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Abstract: Graphene-TiO2 composites have been investigated in various photocatalytic reactions
showing successful synergy compared to pristine TiO2. In the present work, graphene oxide (GO) was
synthesized by the Hummers method and then reduced graphene oxide-TiO2 composites (rGO/TiO2)
were obtained by an in situ GO photoreduction route. X-ray diffraction, FTIR, Raman, UV–vis
DRS, and photoluminescence were the main characterization techniques. The obtained composites
containing 1 and 3 wt.% rGO were evaluated in the cyanide (50 mg/L) oxidation and Au-cyanide
complex (300 mg/L) degradation under UV-A light. The composites showed higher photocatalytic
activity than TiO2, mainly with the 1% rGO content. Cyanate and gold nanoparticles, deposited on
the photocatalyst’s surface, were the main byproducts during the photocatalyst assessment. The
improved photocatalytic activity of the composites was attributed to a higher rate of electron transfer
and a lower rate of charge recombination due to the chemical interaction of rGO with TiO2.

Keywords: free cyanide; photocatalytic oxidation; Au–cyanide complex; graphene-TiO2 composites;
Raman; FTIR; photoluminescence

1. Introduction

Anionic pollutants, (e.g., nitrate, cyanide, phosphate, fluoride, chromate, arsenate, and
vanadate, among others) in water and wastewater have been investigated for decades due
to their harmful effect on human health and ecosystems [1]. In particular, cyanides comprise
compounds containing the −C≡N group, (e.g., HCN, KCN, K4[(Fe(CN)6], CH3CN), which
are used in several industries such as mining, food processing, electroplating, coal coking,
among others [2]. Free cyanide refers to the cyanide anion (CN−) and the HCN molecule,
which coexist in equilibrium in the aqueous phase, depending on pH. For instance, at a pH
less than 9.3, most of the total cyanide will exist as HCN molecules, while only the cyanide
anion at higher pH will be present (T = 25 ◦C) [3]. Cyanide ions are commonly found in
wastewater in a concentration ranging from 1–500 mg/L, depending on the industry that
comes from, which is the most critical that of gold cyanidation solution (>500 mg/L) [4].

Free cyanide toxicity by inhalation, ingestion, or skin contact is well-known in human
beings. It works by inhibiting the cytochrome oxidase enzyme, disrupting the process
of cellular respiration [3–5]. Concerning the harmful effects of cyanides on living beings,
different strategies have been used to eliminate free cyanides by their total conversion into
harmless compounds such as carbon dioxide and nitrogen (2CN− + 2O2 → 2CO2 + N2).
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It is common practice to use chemical processes, (e.g., treatment with sulfur dioxide,
chlorine, ozone), physical, (e.g., aeration, reverse osmosis), and biological, (e.g., enzymatic
degradation), which have advantages and disadvantages in their operation [6–8]. On the
other hand, heterogeneous photocatalysis represents a viable green alternative for cyanide
degradation in wastewater, which is investigated using a wide variety of catalytic materials
under different operating conditions [9,10].

Titanium oxide-based nanomaterials efficiently degrade and mineralize toxic organic
and inorganic compounds in wastewater [11]. However, to improve its photocatalytic
performance, in terms of the visible light absorption and suppression of charge carriers’
recombination, the modification of TiO2 with carbon materials has shown surprising re-
sults [12–16]. Graphene materials possess excellent properties, such as high specific surface
area, outstanding charge carrier mobility, high thermal conductivity, high adsorption ca-
pacity/electrical conductivity, and high optical transparency. Moreover, they serve as an
electron reservoir to accept and transport photogenerated electrons in the semiconductor,
enhancing the adsorption capacity for reaction substrates and tuning the composites’ light
absorption range and intensity [17–19]. As a result, the applications of graphene-based com-
posites in photocatalysis, mainly in the remotion of organic pollutants, have exponentially
grown, as observed by the number of publications in the last decade [20,21].

