outstanding corrosion resistance. Celik
et al. [39] developed a superhydrophobic coating with remarkable corrosion resistance
and self-cleaning properties. They achieved this by the ball milling process inducing
a reaction between dodecyltrichlor-osilane’s trichloroalkysilane and hydrophilic silica
nanoparticles, leading to chemical grafting. Superhydrophobic coatings have been suc-
cessfully utilized in anti-icing applications. Specifically, Qi et al. [40] employed an etching
technique to evenly distribute SAN particles, dissolved by ASA resin, within a THF and
EtOH solvent mixture to fabricate a hydrophobic surface. Notably, at a chilling ambi-
ent temperature of −10 degrees Celsius, the time taken for water droplets to crystal-
lize on this coated surface was significantly prolonged to 63 min, indicating superior
anti-icing efficacy.

To prepare wear-resistant superhydrophobic coatings using fillers in resin, two main
methods are employed. The first approach involves directly incorporating fillers into the
resin, thereby creating a coarse surface texture. Here, the filler becomes entirely wetted
by the resin. This results in the development of a surface roughness predominantly via
particles, while the resin contributes to the reduced surface energy. This synergy enables
super hydrophobicity. A key advantage of this technique is that the introduction of ample
fillers ensures a uniform rough structure both internally and externally. Coupled with
the intrinsic hydrophobic nature of the resin, this ensures that the coating retains its
superhydrophobic property until completely worn out. This method is presently the
dominant means of achieving super hydrophobicity using fillers. However, its downside
is that the film’s overall strength diminishes due to the extensive filler content, leading
to hydrophobicity degradation when sanded. Furthermore, it exhibits poor resistance to
impacts and abrasions, causing the coating to detach easily from the substrate.

The alternative approach is to use the “adhesive + particle” [41,42] method, utilizing
potent adhesives like epoxy resin and water-based polyurethane to bind hard hydrophobic
particles directly onto the coating, providing friction resistance in a robust manner. In
this scenario, the particles serve dual functions: bestowing reduced surface energy and
imparting surface roughness. The superhydrophobic coatings derived via this method
exhibit enhanced hydrophobicity and, given the minimal particle incorporation within
adhesive, have superior post-film formation strength.

Interestingly, there seems to be an oversight in current research regarding the potential
of ZrO2 nanoparticles. Furthermore, many current methods demand intricate steps, high-
tech equipment, and can be operationally challenging, especially when contrasted with the
industry-preferred spray coating technique. To bridge this gap, our research introduces
a novel coating formulation. Some silicone-modified acrylic emulsion was pre-introduced
into the ethanol suspension. By incorporating SiO2 particles and ZrO2 nanoparticles
modified with the silane coupling agent KH-570, into the ethanol mixture, we achieved
diverse composite coatings. With the strategic use of silicone-modified acrylic emulsion
and selected nanoparticles, we developed a superhydrophobic coating via the spray coating
technique. The rigorous assessment addressed wear resistance, adaptability in acidic and
alkaline conditions, durability against sodium chloride exposure, self-cleaning properties,
and anti-icing effectiveness. The results were promising, showcasing the coatings’ potential
for real-world implementations.
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2. Materials and Methods
2.1. Material

SiO2 particles, with diameters ranging from 1 to 10 µm, were procured from Yichang
Huifu (Yichang, China). ZrO2 nanoparticles, characterized by a diameter range of
20–50 nm, came from Macklin Reagents (Shanghai, China). The silane coupling agent
KH-570 (γ-Methacryloxypropyltrimethoxysilane) was utilized from Macklin Reagents
(Shanghai, China). The silicone-modified acrylic emulsion was produced by Anhui Tengtuo
(Chizhou, China). AR-grade toluene was provided by Tianjin Fuyu Fine Chemicals (Tianjin,
China). Both ethanol and hydrochloric acid (36~38%) of AR-grade were secured from
Guoyao (Shanghai, China). Sodium hydroxide of AR grade was sourced from Macklin
Reagents (Shanghai, China), while AR-grade sodium chloride was supplied by Xilong
(Shantou, China). All experiments used self-prepared ultrapure deionized water.

