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Abstract: Graphene oxide (GO) is an oxidized form of graphene accommodating various oxygen-
containing functional groups such as hydroxyl, epoxy, and carboxyl groups on its surface. GO has
been extensively utilized in various biomedical applications including the delivery of biomolecules
and the development of biosensors owing to its beneficial properties such as high surface area, nucleic
acid adsorption, and fluorescence quenching through fluorescence resonance energy transfer (FRET).
However, despite these favorable properties, the direct utilization of GO in these applications is
often limited by low dispersibility in a physiological medium, cytotoxicity, low biocompatibility,
and a strong binding affinity of nucleic acids to GO surface. The large surface area of GO and
the presence of various functional groups on its surface make it highly amenable to facile surface
modifications, offering scope for GO surface functionalization to overcome these limitations. When
polyethylene glycol (PEG), which is a biocompatible polymer, is conjugated to GO, the PEGylated
GO enhances the biocompatibility and dispersibility, reduces cytotoxicity, and allows controlled
drug delivery with controllable binding affinity towards nucleic acid. PEG-engrafted GO retains
the beneficial properties of GO while effectively addressing its limitations, rendering it suitable for
various biomedical applications. In this review, we present the recent advancements of PEGylated
GO in gene/drug delivery and the facilitation of nucleic acid amplification techniques, which aid in
the development of therapeutic and diagnostic tools, respectively.

Keywords: graphene oxide; biocompatibility; dispersibility; cytotoxicity; polyethylene glycol;
gene/drug delivery; nucleic acid amplification

1. Introduction

Graphene sheets, characterized by their regular hexagonal arrangement of sp2 hy-
bridized carbon atoms in the xy-plane, possess an almost negligible thickness along the
z-plane, making them one of the most promising carbon allotropes [1]. The single layered
carbon atoms in the two-dimensional honeycomb structure of graphene contribute to its
exceptional attributes, such as high electronic mobility, mechanical elasticity, and high
thermal conductivity [2–4]. However, the application of pristine graphene has encountered
several limitations because of poor solubility [5,6], agglomeration in solution attributed to
van ser Waals interaction [7], and challenging bottom-up synthesis [8].

Graphene oxide (GO) is the chemically oxidized form of graphene (Figure 1) that is
hydrophilic, industrially scalable, and cost effective with profound implications in various
scientific and industrial realms including the biomedical industry [9–11]. GO demonstrates
high hydrophilicity and improved dispersibility in water and polar organic solvents, owing
to the presence of various oxygen-related functional groups such as carboxyl, hydroxyl,
carbonyl, and epoxide groups [12–15]. Carboxylic groups are predominantly situated along
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the edges of GO, while epoxide and hydroxyl groups are distributed across the basal plane
of GO [16–19].
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Figure 1. Oxidation of graphene to form graphene oxide. Reprinted from [19].

GO possesses numerous intriguing characteristics that render it highly valuable in a
variety of biomedical applications such as drug delivery, tissue engineering, bioimaging,
and biosensor development (Figure 2). One of the most significant features is its high surface
area, a result of its two-dimensional structure combined with the presence of oxygen-based
functional groups. The high surface area of GO allows for efficient loading of drugs, and
its ability to release them in a controlled manner has the potential to enhance treatment
outcomes [20–23]. Additionally, its suitability for surface functionalization due to the
presence of various functional groups allows for tailored modification, enabling researchers
to fine-tune its characteristics to suit specific requirements [24,25]. This adaptability is
invaluable in the development of tailored drug delivery systems and diagnostic tools.
GO’s moderate electrical conductivity has been harnessed for the development of electro-
responsive drug delivery systems, which enable on-demand release of drugs in response
to external stimuli [26,27]. Also, GO exhibits a strong interaction with a wide range of
small molecules and macromolecules (such as drugs, ions, proteins, metals, and cells) via
π–π stacking, hydrophobic interactions, and hydrogen bonding [28–30]. GO selectively
absorbs single-stranded nucleic acids through π–π stacking and hydrogen bonding, while
double-stranded DNA has minimal adsorption due to the folded structure of DNA [31–33],
and GO also exhibits fluorescence quenching ability through fluorescence resonance energy
transfer which forms the basis of GO-based biosensor development [34–38].
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Despite having such remarkable properties, GO harbors some inherent constraints
when employed in various biomedical applications. These limitations include its potential
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to trigger an immune response due to its foreign nature in the body, non-specific binding
with biomolecules, propensity for poor aqueous stability causing aggregation, a relatively
brief circulation time in the bloodstream, toxicity, and limitations in drug loading capac-
ity [39–43]. Polyethylene glycol (PEG) is a biocompatible polymer which is being utilized
for various biotechnological applications. Owing to the large surface area and various
oxygen-containing functionalities on its surface, GO provides the advantage of easy surface
modification (Figure 3a). The functionalization of the GO surface with PEG can effectively
overcome these challenges while retaining the beneficial properties of GO. The conjuga-
tion of PEG chains to GO demonstrated enhanced biocompatibility, minimized the risk
of immune responses, reduced nonspecific binding, improved solubility, and prevented
aggregation in various physiological media (Figure 3b). Moreover, PEG-GO extends the
circulation time in the bloodstream, allowing for a more effective accumulation at the
desired sites, thereby improving therapeutic outcomes [41,44–46]. Thus, PEGylated GO
serves as a crucial advancement, rendering GO a more suitable and effective material for
various biomedical applications. In this review article, we present the latest progressions
involving the utilization of PEG-modified GO in the realms of gene and drug delivery, and
the enhancement of nucleic acid amplification technologies.
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permission from [47]. Copyright © 2014, American Chemical Society. (b) Enhanced solubility of
PEGylated GO in comparison to GO. Reprinted with permission from [41]. Copyright © 2008,
American Chemical Society.