The photocatalytic degradation of free and metal cyanide complexes using graphene/
TiO2 composites is scarce [22]. However, according to previous reports, graphene oxide
showed promising applications as a photocatalyst and adsorbent to eliminate free cyanide
and other harmful species [23,24]. Therefore, this current study aims to evaluate the
photocatalytic oxidation of free cyanide and gold–cyanide by using rGO/TiO2 composites.

This research aims to increase the photocatalytic activity of TiO2 by adding reduced
graphene oxide (rGO), improving the free cyanide degradation, and removing cyanide
and metal simultaneously in a gold–cyanide complex. In this investigation, the effect of
adding different amounts of rGO (1 and 3 wt.%) on the interaction with TiO2 and its role in
photocatalytic degradation of free-cyanide and gold–cyanide complex were analyzed. The
primary characterization techniques used to support these results were XRD, TEM, Raman,
FTIR, photoluminescence, and UV–Vis spectroscopies.

2. Materials and Methods
2.1. Materials

Sulfuric acid (purity > 98%), potassium permanganate, and sodium nitrate (purity > 99.4%)
were acquired from J.T.Baker; hydrogen peroxide (30% v/v), potassium hydroxide, potas-
sium cyanide (KCN, purity > 97%), and potassium dicyanoaurate (I) (KAu(CN)2) from
Sigma-Aldrich, ethylenediaminetetraacetic acid (EDTA) from Alyt brand, isopropyl alcohol,
titanium dioxide (P25) from Evonik; tri-distilled mercury from Merck, and industrial-grade
graphite. All reagents were used without further purification.

2.2. Preparation of rGO/TiO2 Composites

Firstly, graphene oxide was prepared using the Hummers method [25], and then
reduced graphene oxide TiO2 composites (rGO/TiO2) were obtained by an in situ photore-
duction method. Briefly, 2 g of TiO2 was added to 100 mL of anhydrous ethanol, and the
desired amount of graphene oxide (GO) was included in the suspension to obtain 1 and
3 wt.% GO. The suspension was homogenized in an ultrasound bath (10 min) and then
degassed for 5 min in a nitrogen atmosphere. The GO photoreduction was carried out in
an UV-light photoreactor (LuzChem, Ottawa, ON, Canada, six low-pressure Hg lamps,
λmax = 365 nm) for 12 h at room temperature (25 ◦C) under vigorous stirring. Finally, the
obtained solids were washed with deionized water and dried at 100 ◦C for 3 h.

2.3. Characterization

The DR UV–vis spectra were obtained using an Agilent Cary 100 spectrometer (Ag-
ilent Technologies, CA, USA) equipped with an integrating sphere. FTIR analyses were
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carried out on a NEXUS spectrometer (Thermo Scientific, Waltham, MA, USA) using the
transmission KBr pellet technique in the range of 4000 to 400 cm−1. Raman spectra were
recorded on an InVia Renishaw system (Renishaw plc., Gloucestershire, UK) equipped
with a cooled CCD detector (−73 ◦C) and a holographic super-Notch filter. The samples
were excited with the 532 nm Ar line; the spectral resolution was ca. 4 cm−1, and spectrum
acquisition consisted of 5 accumulations of 10 s. The photoluminescence (PL) spectra were
obtained in an FLS1000 spectrophotometer (Edinburgh Instruments, Livingston, UK) using
an excitation wavelength of 307 nm. The spectra were collected at room temperature with
a spectral resolution of 0.5 nm and consisted of 5 accumulations of 0.1 s at each point.
The catalyst morphology and particle size analyses were carried out using a scanning
electron microscope model JSM6701F (JEOL). Powder samples were analyzed using the
secondary electron mode. The textural properties of the catalysts were determined by
N2 physisorption measurements at low pressure and 77 K, using an equipment model
Autosorb iQ (Quanthachrome, VA, USA). The surface area was calculated using the BET
model at 0.05 < P/P0 < 0.3 values of the adsorption isotherms. Moreover, the BJH model
was used to estimate the pore size and volume from the desorption isotherms data.