2.2. Modification of ZrO2 Nanoparticles

Modified ZrO2 nanoparticles were hydrophobically enhanced using silane coupling
agent KH-570. The modification process began with the ZrO2 nanoparticles being laid out
in a sterile Petri dish. These particles were then dried at 60 ◦C in an electric drum air oven
for 6 h. Subsequently, 4 g of these ZrO2 nanoparticles were combined with 30 mL of toluene.
This mixture was stirred at room temperature for 20 min, followed by 20 min of ultra-
sonic agitation. Afterward, 20 mL of a 10% concentration of silane coupling agent KH-570
was added, and the entire blend underwent 10 min of ultrasonic dispersion. This dis-
persion was transferred to a 250 mL three-necked flask and was agitated at 80 ◦C for
30 min. Post cooling to room temperature, the mixture underwent centrifugation at
10,000 r·min−1 for 30 min. The resulting substance was filtered using a vacuum filtra-
tion method to obtain the modified ZrO2 nanoparticles. These were then dried in a vacuum
oven at 100 ◦C for 6 h.

2.3. Preparation of ZrO2/SiO2/Silicone-Modified Acrylic Emulsion Superhydrophobic Coating

Adopting a spray technique to fabricate superhydrophobic coatings. Initially,
0.1 mL of silicone-modified acrylic emulsion was dissolved in 1 mL of ethanol. Following
this, 0.04 g of modified ZrO2 nanoparticles and 0.06 g of SiO2 particles were added to the
solution. The mixture was magnetically stirred for 20 min at ambient temperature and
then ultrasonically dispersed for an additional 5 min, producing ethanol dispersion with
inorganic particles.

In the next phase, a superhydrophobic coating was created. This was achieved by
spraying 2 mL of the silicone-modified acrylic emulsion evenly at 4 MPa onto a 2.5 × 7.5 cm
slide and then spraying zirconia silica ethanol dispersion. Subsequently, the coated sample
was cured at 100 ◦C for 20 min. The unattached particles on the coating’s surface were
removed by air flow and the obtained coating was named MZS-0.1. By using a similar
procedure, MZS-0 and MZS-0.2 were prepared by using 0 and 0.2 mL silicone-modified
acrylic emulsion, respectively. For comparison, MS-0.1 was also prepared without modified
ZrO2 nanoparticles. The entire process is illustrated in Figure 1. The surface of ZrO2
inorganic particles features a Zr-O-H structure, which interacts with the Si-O-H structure of
KH-570, leading to the formation of a modified ZrO2 with a Zr-O-Si structure. Additionally,
KH-570 possesses a carbon-carbon double bond. This double bond undergoes a reaction
with the corresponding double bond in the silicone-modified acrylic emulsion, resulting in
the creation of a novel covalent bond.

Due to the water-based nature of the emulsion, it vigorously repels hydrophobic
particles, making wetting challenging. Additionally, the emulsion’s adhesion capacity is
inferior in comparison to potent adhesives like epoxy resin. In conclusion, the emulsion’s
modest hydrophobic nature makes it challenging to achieve super hydrophobicity using
the first method (directly incorporating fillers into resin). Direct coatings prepared by the
second method (adhesive + particle) demonstrated subpar wear resistance. During experi-
mentation, a uniform silicone-modified acrylic emulsion (2 mL) was initially sprayed onto
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the glass substrate, followed by applying an ethanol suspension of particles application,
with particles constituting about 5% of the coating’s mass fraction. Some silicone-modified
acrylic emulsion was pre-introduced into the ethanol suspension, enhancing the inter-
particle bonding strength. Ethanol’s rapid evaporation during curing ensures the resin
and particles intertwine. Adding a specific resin quantity to the particle suspension be-
fore curing accelerates this intermingling, enabling a cure at 100 ◦C for 20 min, forming
a dispersed transition zone between the particles and the resin. The emergence of this zone
ensures hydrophilic nanoparticles and hydrophobic silicone-modified acrylic emulsion
interpenetrate and adhere securely to the glass substrate.
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2.4. Chemical Structure Characterization