2. Functionalization of GO

The facile surface modification of GO is attributed to its diverse oxygen containing
functional groups, high surface area, and hydrophilic characteristics. This ease of surface
modification enhances solubility, stability, and biocompatibility, making GO indispensable
for a wide range of biomedical applications. The functionalization of GO with various
biomolecules is mainly carried out via covalent conjugation and non-covalent attachment.
The presence of hydroxy, epoxy, and carboxy entities on GO surfaces allows covalent
functionalization through various reactions such as esterification, click chemistry, and
amidation [3,48–50]. In addition, non-covalent functionalization of GO is carried out via
reactions using hydrogen bonding, electrostatic interactions, and π-π interactions [51–53].
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Biocompatible polymer PEG can be conjugated or attached to GO via covalent or non-
covalent functionalization, respectively, for various applications (Table 1).

Table 1. PEG-engrafted GO via covalent conjugation for various biomedical applications.

PEG-GO
Composite

Biomolecule
Delivered

Conjugation Agent
for PEG Application Reference

PEG-nGO PNA Chloroacetic acid, EDC Reduced cytotoxicity and
improved solubility [54]

PEG-RGO ssDNA EDC Enhanced solubility [55]

GO-PEG-R8 siRNA &
plasmid DNA EDC, NHS Biocompatibility and high

loading capacity [56]

NGO-PEG-PEI Plasmid DNA EDC Reduced cytotoxicity [57]

GO-PEG/PTX Paclitaxel EDC, NHS High stability and reduced toxicity [47]

Ce6/Dox/pGO Photosensitizer chlorin
e6 & Dox EDC Enhanced solubility and

biocompatibility [58]

GO-PEG10K-6arm Oridonin and MTX NaOH, EDC, NHS Low cytotoxicity and high loading
capacity [59]

GO-PEG-Cur Curcumin NaOH Controlled drug release [60]

PEGA MTX FeCl3·6H2O, FeCl2·4H2O Enhanced biocompatibility and
increased circulation time [61]

PEG/GO/SF Silk fibroin & Dox Acetic acid Enhanced stability and solubility [62]

Our group synthesized poly(ethylene glycol)-engrafted nanosized graphene oxide
(PEG-nGO) for the enhancement of nucleic acid amplification and nucleic acid deliv-
ery [54,63,64]. Briefly, PEG-nGO was synthesized by adding NaOH and chloroacetic acid
to the sonicated GO (conversion of −OH groups to −COOH groups). The resulting HOOC-
nGO was repeatedly rinsed with water and purified by a 0.2 µm filter membrane. A
6-armed PEG-amine and N-3-(dimethylamino)propyl-N′-ethylcarbodiimide hydrochloride
(EDC) was added to the reaction mixture and stirred for 12 h. The mixture was centrifuged
in phosphate buffer saline, saving the supernatant containing PEG-nGO. Characterization
of PEG-nGO was carried out by atomic force microscopy which showed a smaller particle
size of PEG-nGO (200 nm) than GO (400–1000 nm) and increased thickness (4–5 nm) as
compared to GO (1.2–1.6n nm). PEGylation of GO was also confirmed by Fourier transform
infrared spectroscopy where PEG-nGO showed methylene (2800 cm−1) and amide carbonyl
bands (1650 cm−1), suggesting the conjugation of PEG to the GO surface [54,63].

3. PEG-Engrafted GO for Biomolecule Delivery

The development of efficient nano delivery systems is crucial for nanomedicine
and modern therapeutic applications. Different materials such as micelle, liposomes,
metal oxides, inorganic nanomaterials, and various biopolymers have been employed for
biomolecule delivery but are often limited by low efficacy, poor solubility, non-specific
targeting, cytotoxicity, hampered retention time, metabolization, etc. [65,66]. GO has the
potential to overcome these limitations as it exhibits numerous advantageous features such
as high loading capacity, various functional groups on the surface, ease of surface function-
alization, fluorescence quenching, and the ability to adsorb a wide range of biomolecules
on its surface, rendering it an excellent candidate for therapeutic applications. However,
the recent advancements in GO-based biomolecule delivery systems are often challenged
by low solubility, reduced permeability, toxicity, nonspecific targeting, and rapid drug
metabolism. Due to its facile surface modification, GO can be functionalized with di-
verse biocompatible polymers, such as PEG, offering biocompatibility, superior aqueous
solubility, low toxicity, and prolonged drug circulation. The biomedical applications of
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biocompatible PEG-conjugated GO have expanded its utility in therapeutics, employing
biocompatible GO derivatives as carriers for gene and drug delivery.

3.1. Nucleic Acid Delivery

Owing to its ability to bind single-stranded nucleic acids and fluorescence quenching
near its surface, GO has emerged as a promising vehicle for gene delivery. Our group
utilized PEGylated nanosized GO (PEG-nGO) as a biocompatible carrier with excellent
solubility and low toxicity to deliver antisense peptide nucleic acid (PNA) against EGFR
mutant RNA into lung cancer cells (Figure 4) [54]. The ability of GO to absorb ssDNA on
its surface via hydrophobic interaction and hydrogen bonding allowed the neutral PNA to
easily absorb onto the PEG-nGO surface using similar interactions. This adsorbed PNA was
released by introducing complementary RNA or under low pH conditions. The PNA/PEG-
nGO complex was internalized via endocytosis, where PEG-nGO retained in endosomes
and the PNA was released into the cytosol under low pH conditions. Importantly, PEG-
nGO demonstrated no cytotoxicity and did not induce autophagic reactions in the cells,
making it a promising biocompatible gene delivery carrier.
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showing specific gene knockdown via PEG-nGO mediated delivery. (b) Enhanced solubility of
PEG-nGO and various physiological media. (c) Comparison of cytotoxicity of nGO and PEG-nGO
in small lung cancer cells. Reprinted with permission from [54]. Copyright © 2018, American
Chemical Society.