2.4. Photocatalytic Evaluation

The photocatalytic degradation of free cyanide (CN−) and the gold–cyanide complex
was carried out in a 100 mL glass cell under UV light irradiation (LuzChem photoreactor,
six lamps, λmax = 365 nm). In a typical experiment, 50 mg of catalyst were suspended, using
an ultrasonic bath, in 50 mL of a KCN solution (50 ppm, pH = 12). After, a 400 mL/min
airflow was injected into the glass cell space in total darkness under constant magnetic
stirring for 30 min (adsorption–desorption process), and then the UV lamps were turned on.
During the experiment, aliquots were taken every 30 min and filtered using a 0.2 µm filter
(Millipore) to remove the catalyst. CN− and cyanate ions were quantified in each sample
using the differential pulse polarography (DPP) technique (797 VA computrace, Metrohm).

In the case of the gold–cyanide complex degradation experiments, an aqueous solution
of KAu(CN)2 (300 ppm) and 500 µL of isopropyl alcohol as a sacrificial agent, and the
experimentation followed the same protocol used for the degradation of free cyanides.
The DPP technique was also used to analyze the [Au(CN)2]− ion concentration, and it
is the first time this technique has been reported in monitoring the Au–CN complex.
Detailed information on the DPP technique analysis of free cyanide and cyanate is in the
Supplementary Information (SI).

3. Results and Discussion
3.1. Characterization

The coexistence of rGO and TiO2 in the composite materials was detected by Raman
spectroscopy. Figure 1a shows the Raman spectra of the TiO2, GO, and composite mate-
rials. In the TiO2 Raman spectrum, several bands are observed around 144, 396, 517, and
638 cm−1 characteristics of the Eg, B1g, A1g + B1g, and Eg vibrational modes of anatase
phase, respectively [26]. At the same time, two bands at 445 and 605 cm−1 were detected
and attributed to the rutile phase’s Eg and A1g modes. Graphene oxide (GO) has two
characteristic signals at 1350 and 1600 cm−1 corresponding to the D and G bands. The D
band is associated with sp3 defects within the hexagonal graphitic structure. In contrast,
the G band is characteristic of sp2 hybridized carbon materials, providing information on
the plane vibration of sp2 bonded carbon domains [27]. The D and G band ratio (ID/IG) is
a parameter that indicates the disorder degree in the graphitic structure or edge. The ID/IG
ratio calculated for the materials were 1.56, 0.99, 1.04, and 1.36 for GO, rGO, 1.0 rGO/TiO2
and 3.0 rGO/TiO2. As can be seen, the 1.0 rGO/TiO2 composite shows the lowest ID/IG
ratio, smaller than that of GO, indicating an interaction between GO and TiO2 through π–π
stacking. This decrease reveals an increase in sp2 domains in the carbon atoms planes due
to decreasing unsaturated defects atoms in the GO by eliminating oxygenated functional
groups and thus transforming GO to rGO [28–30].
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FT-IR spectra of the TiO2 and rGO/TiO2 composite materials are displayed in Figure 1b
and the GO spectrum are illustrated in Figure S1 (SI). In the GO spectrum, a broadband
center at 3410 cm−1 is observed, characteristic of stretching vibrations of the −OH bond
due to adsorbed water molecules on the surface. Furthermore, the GO absorption spectrum
also presented bands around 1721, 1574, 1389, and 1047 cm−1, attributable to stretching
vibrations of carbonyl/carboxyl groups (C=O) present in the edges of graphitic layers,
skeletal vibration of the graphene, bending vibration of tertiary C-OH hydroxyl groups,
and stretching vibrations of =C-H groups, respectively [30,31]. Figure 1b shows FTIR
spectra of TiO2 and composite materials in which a broad absorption band appears around
3409 cm−1, characteristic of the O-H stretching vibration of −OH groups or adsorbed water.
Other bands are perceived around 1579 and 1383 cm−1, which are characteristic of skeletal
vibration of the graphene and C-H vibration, respectively. Additionally, a broad absorption
band between 400 and 1000 cm−1 is detected in the FTIR spectra of TiO2 and rGO/TiO2
corresponding to Ti-O-Ti vibrations.