In this study, Nexus 670 FTIR instrument (Thermo Nicolet, MA, USA) was used to
analyze the functional groups of ZrO2 nanoparticles both before and after modification,
and the KBr pressing technique was employed. The crystalline structures of the ZrO2
nanoparticles, before and after modification, were assessed through X-ray diffraction (XRD)
diagrams captured on the SmartLabTM X-ray diffractometer (Rigaku, Tokyo, Japan) set at
3 kW. Energy dispersive spectroscopy (EDS) was investigated using a JSM-6510 scanning
electron microscopy (JEOL, Tokyo, Japan), which elucidated the elemental composition of
the modified ZrO2 nanoparticle surface. To probe the micro-nanometric structure of the
ZrO2/SiO2/silane–acrylic acid modified emulsion superhydrophobic coating, coat a layer
of gold on the surface of the characterization sample and dry it in a vacuum. After the sam-
ple was prepared, SEM images were taken using a JSM-6510 scanning electron microscope
(JEOL, Tokyo, Japan) with a 20 kV acceleration voltage. Additionally, the OLA4000 laser
scanning confocal microscope (Olympus, Tokyo, Japan) provided three-dimensional visual-
izations of the diverse compositions present on the surface of the ZrO2/SiO2/silane–acrylic
acid modified emulsion superhydrophobic coating.

2.5. Measure the Contact and Rolling Angles

Contact angles and rolling angles were analyzed by using an SDC-350 contact angle
measuring instrument (Dongguan Shengding Precision Instrument, Dongguan, China).
the contact angles for all samples were measured at room temperature involved taking
an average of five measurements with 6 µL water droplets dropping from 50 mm height. In
the case of composite coatings with different compositions, the contact angle was measured
directly on the surface using the same procedure. Additionally, the rolling angle for all
composite coatings was determined using the same contact angle instrument. For this
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measurement, samples were stabilized on the instrument platform. The rolling angle of
6 µL water droplets was ascertained by tilting the platform and altering its angle relative to
the horizontal plane, until the droplets commenced sliding.

2.6. Wear Resistance

During the sandpaper abrasion test, a glass substrate coated with the ZrO2/SiO2/
silane–acrylic acid modified emulsion superhydrophobic layer underwent polishing using
a 2000 # sandpaper. For each testing cycle, samples are pressed by a 200 g weight and slide
10 cm horizontally along the ruler. After a series of equidistant abrasion cycles, the contact
and rolling angles of the coatings with different compositions were evaluated.

2.7. Chemical Stability

Researchers conducted two distinct immersion tests on superhydrophobic coatings
with varying compositions. In the acid resistance test, we completely immersed nine
samples of identical composition in hydrochloric acid (pH = 1, 0.1 mol/L). Every hour,
we assessed the contact angle and rolling angle of one sample. Similarly, in the alkali
resistance test, nine samples were fully immersed in a sodium hydroxide solution (pH = 14,
1 mol/L), with the contact angle and rolling angle of one sample evaluated hourly. For the
salt tolerance test, seven samples were immersed in a 3.5% sodium chloride solution, and
we measured the contact angle and rolling angle of one sample every 6 h.

2.8. Self-Cleaning Performance

Identical thicknesses of graphite powder and sand particles were sprinkled onto the
surfaces of superhydrophobic coatings with varied compositions. To evaluate the self-
cleaning capability, the coatings were tilted at a tilt angle of approximate 30◦, and the
ability of equal volume water droplets to roll off, collecting the contaminants, was observed.
Additionally, the potential of these coatings to prevent stains was assessed by observing if
a consistent volume of coffee solution left any residues when passed over them.

2.9. Anti-Icing Performance

50 µL water droplets were applied to a glass substrate coated with superhydrophobic
materials of various compositions. This setup was placed inside a BL-LS400CDB refrigerator
(Yeqi Electric Appliance, Shanghai, China), With a consistent cooling rate of 1 ◦C/min,
cooling commenced from 0 ◦C. Throughout the process, a camera (image capture rate:
30 fps) was employed to capture the transition of water droplets to ice.

2.10. Water Droplet Bouncing, Water Flow Bending and Underwater Silver Light Reflection
Performance

A water droplet of 6 µL volume and the water jet were observed to investigate the
movement of it when touching the coating surface. Additionally, a unique silver reflection
phenomenon associated with the superhydrophobic coating was noted. All fundamental
images were captured by using an SDC-350 contact angle measuring instrument.