Zhang et al. focused on the development of PEGylated reduced GO (PEG-RGO) as a
potential delivery system for ssRNA molecules [55]. The research involved synthesizing
PEG-RGO through a combination of PEGylation and reduction processes and then compar-
ing its ssRNA loading and delivery capabilities with those of PEGylated GO (PEG-GO).
The findings revealed that PEG-RGO outperformed PEG-GO in terms of its efficiency in
loading and delivering ssRNA to HeLa cells. Computational simulations support these
experimental results, showing stronger π–π stacking interactions between ssRNA and RGO
as compared to GO. This study offers a promising approach for the biocompatible and
efficient delivery of ssRNA and suggests that PEG-RGO may serve as a valuable nano
vector for delivering various biomolecules in biomedical therapeutics.

Imani et al. presented a comprehensive investigation of a dual-functionalized GO-
based nanocarrier with the conjugation of aminated-polyethylene glycol (PEG-diamine)
and octa-arginine (R8) for the intracellular delivery of nucleic acids in the treatment of
cancer [56]. This study focused on optimizing a nanocarrier capable of delivering both
siRNA and plasmid DNA, a unique feature that differentiates it from previous studies.
The authors optimized the PEG: R8 molar ratio to achieve a stable, positively charged
nanocarrier. The optimized nanocarrier, GPPo, showed effective transfection in breast
cancer cell lines, MCF-7 and MDA-MB 231, outperforming a commercial transfection
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reagent, HiPerFect® QIAGEN Inc. (Toronto, ON, Canada). Furthermore, functional gene
delivery was confirmed through c-Myc protein knockdown and EGFP gene expression,
underscoring the potential of this nanocarrier. The study’s significant contributions lie in its
dual functionality and efficient nucleic acid delivery capabilities. The authors acknowledge
the need for further improvement, particularly in enhancing targetability and endosomal
escape, which are crucial for clinical applications.

Yin et al. investigated the application of PEGylated GO nanosheets for combined
photothermal and gene therapy in the context of pancreatic cancer [67]. As shown in
Figure 5, the authors demonstrated the potential of multi-functionalized monolayer GO as
a gene delivery platform to co-deliver HDAC1 and K-Ras siRNAs (small interfering RNAs
targeting the HDAC1 gene and the G12C mutant K-Ras gene, respectively) to specifically
target pancreatic cancer cells. Their findings unveiled a promising dual gene silencing
strategy, resulting in the inactivation of both HDAC1 and K-Ras genes, thereby inducing
apoptosis, halting proliferation, and causing cell cycle arrest in MIA PaCa-2 cells. The
combination of gene silencing and near-infrared light thermotherapy exhibited significant
anticancer efficacy, with an over 80% reduction in in vivo tumor growth. Furthermore, the
study demonstrated the biodegradability of GO in mouse models with minimal side effects,
paving the way for future applications in gene therapy for pancreatic adenocarcinoma.
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The study conducted by Feng et al. explored the development of a novel nanomedicine
platform by GO with PEG and polyethylenimine (PEI) to create a dual-polymer-functionalized
nano-GO conjugate, referred to as NGO-PEG-PEI [57]. This hybrid nanostructure offers a
solution to some of the challenges associated with gene delivery. One of the noteworthy con-
tributions of this research was the improved physiological stability and gene transfection
efficiency achieved with NGO-PEG-PEI, especially in the presence of a serum-containing
cell medium. Unlike free PEI or GO-PEI complexes, the NGO-PEG-PEI exhibited reduced
cytotoxicity and enhanced gene transfection efficiency. Furthermore, the study demon-
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strated enhanced cellular uptake of NGO-PEG-PEI under low power NIR laser irradiation.
It harnessed the near-infrared (NIR) optical absorbance of NGO. This study was the first to
use photothermally enhanced intracellular trafficking of nanocarriers for light-controllable
gene delivery. This work also encouraged further explorations of functionalized nano-GO
as a photo-controllable nanovector for combined photothermal and gene therapies. The
significant outcomes of the research included the remarkable enhancement in plasmid
DNA transfection efficiency and the successful delivery of small interfering RNA (siRNA)
under NIR light control. The study thus pioneered the use of photothermally enhanced
intracellular trafficking of nanocarriers for light-controllable gene delivery, marking an ad-
vancement from previous approaches that relied on the heat-triggered intracellular release
of cargo molecules from nano-carriers.