However, it has been a point of debate in recent years to determine the band’s position
corresponding to the interaction of TiO2 nanoparticles and rGO sheets via the possible
formation of the Ti-O-C bond [32,33]. Thus, this zone was deconvoluted, and the results
are displayed in Figure 2a–d. It can be noted that the broad absorption band between
400 and 1000 cm−1 for TiO2 and the composite materials show three components at 489,
660, and 783 cm−1, which have been assigned to Ti-O-Ti vibrations [34,35]. Furthermore,
a displacement in the band position at 489 cm−1 to higher wavenumbers for 1.0rGO/TiO2
and 3.0rGO/TiO2 composites were observed, possibly due to a chemical interaction be-
tween TiO2 nanoparticles and rGO [30,36]. Interestingly, our FTIR results do not support
the formation of a Ti-O-C bond since the deconvolution analysis in the 1000 cm−1 region
always showed three components, even though the rGO is not present in the photocatalyst.

The presence of Ti-O-C bonds improves the separation of photogenerated electrons
and holes after light irradiation, decreasing the charge carrier’s recombination and giving
rise to a higher photocatalytic activity [31,34]. The deconvolution of the Raman spectra was
performed in the range of 300 and 800 cm−1 for TiO2 and composite materials to support
a Ti-O-C bond formation, as shown in Figure 2d–f. As can be seen, three components
at 635 (Eg), 516 (A1g + B1g), and 396 (B1g) cm−1 correspond to the anatase phase, and
two components at 608 (A1g) and 433 (Eg) cm−1 belong to the rutile phase, in the decon-
volution of the Raman spectra are observed. The intensity of these last two components
decreases with the increment of the rGO content. Additionally, an increase in the full width
at half maximum (FWHM) of the rutile A1g and Eg Raman peaks in the composite materials
was observed (Figure 2e). Shahbazi et al. [37] attributed the widening of the rutile Eg
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Raman peak to the distortion of the titania framework host due to the introduction of rGO
into the titania lattice.
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The photocatalysts were characterized using UV–Vis diffuse reflectance spectroscopy
to know the effect of the amount of rGO in the composite materials on the optical properties.
The composite materials’ optical bandgap was determined using the Tauc model [38],
Figure 3a–c. The bandgap was obtained by plotting a tangent line to the point of inflection
of the curve of the graph (αhv)1/2 vs. hv (energy), where (αhv)1/2 = 0. A decrease (redshift)
was observed, due to the incorporation of the rGO into the TiO2 P25 (3.08 eV). The resulting
bandgap values for the composite materials were: 2.18 and 2.19 eV for 1% rGO, and 3% rGO,
respectively. Other studies have reported the same behavior [30,34]. This decrease in the
bandgap could be attributed to the chemical interaction between the TiO2 nanoparticles and
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rGO nanolayers, resulting in increased photocatalytic activity in the composites compared
to pristine TiO2.
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The photoluminescence spectra of TiO2 and rGO/TiO2 composites were determined
at steady-state and room temperature under an excitation wavelength of 307 nm (Figure 3d)
to verify the charge carriers’ recombination process. The presence of rGO in the composites
causes a decrease in the PL intensity, depending on its loading. This behavior could be
explained by suppressing the electron–hole recombination in the TiO2 [39]. Additionally,
the peaks at PL spectra can be ascribed to several defects due to self-trapped excitons,
oxygen vacancies, or other surface states [40]. For example, the peaks at 439 nm could be
assigned to the self-trapped exciton caused by the de-excitation of Ti3+

3d electrons to the
valence band [41]. The same can be said for the 450, 463, and 468 nm signals. Finally, the
peaks at 482 and 493 nm could be caused by oxygen vacancies [41].

TiO2 (Figure S3a) indicates the presence of a nanometric powder made of dense and
equiaxial particles exhibiting a particle diameter of ca. 30 nm. The analyses by scanning
electron microscopy and nitrogen physisorption were performed to know the effect that
the addition of rGO to TiO2 has on the bulk and surface properties, respectively. Figure S3
shows the SEM analysis of the samples. The morphology and observed primary particle size
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did not change significantly in the samples of 1.0rGO/TiO2 (Figure S3b) and 3.0rGO/TiO2
(Figure S3c). However, certain agglomerates were observed, attributed to the incorporation
of the rGO phase, which the TiO2 must cover as the former is present in the sample as
a minority component. Generally, the obtained samples are homogeneous, with no phase
segregation observed.