3. Results
3.1. Characterization of Modified ZrO2 Nanoparticles
3.1.1. Microstructure

As shown in Figure 2, the pre-modified and modified ZrO2 to XRD tests, and the
observed peaks of the XRD pattern are indexed and compared with pure ZrO2 (PDF#86-
1450). It can be seen that the profile contains distinct characteristic peaks at 2T angles (24◦,
28◦, 31◦, 34◦, and 50◦), which represent the optimal orientations of the five crystallographic
planes (1 1 0), (−1 1 1), (1 1 1), (0 0 2), and (2 2 0), respectively. This XRD spectrum not
only confirms the monoclinic crystal system of nano-ZrO2, but also indicates its own high
crystallinity by its narrower linewidth [43]. More notably, the diffraction peaks before and
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after the modification remain consistent, indicating that the structural integrity of the ZrO2
nanoparticles is largely unaffected by the surface modification.
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Figure 2. XRD diffraction pattern of zirconium dioxide.

Figure 3 presents the SEM image of the modified ZrO2, where the even dispersion of
the Si element from the modifier KH-570 is evident. This uniform distribution confirms the
successful modification of ZrO2. Furthermore, the coating surface displays a distinct rough
and porous texture.
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Figure 3. (a) SEM secondary electron image of modified zirconium dioxide, magnified 3000 times;
(b) distribution of Si element in modified ZrO2 nanoparticles; (c) distribution of Zr element in
modified ZrO2 nanoparticles.

3.1.2. Chemical Composition

Figure 4 presents the FTIR spectrum of ZrO2 nanoparticles pre and post-modification.
The modified ZrO2 spectrum exhibits distinctive peaks: the one at 1107 cm−1 arises from
the asymmetric stretching vibration of the -Si-O-C- group, the 1452 cm−1 peak represents
the stretching vibration of the -COO- group, and the peak at 1635 cm−1 is associated with
the C=C double bond stretching vibration. These peaks validate the dehydration reaction
between hydrolyzed methacryloyloxypropyltrimethoxysilane molecules and ZrO2 nanopar-
ticles, corroborating the modification’s success. This altered the original hydroxyl-rich,
high-porosity coating to a surface with reduced energy, preventing pollutant infiltration
and bolstering the coating’s environmental stability [44].

3.2. Characterization of ZrO2/SiO2/Silicone-Modified Acrylic Emulsion Superhydrophobic
Coatings with Different Components
3.2.1. Micromorphology

Figures 5 and 6 display SEM images of three different coatings. Microscopic morphol-
ogy of the MZS-0.1 coating surface is shown in Figure 5a–c. The modified ZrO2 nanopar-
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ticles cluster on the surface, creating large, distinctly aggregate spheres with substantial
gaps between them. This micro-nano structure efficiently captures air while repelling water
molecules, ensuring the coating’s superhydrophobic nature. Figure 5d demonstrates that
droplets cannot directly associate with the MZS-0.1 superhydrophobic coating and easily
roll off its surface.
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1000 times, and 3000 times in order; (d) the 8 µL droplet cannot be directly picked up with the MZS-0.1
superhydrophobic coating, and the droplet is very easy to roll on the MZS-0.1 coating.

Figure 6a,b illustrates the surface morphology of the MS-0.1 coating, revealing that
it is less effective than the MZS-0.1 coating in creating air layer voids critical for super-
hydrophobicity. Larger particle sizes in MS-0.1 coating result in less surface voids, which
adversely affect the nanostructure essential for optimal performance. To preserve the
essential micro-nano structure in the superhydrophobic coating, it is necessary to mix
modified ZrO2 nanoparticles with SiO2. This blend may improve the distribution of
initially clustered particles and encourage the formation of large clusters and voids. In
contrast, as observed in Figure 6c,d, the pure silane-modified emulsion coating displays
a smoother surface devoid of the aforementioned micro-nano structures.
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Figure 6. (a,b) Microscopic morphology images of the MS-0.1 coating surface, magnified 500 times,
1000 times in order; (c,d) images of the surface micromorphology of pure silicone-modified acrylic
emulsion coating, magnified 500 times and 1000 times, respectively.