A study by Yadav et al. explored the covalent tethering of poly(amidoamine) (PA-
MAM) and PEG-modified GO to create a hybrid vector known as GPD (Figure 6), in which
the integration of these three components served multiple purposes in improving siRNA de-
livery [68]. In particular, the covalent linkage of PEG to the GO-PAMAM structure enhanced
the stability of aqueous dispersion, a crucial factor for clinical application. This stability
at physiological pH was achieved without requiring extensive purification. One key ad-
vantage of PEG in the GPD structure was its ability to reduce the cytotoxicity associated
with PAMAM and protect siRNA from enzymatic cleavage. PAMAM, on the other hand,
provided amine groups for siRNA binding and facilitated cellular entry, thus enhancing
the delivery of siRNA into target cells. Additionally, GO served as a versatile conjugation
platform, enabled the loading of siRNA with reduced toxicity-enhanced dispersion stability
of PAMAM. These multiple functionalities contributed to the improved performance of the
GPD vector. The study demonstrated that GPD was highly efficient in siRNA delivery with
low cytotoxicity, enhanced cellular uptake, and effective gene silencing. Moreover, GPD
outperformed other commonly used nonviral vectors like PAMAM and Lipofectamine 2000,
particularly in terms of transfection efficiency, metastasis prevention, and inhibition of cell
invasion. The pH-responsive siRNA release further indicated the controlled and sustained
release of siRNA under acidic conditions, offering mechanistic insights into the unloading
of siRNA from the vector. This study provided a promising approach for designing more
effective therapeutic vectors for gene-based antitumor therapy.
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The study conducted by Szénási et al. expanded the previous findings that super-
oxide dismutase 1 (SOD1) overexpression in ovarian cancer leads to platinum resistance
due to its role in conferring oxidative stress resistance against platinum compounds [69].
Platinum resistance is a major challenge in the treatment of ovarian cancer, contributing
to a substantial number of annual deaths globally. Their study investigated the poten-
tial of targeting SOD1 via RNA interference (RNAi) using PEGylated GO nanoparticles
in platinum-resistant ovarian cancer. The researchers developed a siRNA delivery plat-
form with PEGylated graphene oxide (GOPEI-mPEG) nanoparticles complexed with SOD1
siRNA. In vitro experiments demonstrated that inhibiting SOD1 through small-molecule
inhibitors or RNAi increased cisplatin sensitivity. The study highlighted the potential ther-
apeutic use of RNAi-mediated SOD1 targeting as a chemosensitizer for platinum-resistant
ovarian cancers. Despite promising results, the study also identified serious challenges,
particularly related to nanoparticle-mediated toxicity and the potential counteractive effect
of nanoparticles on SOD1 knockdown. The authors noted the need for further investigation
using alternative drug delivery platforms, such as lipid nanoparticles (LNPs), and different
xenograft models. These findings contributed to the ongoing efforts to develop innovative
strategies to overcome platinum resistance in ovarian cancer.

3.2. Drug and Protein Delivery

PEGylated GO enhances the pharmacokinetics of drug delivery systems due to its high
loading capacity and low toxicity. The attachment of PEG chains increases the circulation
time of GO in the bloodstream, effectively extending the duration during which it can
accumulate at target tissues. This leads to a higher concentration of drug delivery at the
desired sites, significantly improving the efficacy of therapeutic treatments.

PEGylated nano GO (NGO-PEG) has been utilized by Lie et al. for delivering water-
insoluble anticancer drugs into human colon cancer cells [41]. The study demonstrated
complexing of NGO-PEG with the water-insoluble drug SN38, an analogue of camptothecin
used in colon cancer treatment, through noncovalent interactions. Upon delivery via endo-
cytosis, this complex improved the water solubility and stability of the drug, displaying
unhindered potency of SN38 as an anticancer agent within the cancer cells. Notably, the
NGO-PEG as a drug delivery carrier did not exhibit any cytotoxicity or induce apoptotic
cell death, indicating no side effects attributed to PEGylated nanographene oxide.

The study by Shen et al. functionalized GO with an amine-terminated 6-armed PEG
(Figure 7), enhancing its physiological stability and biocompatibility [70]. This delivery
system successfully loaded different proteins onto PEG-grafted GO (GO-PEG) through
noncovalent interactions, facilitating the efficient delivery of proteins to the cytoplasm
while protecting them from enzymatic hydrolysis. The significant finding of this research
was that the proteins delivered by GO-PEG retained their biological activity, allowing them
to regulate cell fate. The study demonstrated this by inducing cell death with ribonuclease
A and cell growth with protein kinase A, highlighting the potential therapeutic applications
for this protein delivery system.

The study by Xu et al. discussed the use of PEGylated GO as a nanocarrier for deliver-
ing the chemotherapy drug Paclitaxel (PTX) (Figure 8) [47]. PTX, while effective, suffers
from low water solubility, poor bioavailability, and drug resistance issues. This study
proposed a novel drug delivery system based on GO to enhance the effectiveness of PTX
in cancer therapy. The study involved a multi-step process where PTX was chemically
modified to make it more compatible with GO, creating a PTX-terminated PEG. Subse-
quently, this modified PTX was attached to biocompatible 6-armed starlike PEG to produce
GO-PEG-PTX. The successful synthesis of GO-PEG-PTX was confirmed through various
analyses, including UV–vis spectroscopy, atomic force microscopy, and thermogravimetric
analysis. The results of this study showed that GO-PEG-PTX was quickly taken up by
cancer cells, particularly A549 and MCF-7 cells, indicating its potential as an effective drug
delivery system for PTX.
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Miao et al. investigated the safety and potential of PEG-grafted GO (pGO) nanosheets
as a versatile nanocarrier for the co-delivery of photosensitizers and anticancer agents [58].
Synthesis of pGO was carried out, and in vitro and in vivo toxicity were checked. Intrigu-
ingly, pGO demonstrated superior safety in vivo, as evidenced by 100% survival rates
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among mice treated with pGO nanosheets compared to 100% fatality in the GO-treated
group. The study then explored the enhanced cellular delivery of the photosensitizer chlo-
rin e6 (Ce6) when loaded onto pGO nanophysisorplexes. Co-loading Ce6 with doxorubicin
(Dox) in a molar ratio of 1:2 resulted in the highest synergism, highlighting the potential of
this co-delivery system. In tumor-bearing mice, Ce6/Dox/pGO exhibited superior photo-
dynamic anticancer effects compared to other groups, leading to substantial disruption of
tumor nuclei. These findings suggested that pGO nanosheets offer enhanced in vivo safety
over GO and have the potential to improve tumor tissue distribution and photodynamic
anticancer effects when co-delivering chemotherapeutics like Dox with photosensitizers.