Figure S4 shows the obtained N2 adsorption/desorption isotherms. Based on the
UIPAC classification, TiO2 exhibits a type II isotherm characteristic of dense, non-porous
solids. This result agrees with SEM observations. Moreover, the specific surface area
values were calculated using the BET model and are presented in Table S1. As expected,
incorporating rGO into the TiO2 promotes a higher specific surface area for the 3.0rGO
sample. Some changes are observed in the isotherms profile, wherein the hysteresis loop
area increases as the rGO increases; in the same sense, an increase in the pore volume is
evidenced due to the incorporation of the rGO on TiO2 particles.

3.2. Photocatalytic Activity

Before the photocatalytic evaluation, three blank experiments were performed. First,
no cyanide losses were observed by volatilization in the reaction medium at pH = 12
after three hours. Second, the cyanide conversion in the absence of a photocatalyst was
negligible, even under UV light irradiation. Third, the cyanide reaction in the presence of
the photocatalyst, but without UV light, did not proceed. Additionally, CN− adsorption
was performed on TiO2 and rGO/TiO2 composites; in these experiments, the CN− con-
centration decreased ca. 10% after 60 min in the dark, under constant stirring. The only
byproduct detected in the whole irradiation time was the cyanate ion.

The degradation profiles of CN− and cyanate ions (CNO−) using TiO2 and the
rGO/TiO2 catalysts are presented in Figure 4. Interestingly, complete cyanide degra-
dation was observed with all photocatalysts at different irradiation times, depending on
the rGO concentration in the composites. For example, TiO2 required 335 min of irradiation
to achieve the total cyanide conversion. Similar results were obtained by Kim et al. [42]
but using 30 ppm of cyanide and irradiating with a UV-C lamp (180–280 nm). Note that
the concentration profiles, (i.e., cyanide and cyanate) by using TiO2 (Figure 5a) or the
rGO/TiO2 photocatalysts (Figure 5b,c) seem the same. Still, a faster reaction rate can be
observed and corroborated by the shorter degradation time required (150–180 min). As
a result, the presence of rGO improves the photocatalytic activity of TiO2 significantly,
transforming CN− into CNO−, a less toxic byproduct (CN− + 2OH→ CNO− + H2O).

A photocatalyst’s stability and reusability are essential in determining catalytic mate-
rials’ practical utility. Thus, high stability is shown by the 1% rGO/TiO2 composite after
five cycling tests are worth noting, which lost three percentage points after the third cycle
and subsequently remained constant, indicating the composite’s robustness in the highly
alkaline medium (Figure 4d).

Under our experimental conditions, cyanide degradation followed pseudo-first-order
kinetics independently of the used photocatalyst. The calculated values, in min−1, of the
apparent reaction rate constant (k) were 0.0052, 0.0115, and 0.0107 for TiO2, 1.0rGO/TiO2,
and 3.0rGO/TiO2, respectively. According to these values, the best photocatalyst was
1.0 rGO/TiO2. This behavior has been previously observed in other rGO/TiO2 composites,
where an excess of rGO decreased the photocatalytic performance of the materials [43,44].
This decrease is normally attributed to the higher rGO coverage of the TiO2 surface, which
reduces the semiconductor’s light absorption.

Two routes are known to achieve the photocatalytic oxidation of cyanides in an aqueous
solution at high pH (>10): indirect, which employs the photogenerated OH radicals in
a homogeneous phase, and direct, by using the trapped holes at the surface hydroxyls
groups [45]. Even though we have no evidence to support one or the other conversion
pathway for cyanides, the presence of rGO improved the TiO2 photoactivity, which could
be linked to a higher ROS (O2·, HO2·, HO·, among others) formation due to a reduced
electron–hole pairs recombination rate [28]
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on the FWHM of the Rutile Eg Raman peak.