Figure 7 presents the CLSM images of various coatings, aligning with the SEM findings.
The MZS-0.1 coating’s surface (Figure 7e,f) displays pronounced orderly convex frame,
especially when juxtaposed with the smoother surface of the pure silane-modified emulsion
coating (Figure 7a,b). Compared with pure silicone-modified acrylic emulsion coating
(height differential of less than 10 µm), the MZS-0.1 coating showed a height disparity
reaching nearly 100 µm). Additionally, the MS-0.1 coating showed a height disparity
reaching approximate 70 µm. This may be due to micro/nano hierarchical structure of
SiO2/ZrO2. The surface of the MS-0.1 coating, as illustrated in Figure 7c,d, exhibits a less
height differential than MZS-0.1 coating, which is not conducive to the formation of suitable
sized voids for capturing air.
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3.2.2. Hydrophobicity

Figure 8 presents the contact and rolling angles for four coatings: MZS-0, MZS-0.1,
MZS-0.2, and MS-0.1. The data indicate that MZS-0 exhibits superhydrophobic properties,
whereas the remaining coatings—MZS-0.1, MZS-0.2, and MS-0.1—display only partial
hydrophobicity, as evidenced by their rolling angles ranging from 5 to 10 degrees.
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As the silicone-modified acrylic emulsion content increases, the superhydrophobic
coating’s hydrophobic nature decreases, evident from the increasing roll-off angle. The
contact angle of the pure silane-modified emulsion coating registers at 88◦ relative to the
horizontal plane, lacking any superhydrophobic traits. It is evident that the silane-modified
emulsion’s over-wetting of hydrophobic particles results in a diminished contact angle and
a heightened rolling angle. This phenomenon is attributed to the high surface free energy
of the silicone-modified acrylic emulsion, which increases the superhydrophobic coat-
ing’s high surface free energy. Concurrently, excessive silicone-modified acrylic emulsion
infiltration into surface ZrO2/SiO2 nanoparticles causes underexposure of these nanopar-
ticles, compromising the micro-nano surface structure and subsequently decreasing the
superhydrophobic coating’s surface roughness [45].

The comparison of coating contact angle and rolling angle is shown in Table 1 [46–50]
where ZrO2/SiO2/silicone-modified acrylic emulsion coating has a significant hydrophobic
effect.

Table 1. Comparisons of different coatings by contact angle and rolling angle tests.

Coating Composition Preparation Process Contact Angle (CA) Rolling Angle (RA) Ref.

316L/nano-TiO2/TMPSi one-step EPD 168◦ 3.1◦ [46]
PS/OTS/SS Sol-gel 157.5◦ 6◦ [47]

MTES/SiO2/MOH Sol-gel 153◦ 9◦ [48]
PDMS/MTCS/SiO2/TiO2 Spray 151◦ 9◦ [49]

F-PE/SiO2 Template 158◦ 4◦ [50]
ZrO2/SiO2/siloxane-modified

acrylic emulsion Spray 158.5◦ 1.85◦ This work

3.3. Wear Resistance of ZrO2/SiO2/Silicone–Acrylic Acid Modified Emulsion
Superhydrophobic Coating

Figure 9 presents the contact and rolling angles of coatings with varying compositions
after enduring consistent wear and tear. Given the same wear frequency, the MZS-0.1 coat-
ing’s hydrophobicity declines after six wear cycles. In contrast, the MZS-0 coating with pure
ZrO2/SiO2, without the addition of silicone-modified acrylic emulsion, maintains its rolling
angle only once. After three successive wears, its contact angle drops below 150◦, indicating
a swift loss of super-hydrophobicity. This highlights the crucial role of silicone-modified
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acrylic emulsion in bolstering the bond between the substrate and ZrO2/SiO2 surface
nanoparticles, as well as the cohesion amongst the nanoparticles themselves. The contact
angle trajectory for each coating remains predominantly stable, which can be ascribed
to the transition region between the nanoparticle and silicone-modified acrylic emulsion
layers arising from ethanol’s evaporation. Within this zone, the sandpaper-induced texture
post-rubbing closely mirrors its initial state, thus preserving super-hydrophobicity. Hence,
integrating silicone-modified acrylic emulsion with nanoparticle ethanol dispersions can
somewhat mitigate friction-induced hydrophobicity reduction. Yet, an excessive infu-
sion of silicone-modified acrylic emulsion can escalate the particle dispersion’s viscosity,
complicating the spraying process and potentially leading to issues like cracking.
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Figure 9. Wear resistance test of different organic hydrophobic coatings.