The study performed by Chai et al. explored the potential of a novel drug delivery plat-
form involving PEGylated GO (GO-PEG10K-6arm) for the delivery of hydrophobic anticancer
drugs, specifically oridonin and methotrexate (MTX) (Figure 9a) [59]. GO-PEG10K-6arm
was prepared by conjugating 6-armed PEG to the surface of GO via an amidation reaction.
This modification enhanced the water solubility and biocompatibility of GO, rendering
it a suitable nanocarrier for drug delivery. The nanosized GO-PEG10K-6arm platform ex-
hibited low toxicity to both normal and tumor cells. Oridonin@GO-PEG10K-6arm and
MTX@GOPEG10K-6arm nanocomplexes were formed through π–π stacking and hydropho-
bic interactions, which enabled the rapid uptake of these complexes into tumor cells. The
study found that both nanocomplexes displayed high cytotoxicity to various tumor cell
lines compared to free drugs. This demonstrated the potential of GO-PEG10K-6arm as an
effective nanoscale drug delivery system, enhancing the solubility and bioavailability of
hydrophobic anticancer drugs.
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In another study carried out by Dembereldorj et al., the authors explored a novel
spatiotemporal anticancer drug release platform involving PEGylated GO (PEG-GO) and
its response to glutathione (GSH) triggers (Figure 9b) [71]. The authors employed live-cell
fluorescence imaging, a powerful technique for non-invasive and real-time assessment
of dynamic interactions. Their study demonstrated a comprehensive investigation of
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intracellular drug release from PEG-GO triggered by GSH, both in vitro and in vivo. Addi-
tionally, the study demonstrated the feasibility of in vivo drug release monitoring through
fluorescence imaging in living mice following GSH treatment. This innovative approach,
facilitated by label-free fluorescence quenching measurements, offers a promising avenue
for real-time tracking of drug release from PEG-GO in both cellular and animal models.

A study by Pei et al. explored the use of PEGylated nano-GO (pGO) as a nanocarrier
for delivering a combination of anticancer drugs, cisplatin (Pt) and doxorubicin (DOX), to
improve anticancer activity [72]. In this investigation, the authors successfully developed
and characterized nano-sized pGO-Pt/DOX particles through various analytical techniques,
such as zeta-potential, TEM, Raman, UV–vis, and FTIR. The results of the study indicated
that the introduction of pGO enhanced the drug delivery efficacy of cisplatin (Pt). The
optimized weight ratio of DOX: Pt: pGO was found to be 0.376:0.376:1. In vitro experiments
demonstrated that pGO-Pt/DOX nanoparticles effectively entered tumor cells, leading to
increased cell apoptosis and necrosis, resulting in higher growth inhibition compared to
single drug delivery systems or free drugs. In vivo data showed reduced toxicity to normal
organs with pGO-Pt/DOX, while tumor inhibition, histopathology observations, and
immunohistochemical staining supported the superior anticancer effect of the dual-drug
delivery system compared to free drugs.

The study performed by Wen et al. focused on addressing a significant challenge
in the field of intracellular drug delivery using PEG-functionalized nano-graphene oxide
(NGO) [45]. PEGylation is a widely employed strategy to enhance the stability and circula-
tion time of nanocarriers, but it often hinders efficient drug release due to the PEG shell
acting as a diffusion barrier. This study explored the development of a redox-responsive
PEG detachment mechanism in a novel nano-graphene oxide construct, NGO-SS-mPEG,
designed to overcome this issue. NGO-SS-mPEG was engineered to maintain stability
and solubility in physiological environments while selectively detaching its PEG shell
in response to elevated intracellular glutathione (GSH) levels. This controlled release of
encapsulated drugs, such as doxorubicin hydrochloride (DXR), occurred rapidly and corre-
lated with increased intracellular GSH concentrations. This design not only improves drug
release efficiency but also offers a promising approach for tumor-selective drug delivery.

Another study focused on the development of (PEG) decorated graphene oxide GO
nanosheets for controlled release of curcumin, an anti-cancer drug [60]. GO was synthesized
using the Hummers chemical method and then conjugated with PEG using EDC/NHS
catalysts to create GO-PEG. Curcumin was loaded onto GO-PEG, forming GO-PEG-Cur.
The study found that 4.5% of curcumin was loaded onto GO-PEG and drug release rates
were pH-dependent, with 50% release at pH 5.5 and 60% at pH 7.4 after 96 h. The nanocar-
rier displayed a zeta potential of −13.9 mV, indicating a negative surface charge that could
potentially delay phagocytic activity in the bloodstream. These findings suggested that
the developed nanocarrier is biocompatible and suitable for drug delivery systems, both
in vitro and in vivo. The pH-dependent drug release is promising for targeted therapy,
particularly for tumors with a slightly alkaline pH, offering a novel approach to controlled
curcumin delivery.