As mentioned before, adding small amounts of rGO to TiO2 modifies its optical
properties, confirming the chemical interaction between the two species. In other words,
the observed slight changes in the TiO2 peak position (FTIR) and an increase in the FWHM
of the Rutile Raman peak in the composite materials can be correlated with the rate constant
for CN− photocatalytic oxidation, as is shown in Figure 5.
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This work introduces the results of the photocatalytic degradation of the Au–CN
complex using rGO/TiO2 composites. The degradation profiles of the Au–CN complex
(potassium dicyanoaurate at an initial concentration of 300 ppm) are shown in Figure 6a.
The metal complex was degraded in the presence of isopropyl alcohol (10 mM) as a sacrifi-
cial electron donor and ambient air. Under these experimental conditions, the reduction in
the gold–cyanide complex forms metallic gold and free cyanide according to the following
reaction [46]: Au(CN)2

− + e− → Au + 2 CN−.
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Experimental evidence of the gold-cyanide degradation is presented in Figure 6b.
A dark field TEM micrograph shows that gold particles appear deposited on the 1% rGO/TiO2
catalyst with different sizes. Note that the Au–CN complex degraded linearly with a clear
dependence on the rGO amount. Surprisingly, the higher photocatalytic degradation
(~30%) was obtained with the 1% rGO/TiO2, and the TiO2 presents a negligible conversion
of the Au–CN complex. An increment in the rGO content in the composite materials
(3% rGO/TiO2) and a decrease in photocatalytic activity were observed. This decrease
could be due to the strong absorption of light or competition for light capture between
reduced graphene oxide and TiO2. Figure 6c shows the various stages of the evolution of the
graphene/TiO2 composites, from the integration of GO (sand color) to its transformation
into rGO by photocatalytic reduction (gray color), and the deposit of gold particles on the
composite (purple color). These results demonstrate an improvement of the photocatalytic
activity of TiO2 again by adding rGO, which could explain a decrease in the recombination
rate of electron–hole pairs, allowing the decomposition of a highly stable Au–CN complex.

A schematic proposal to explain the Au–CN complex photocatalytic reduction is
presented in Figure 7. The first step consists of the Au(CN)2

− anion adsorption on the
composite’s surface in an aqueous solution at pH 12 [47,48]. In the second step, UV
light irradiation starts with the generation of the electron–hole pairs and promotes the
Au(CN)2

− reduction and isopropyl alcohol oxidation, respectively. Experimental evidence
of these reactions was the metallic gold particles deposited on the composite and the initial
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generation of acetone from isopropyl alcohol oxidation. In the third step, the deposited Au
particles enhanced the photocatalytic oxidation of formed cyanide ions (Equation (3)) to
cyanate. The fourth stage corresponds to the reaction between surface hydroxyls linked to
TiO2 and the photogenerated holes producing OH radicals (Equation (4)). The subsequent
steps (Equations (5)–(7)) involve reactions of the other radicals formed with the cyanide for
its transformation into cyanate.
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presence of the rGO-TiO2 P25 composite under UV light.

4. Conclusions

The photocatalytic reduction of graphene oxide successfully obtained reduced graphene
oxide/TiO2 composites. Both composites presented a higher photocatalytic activity on free
cyanide oxidation than TiO2, but 1% rGO loaded to TiO2 showed the best performance. The
enhanced activity was attributed to the interaction between the rGO and TiO2, as evidenced
by Raman, FTIR and UV–Vis, and photoluminescence studies. This interaction would
reduce the charge carrier’s recombination rate, leading to an effective activation of TiO2 by
UV irradiation and an enhanced charge transfer between RGO and TiO2, increasing the
photocatalytic activity measured as cyanide degradation. In addition, the optical properties
of the composites revealed a chemical interaction (Ti-O-C) between the TiO2 and rGO,
which was correlated with the rate constant in the photocatalytic oxidation of cyanide.

Additionally, the rGO/TiO2 composites showed higher activity than TiO2 in the
degradation of the Au–CN complex at high initial concentrations (300 ppm). The Au−

ion was successfully reduced and deposited on the surface of TiO2, as evidenced by
TEM analysis.
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