Upon incorporating the silicone-modified acrylic emulsion, the MS-0.1 coating loses its
super-hydrophobicity post roughly one wear. However, the coatings embedded with ZrO2
nanoparticles exhibited good wear resistance; notably, the MZS-0.1 coating maintained its
super-hydrophobicity after six wear cycles. The superior hardness of ZrO2 nanoparticles,
compared to SiO2 particles, suggests that ZrO2 inclusion amplifies the superhydrophobic
coating’s resistance to wear.

3.4. Corrosion Resistance of ZrO2/SiO2/Silicone-Modified Acrylic Emulsion Superhydrophobic
Coating
3.4.1. Acid and Alkali Corrosion Resistance

Figure 10 illustrates the changes in contact and rolling angles of the MZS-0.1 coating
under exposure to a highly acidic environment with a pH value of 1. Notably, the MZS-0.1
coating’s hydrophobicity declines within 1–2 h, as indicated by the increase in the rolling
angle to above 5 degrees during this period. In comparison to the contact angle, the rolling
angle is more susceptible to shifts in the surface’s roughness and chemical composition of
low-energy materials. Even trivial wear and corrosion can lead to pronounced discrepancies
in the rolling angle. This heightened corrosion resistance in superhydrophobic coatings is
attributed to the presence of a surface air layer, functioning as a shield against corrosive
substances. This prevents these substances from infiltrating the coating, interacting with
the inorganic nanoparticles, and damaging the surface’s micro-nano structures. With the
time passing, the superhydrophobic coating loses its unique properties.

On the other hand, as depicted in Figure 11, the MZS-0.1 coating does not demonstrate
significant resistance to alkalinity in a potent alkaline environment with a pH of 14. The
hydrophobic characteristics of the MZS-0.1 coating are entirely compromised within just
an hour. The contact angle of the destroyed MZS-0.1 coating (63◦) strays considerably
from the 88◦ typical of pure silicone-modified acrylic emulsion coatings. This can be
attributed to the potent alkali disrupting the chemical bonds between the surface’s SiO2
and ZrO2 nanoparticles, which are interconnected by low surface energy organic polymers.
This interference causes the initially hydrophobic particles to revert to a hydrophilic state,
turning the hydrophobic coating more hydrophilic. Consequently, the water contact angle



Materials 2023, 16, 7621 11 of 18

for these hydrophilic particles is notably lower than that of the pure silicone-modified
acrylic emulsion. After a 3 h immersion, the hydrophobic coating begins separating from its
glass substrate. These observations suggest that alkali can destroy the interactions between
hydrophobic coating and glass substrate.
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Figure 12. MZS-0.1 coating in 3.5% mass fraction sodium chloride solution. 
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face of both the pure silicone-modified acrylic emulsion coating and the MZS-0.1 coating 
at a tilt angle of approximate 30°. Upon dropping the same quantity of distilled water 
droplets, it is evident that the water beads clump together and find it challenging to roll 
off the pure silicone-modified acrylic emulsion coating. This behavior indicates a lack of 
self-cleaning attributes in the pure silicone-modified acrylic emulsion. Conversely, water 
droplets roll effortlessly on the MZS-0.1 coating, effectively shedding any attached dirt, 
highlighting the MZS-0.1 coating’s superior self-cleaning capabilities. 
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3.4.2. Sodium Chloride Corrosion Resistance

Figure 12 presents the contact and rolling angles of the MZS-0.1 coating after varying
durations of immersion in sodium chloride. The data illustrate that with an increase in
immersion time, the MZS-0.1 coating’s contact angle remains relatively stable at approxi-
mately 152◦. However, it is observed that the rolling angle of the MZS-0.1 coating displayed
significant variance with prolonged immersion, and its hydrophobicity descends after 6 h.
This suggests minimal corrosion impact on the MZS-0.1 coating from the sodium chloride
solution. In summary, the MZS-0.1 coating undeniably demonstrates superior resistance
against sodium chloride corrosion.