In another study, a PEG-bis amine (PEGA) functionalized GO/iron oxide nanocom-
posite was synthesized to serve as a drug-loading platform, with methotrexate (MTX) as
the model anticancer drug [61]. Cytotoxicity assays revealed higher toxicity against HeLa
and MCF-7 cancer cell lines compared to free MTX, demonstrating the nanocarrier’s effi-
cacy. Drug release studies indicated a first-order kinetics model, while blood compatibility
tests affirmed the nanocarrier’s safety. The study also highlighted the advantages of this
nanocomposite, including ease of synthesis, magnetic separation, PEGA modification for
enhanced biocompatibility, and positive charge for improved cancer cell binding.

Yao et al. presented a comprehensive investigation into the development of a mul-
tifunctional GO drug carrier for the targeted delivery and controlled release of Dox into
cancer cells, particularly hepatocarcinoma cells [73]. The synthesized GO-based carrier,
denoted as GO/PEI.Ac-FI-PEG-LA, possessed several crucial features for effective drug
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delivery. The modification of GO with polyethyleneimine (PEI) and subsequent derivatiza-
tion with fluorescein isothiocyanate (FI) and PEG-linked lactobionic acid (LA) allowed for
the specific targeting of cancer cells that overexpress asialoglycoprotein (ASGPR) receptors.
Notably, this carrier exhibited good water solubility and stability at a range of pH levels,
ensuring its potential applicability under physiological conditions. The study achieved a
high drug loading percentage (85%) and a pH-responsive controlled release of Dox, with
a faster release rate at acidic pH levels, which is particularly relevant for cancer therapy.
Furthermore, the GO/PEI.Ac-FI-PEG-LA/Dox carrier demonstrated good cell viability in
tested concentrations and effectively inhibited the growth of cancer cells. The incorporation
of LA-PEG groups enhances its targeting specificity, and the pH-responsive controlled
release of Dox makes it a valuable tool in cancer treatment, potentially reducing side effects
associated with drug toxicity.

A nanocarrier was synthesized by amidation, grafting folate-terminated PEG (FA–PEG–
NH2) onto carboxylated GO nanosheets (CG) [74]. In terms of stability and compatibility,
the CG–PEG–FA nanocarrier exhibited consistent dispersibility in PBS and displayed
exceptional cytocompatibility, making it well-suited for biomedical applications. A notable
feature of the nanocarrier was its high drug-loading capacity, which was achieved through
π-π stacking interactions, showing the Dox loading with a capacity of 0.3993 mg. The
nanocarrier also demonstrated a specific ability to target cells with folate receptors, a
frequently used biomarker element for cancer therapy. Moreover, the nanocarrier showed
pH-responsive controlled drug release properties, allowing for the precise delivery of drugs
to cancer cells and potentially reducing side effects.

Jeshvaghani et al. introduced a pH-responsive, sustained-release nanocomposite
composed of PEG, GO, and natural silk fibroin (SF) protein [62]. Using a double nano-
emulsification method with sweet almond oil as the organic phase, the study aimed to
fabricate a biocompatible and targeted pH-sensitive drug delivery system to improve
the efficacy of the anticancer drug Dox. The nanocarrier demonstrated a cumulative re-
lease percentage of 95.75%, with a preference for acidic environments. This suggested a
dissolution-controlled anomalous release mechanism at pH 7.4 and a diffusion-controlled
anomalous mechanism at an acidic pH. Furthermore, the nanocomposite exhibited in-
creased toxicity and apoptotic cell death in MCF-7 cancer cells compared to free DOX.

Yang et al. demonstrated loading of FAM-cDNA21 and Dox onto the GO surface,
followed by their efficient uptake by cancer cells [75]. In the acidic lysosome environment,
Dox was released and exerted its anticancer effects, while FAM-cDNA21’s interaction with
miR-21 led to miR-21 silencing. This innovative approach allowed for the collaborative
action of Dox and cDNA21, even at lower Dox dosages, potentially paving the way for
reduced toxicity in cancer therapy. The Dox-GO-cDNA21 system is shown to be effective
in delivering anticancer drugs and nucleic acids into cancer cells, reducing the required
Dox dosage by approximately half without compromising efficacy.

A study conducted by Yu et al. addressed the challenge of treating depression, a
chronic mental disorder with significant health implications, largely due to the restrictive
nature of the blood–brain barrier (BBB) [76]. This barrier limits the distribution of antide-
pressant drugs within the brain. In response, the authors developed a novel brain-targeted
drug delivery system using borneol-modified PEGylated GO (GO-PEG-BO). GO-PEG-BO
demonstrated excellent biocompatibility and the capacity to penetrate the BBB effectively.
This penetration was achieved through the opening of tight junctions and the inhibition of
the BBB efflux system. GO-PEG-BO exhibited targeted distribution in the brain as demon-
strated by in vivo studies, signifying its potential as a brain-targeted drug delivery system.
Another study described the synthesis of a novel graphene-based nanocomposite, GO-PEG-
FeOOH, by in situ growth of hydrous ferric oxide (FeOOH) nanorods on PEG modified GO
sheets [77]. This innovative material exhibited impressive albumin adsorption capacity of
1377.4 mg/g for BSA. The selective adsorption of albumin is primarily attributed to strong
hydrogen bonding interactions between the FeOOH nanorods and the albumin, leading to
superior selectivity compared to other graphene-based materials.
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A recent study by Demirel et al. showed efficient delivery of Dox and anti-GAPDH
siRNA via PEG-conjugated reduced GO. An azide functionality containing poly[(poly
(ethylene glycol) methyl ether methacrylate)-co-(3-azidopropyl methacrylate)-co-(methyl
methacrylate)-co-(1-pyrenemethyl methacrylate)] (P(PEGMA-co-AzPMA-co-MMA-co-PMA),
PAMP) copolymer was synthesized, and this copolymer was conjugated on the surface
of rGO (PAMP-CP-rGO) for controlled release of dual-loaded nanocomposite. This dual-
loaded nanocomposite showed high transfection efficiency and selective toxicity against
cancer cells only, making it a safe and adaptable delivery platform [78].