3.5. Self-Cleaning Properties of ZrO2/SiO2/Silicone-Modified Acrylic Emulsion
Superhydrophobic Coating

Figure 13 illustrates a images representation of graphite powder blanketing the surface
of both the pure silicone-modified acrylic emulsion coating and the MZS-0.1 coating at
a tilt angle of approximate 30◦. Upon dropping the same quantity of distilled water droplets,
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it is evident that the water beads clump together and find it challenging to roll off the pure
silicone-modified acrylic emulsion coating. This behavior indicates a lack of self-cleaning
attributes in the pure silicone-modified acrylic emulsion. Conversely, water droplets roll
effortlessly on the MZS-0.1 coating, effectively shedding any attached dirt, highlighting the
MZS-0.1 coating’s superior self-cleaning capabilities.
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Figure 13. (a–d) Images of cleaning graphite powder on the surface of pure silicone–acrylic-modified
emulsion coating; (e–h) images of graphite powder cleaning on MZS-0.1 coating surface.

Figure 14 depicts the cleaning process at a tilt angle of approximate 30◦ with identical
distilled water droplet quantities on both the pure silicone-modified acrylic emulsion
and MZS-0.1 coatings, both coated evenly with sand. The MZS-0.1 coating demonstrates
a substantially more effective cleaning capacity than its pure silicone-modified acrylic
emulsion counterpart, reiterating its excellent self-cleaning features.

In another test, shown in Figure 15, the same amount of sticky coffee liquid is poured
at a tilt angle of approximate 30◦ onto both coatings. The MZS-0.1 coating impressively
ensures that the coffee droplets glided off without leaving any residue, maintaining its
uncontaminated state. On the other hand, evident marks are left behind by the coffee
droplets on the pure silicone-modified acrylic emulsion coating, signifying some level
of contamination.
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Figure 15. (a,b) Images of surface contamination of pure silicone-modified acrylic emulsion coating;
(c,d) images of surface contamination of MZS-0.1 coating.

In light of the above observations, the coating has a good self-cleaning effect on
solid particles such as graphite powder and fine sand particles and liquid pollutants such
as coffee.

3.6. Anti-Icing Performance of ZrO2/SiO2/Silicone-Modified Acrylic Emulsion
Superhydrophobic Coating

Following the anti-icing evaluations on glass substrates, pure silicone-modified acrylic
emulsion coatings, and MZS-0.1 coatings (as depicted in Figure 16), the initial time of ice
formation serves as a pivotal metric in assessing the coatings’ anti-icing capabilities. When
cooled at a steady rate of 1 ◦C/min starting from 0 ◦C, the crystallization time of water
droplets on a glass substrate is approximately 4 min. In contrast, this time extends to
12 min for the pure silicone-modified emulsion coating—threefold longer than that of the
glass—and to 17 min for the MZS-0.1 coating, which is over four times the duration of the
glass substrate. All three samples reach a completely frozen state roughly eight minutes
following the appearance of ice crystals.
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Figure 16. (a–c) Freezing process of a water droplet on glass substrate surfaces; (d–f) freezing process
of a water droplet on pure silicon-acrylic modified emulsion coating surfaces; (g–i) freezing process
of a water droplet on MZS-0.1 coating surfaces.

The smaller contact area between the spherical droplets and the coated surface leads
to a reduced heat transfer rate and the presence of an air layer, which diminishes the direct
contact between the water droplets and the superhydrophobic coating. This effectively
decreases the likelihood of heterogeneous nucleation. Furthermore, crystallization kinetics
principles suggest that the droplets on the superhydrophobic surface must overcome a sig-
nificantly larger Gibbs free energy barrier to crystallize, particularly through heterogeneous
nucleation. The magnitude of this barrier correlates with the increase in contact angle [51].
Consequently, the presence of modified ZrO2 on the coating’s surface substantially delays
the crystallization time, suggesting that the coating possesses valuable anti-icing properties.

3.7. Water Droplet Bouncing, Water Flow Bending and Underwater Silver Light Reflection
Properties of ZrO2/SiO2/Silicone-Modified Acrylic Emulsion Superhydrophobic Coating

A 6 µL water droplet exhibits pronounced elasticity when placed on the MZS-0.1
coating, as illustrated in Figure 17a–f, demonstrating a distinct bouncing effect [52]. When
water is introduced to this coating using a syringe, it ricochets, similar to a laser beam re-
flecting off a mirror, as seen in Figure 17g. The air layer, residing on the surface, contributes
to ricocheted behavior and enhances the elasticity observed in water droplets.

Figure 18 captures the underwater luminous reflection exhibited by the MZS-0.1
coating. When the superhydrophobic coating is submerged, the surface’s air layer produces
a lustrous, silver-like light, attributed to interface reflection. This interface reflection is
intrinsically linked to the air layer on the surface.

In conclusion, the surface air layer is pivotal in enhancing the self-cleaning, corrosion
resistance, drag minimization, and anti-icing attributes of superhydrophobic coatings. It
supports several of the notable properties of these coatings [53]. A compromised surface
air layer typically indicates that the superhydrophobic coating has been fully saturated,
leading to the forfeiture of its superhydrophobic attributes [54].
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4. Conclusions 
In summary, we have successfully developed a method to fabricate four distinct coat-

ings (MZS-0, MZS-0.1, MZS-0.2, MS-0.1) on glass substrates. This was achieved using a 
unique blend of γ-Methacryloyloxypropyltrimethoxysilane (KH570) combined with mod-
ified ZrO2/SiO2/silicone-modified acrylic emulsion to produce a superhydrophobic emul-
sion coating. One coating achieved super-hydrophobicity, registering a contact angle of 
158.5 degrees and a rolling angle of 1.85 degrees. The inherent bonding strength of the 
silicone-modified acrylic emulsion ensures that these coatings can endure extensive me-
chanical wear, evident from their resistance to more than six abrasion cycles using 2000-
grit sandpaper. Remarkably, the MZS-0.1 variant retains its superhydrophobic properties 
under extreme conditions, such as a 2 h immersion in strong acid (pH = 1, 0.1 mol/L) or a 
6 h soak in salt water. Moreover, the MZS-0.1 coating showcases superior self-cleaning 
capabilities in an aerial environment. Due to the inclusion of KH570, the modified ZrO2 
surface significantly delays the crystallization of water droplets to 17 min, indicating a 
measure of anti-icing capability. This coating is also characterized by its surface elasticity 
and a distinctive underwater silvery sheen. The investigation into these coatings may re-
veal innovative approaches for developing effective superhydrophobic surfaces, specifi-
cally through the strategic use of emulsion mixtures with ZrO2 and SiO2. 
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4. Conclusions

In summary, we have successfully developed a method to fabricate four distinct
coatings (MZS-0, MZS-0.1, MZS-0.2, MS-0.1) on glass substrates. This was achieved
using a unique blend of γ-Methacryloyloxypropyltrimethoxysilane (KH570) modified
ZrO2/SiO2/silicone-modified acrylic emulsion to produce a superhydrophobic emul-
sion coating. One coating achieved super-hydrophobicity, registering a contact angle
of 158.5 degrees and a rolling angle of 1.85 degrees. The inherent bonding strength of
the silicone-modified acrylic emulsion ensures that these coatings can endure extensive
mechanical wear, evident from their resistance to more than six abrasion cycles using
2000-grit sandpaper. Remarkably, the MZS-0.1 variant retains its superhydrophobic prop-
erties under extreme conditions, such as a 2 h immersion in strong acid (pH = 1, 0.1 mol/L)
or a 6 h soak in salt water. Moreover, the MZS-0.1 coating showcases superior self-cleaning
capabilities in an aerial environment. Due to the inclusion of KH570, the modified ZrO2
surface significantly delays the crystallization of water droplets to 17 min, indicating
a measure of anti-icing capability. This coating is also characterized by its surface elas-
ticity and a distinctive underwater silvery sheen. The investigation into these coatings
may reveal innovative approaches for developing effective superhydrophobic surfaces,
specifically through the strategic use of emulsion mixtures with ZrO2 and SiO2.
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