Islam et al. synthesized a nanodrug delivery system by loading podophyllotoxin
onto a GO-PEG surface (GO/PEG/PTOX) with a 25% loading ratio and 50% drug release
after 48 h. It was demonstrated that GO/PEG/PTOX nanocomposite can be applicable in
type-2 diabetes mellitus treatment as it efficiently inhibited α-amylase and α-glucosidase,
exhibiting IC50 values of 7 and 5 mg/mL, respectively. Notably, these values closely align
with the IC50 observed for pure PTOX [79].

Hu et al. synthesized a nanocomposite where PEG-GO was conjugated with lectin
protein-Con A and pesticide epoxiconazole (EPX) to increase the antifungal activity of EPX
against spore germination in Magnaporthe oryzae. This GO-PEG-ConA nanocomposite
inhibited the spore germination in M. oryzae by 41.7% suggesting its potential role in
controlling rice blast lesions in rice seedlings [65].

4. PEG-Engrafted GO for Enhancement of Nucleic Acid Amplification

Nucleic acid amplification technologies (NAATs) such as polymerase chain reaction
(PCR), quantitative real time PCR (qPCR), and loop-mediated isothermal amplification
(LAMP) have revolutionized molecular diagnostics by enabling easy, sensitive, specific, and
high-throughput detection of a wide range of infectious diseases [80,81]. Our group has
reported the beneficial effects of poly(ethylene glycol)-engrafted nanosized GO (PEG-nGO)
in the improvement of NAATs like PCR, qPCR, and LAMP.

4.1. Polymerase Chain Reaction

PCR is a synthetic amplification technique that offers extensive utility in diagnos-
tics and molecular biology [82,83] but is limited by unintended reannealing of DNA,
such as primer dimer formation and erroneous priming, resulting in compromised speci-
ficity [84,85]. Our group explored whether PEG-nGO enhances the performance of PCR
by adsorbing excess primers during the PCR process [63]. During the initial phase of
PCR, surplus primers bind to PEG-nGO and are subsequently released as PCR progresses,
which aids in the reduction of primer dimer formation and erroneous priming. It has
been hypothesized that GO can mimic the role of single-stranded DNA binding proteins
due to its ability to bind to single-stranded DNA, which might prevent denatured single
strands of template DNA from reannealing during replication (Figure 10a). However,
direct utilization of GO in PCR is often limited due to its insolubility in high salt con-
centrations [86] (typical in PCR mixtures) and its ability to adsorb proteins [87,88] (e.g.,
polymerase) through noncovalent interactions. To address these limitations, PEG was
conjugated onto the surface of nanosized GO (Figure 10b), which increases the solubil-
ity of GO in PCR mixtures containing high salt concentrations (Mg2+) and reduces the
non-specific binding of Taq DNA polymerase onto the GO surface, allowing unham-
pered activity of Taq DNA polymerase [63]. It was conjectured that in the early stage of
PCR, PEG-nGO can impede the formation of primer dimers by absorbing excess primers
and inhibiting the reannealing of DNA strands in later PCR cycles by adsorbing the
amplified DNAs (Figure 10c).

PCR amplification of the target gene was carried out in the presence of three carbon
composites (GO, nanosized GO (nGO), and PEG-nGO) and interestingly, a specific PCR-
amplified band was only observed in the presence of PEG-nGO. This intriguing observation
prompted us to investigate the affinity of PCR components such as ssDNA and Taq DNA
polymerase with these three carbon composites. GO and nGO exhibited stronger binding
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affinities towards single-stranded DNA than PEG-nGO, which indicated that the weaker
binding affinity of PEG-nGO towards single-stranded DNA is more suitable for PCR
reactions. Furthermore, Taq DNA polymerase was found to bind to GO and nGO, leading
to inhibited enzymatic activity, whereas PEG-nGO did not bind to Taq DNA polymerase,
preserving its enzymatic activity. We evaluated the impact of PEG-nGO on multiple
rounds of PCR since they are prone to produce non-specific amplicons due to the higher
concentration of amplified DNAs. In the consecutive rounds of PCR, only the target
DNA bands were observed in the presence of PEG-nGO without any smearing, whereas
nonspecific smeared bands were observed in the absence of PEG-nGO. Next, to assess the
effect of PEG-nGO on primer dimer formation, primers were added to the PCR mixture
without any template. In the absence of PEG-nGO, bands indicating dimerized primers
were observed, but these dimerized primer bands disappeared when PEG-nGO was added
to the PCR mixture. PEG-nGO also demonstrated reduced mispairing between template
DNA and primers at low annealing temperatures by adsorbing excess primers on its
surface, thereby enhancing the specificity of PCR. This study demonstrated that PEG-nGO
significantly enhanced the specificity and efficiency of PCR by adsorbing excess primers
in the initial stage of PCR, which resulted in reduced primer dimerization and prevented
reannealing of amplified DNA in later stages of PCR, facilitating primer annealing to
template strands.
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Figure 10. Enhancement of PCR by PEG-nGO. (a) PEG-nGO analogous to SSB as an inhibitor of
strand reannealing in DNA replication. (b) Structure of PEG-nGO. (c) Schematic representation of
PCR facilitation by PEG-nGO by adsorbing excess primer, thus reducing primer dimerization and
false priming. Reprinted with permission from [63]. Copyright © 2016, American Chemical Society.

4.2. Quantitative Real-Time Polymerase Chain Reaction

Encouraged by the beneficial effect of PEG-nGO on end-point PCR assay, our group
expanded the applicability of PEG-nGO by investigating the effect of PEG-nGO on quan-
titative fluorescence-based qPCR assay [64]. qPCR is the most availed tool in clinical
diagnostics that offers the advantage of real-time detection of nucleic acid during the
amplification process, eliminating the need for post-amplification gel electrophoresis for
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amplicon detection [89,90]. qPCR-based amplification is either detected by dsDNA binding
dyes or fluorogenic probes where the fluorescence signal is directly proportional to the
amount of amplification [91]. In the probe-based method, a specific probe with a fluorescent
reporter and quencher emits fluorescence when the target is present, ensuring specificity,
but it requires custom probe synthesis for each sample [92]. In dye-based methods, fluores-
cence signals correlate with the amount of amplified dsDNA, but they can generate false
positives due to non-specific binding of dyes to dsDNA [93]. Since qPCR is regarded as
the gold standard in diagnostics, addressing the limitations of qPCR, such as nonspecific
amplification and false positive/false negative signals, is essential for specific detection
of diseases.

To explore the hypothesis that PEG-nGO can enhance the specificity of qPCR by
adsorbing excess primers in the initial phase of qPCR, thus reducing primer dimerization
and false priming, we utilized dsDNA dye-based qPCR to detect influenza viral RNA as a
model system (Figure 11a). We compared two commonly used dsDNA binding dyes, SYBR
Green I (SGI) and EvaGreen (EG) in PEG-nGO-based qPCR (PENGO-qPCR), and found that
EV was suitable for PENGO-qPCR due to reduced adsorption of EG-dye-dsDNA complex
on the surface of PEG-nGO. PENGO-qPCR demonstrated improved specificity as compared
to conventional qPCR by exhibiting a higher melting temperature difference between the
target and non-target, as well as a lower Ct value for the target than the non-target. Also,
PENGO-qPCR was found to be 67-fold more sensitive than conventional qPCR, enabling
differentiation between the target and non-target at low nucleic acid concentrations as well
(Figure 11b). This study demonstrated that PEG-nGO diminishes nonspecific amplification
such as false priming and primer dimerization in dye-based qPCR, making it suitable for
specific and sensitive gene detection.
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4.3. Loop-Mediated Isothermal Amplification

Loop-mediated isothermal amplification (LAMP) is a rapid and robust NAAT which is
carried out at isothermal temperature, thus eliminating the need for a thermocycler [94–96].
LAMP utilizes 4–6 primer sets to create foldback structures, followed by their elongation
using Bacillus stearothermophilus DNA polymerase, facilitated by strand displacement
activity [97,98]. LAMP reactions often produce unintended non-specific products due to
primer dimerization and mismatched hybridization as LAMP employs multiple primers
with high concentration [99,100]. Fluorescence enhancement attributed by dsDNA-binding
dyes intercalating with any dsDNA makes it challenging to differentiate between target
and non-target samples, potentially resulting in false positives [101].

Motivated by PEG-nGO-based enhanced specificity in PCR, we investigated its po-
tential in LAMP, aiming to exploit its ssDNA adsorption abilities with multiple ssDNA
primers [102]. We tested PEG-nGO in the LAMP assay for hepatitis C virus (HCV) gene
detection and found that it effectively prevented non-specific amplification by adsorbing
excess ssDNA primers, resulting in reduced background fluorescence (Figure 12). We ob-
served that inclusion of PEG-nGO notably improved the specificity and sensitivity of LAMP
assay by increasing the difference in fluorescence signals between target and non-target
samples. We further explored the applicability of PEG-nGO in clinical diagnostics by ap-
plying PEG-nGO-based LAMP for the detection of multiple HCV clinical samples derived
from human serum. PEG-nGO-based LAMP was found to improve false-positive detection
1.75 times more than traditional LAMP, enhancing target DNA amplification while reducing
background signals through excess primer adsorption. Thus, PEG-nGO-based LAMP is
suitable for precise target gene detection with high sensitivity and specificity.
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5. Future Perspective

GO has firmly established itself as a revolutionary material with significant implica-
tions in the field of biomedicine. Its distinctive characteristics, such as its large surface
area, facile surface modification, hydrophilicity, moderate electrical conductivity, robust
mechanical properties, and ability to bind with a variety of biomolecules have proven
greatly beneficial in advancing drug delivery systems and biosensors. Despite having all
these advantageous properties, the utilization of GO is often limited to various biomedical
applications. These limitations include poor solubility, cytotoxicity, generation of immune
responses, nonspecific binding of various biomolecules on its surface, and strong binding
affinity to nucleic acids. To overcome these limitations, GO can be easily conjugated with
biocompatible polymer PEG, due to its larger surface area and presence of various oxygen
containing functional groups.

PEGylation of GO offers several advantages such as imparting adequate solubil-
ity and stability in various physiological media, minimized toxicity, specific binding of
biomolecules, enhanced retention time of drugs, and weaker binding affinity of nucleic
acid on its surface. Thus, PEG-conjugated GO not only retains the beneficial properties of
GO but also effectively addresses its limitations, positioning it as a favorable option for a
wide array of biomedical applications. Therefore, PEGylated GO has the potential to aid
the development of therapeutic solutions in the biomedical field.
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