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Abstract: High efficient, low-cost and environmentally friendly-natured bi-functional-based per-
ovskite electrode catalysts (BFPEC) are receiving increasing attention for oxygen reduction/oxygen
evolution reaction (ORR/OER), playing an important role in the electrochemical energy conversion
process using fuel cells and rechargeable batteries. Herein, we highlighted the different kinds of
synthesis routes, morphological studies and electrode catalysts with A-site and B-site substitution
co-substitution, generating oxygen vacancies studies for boosting ORR and OER activities. However,
perovskite is a novel type of oxide family, which shows the state-of-art electrocatalytic performances
in energy storage device applications. In this review article, we go through different types of BFPECs
that have received massive appreciation and various strategies to promote their electrocatalytic activ-
ities (ORR/OER). Based on these various properties and their applications of BFPEC for ORR/OER,
the general mechanism, catalytic performance and future outlook of these electrode catalysts have
also been discussed.

Keywords: bi-functional perovskite; synthesis route; nanocomposite; oxygen reduction reaction;
oxygen evolution reaction

1. Introduction

Nowadays, most human beings are consuming energy from various renewal sources
that have widespread applications in human activities, correspondingly conversion of
chemical energy into electrical energies, like supercapacitors [1], fuel cells [2], batteries [3],
solar cells [4] and microbial fuel cells [5], etc. The sustainable regenerative energies are ob-
tained from the fundamental electrochemical concepts (energy conversion/storage) of both
oxygen reduction and oxygen evolution reactions [6]. Most of the researchers have focused
on the development of major scientific and technology-oriented inexpensive, efficient, noble
metal-free and stable electrode catalysts, which can be used as next-generation sustainable
energy storage devices and can improve their electrocatalytic energy storage activities [7].
Since the 1980s, the cubic crystal structure of ABO3-type perovskites has received at-
tention as themost promising electrode candidate for highly efficient electrocatalysts in
both ORR and ORE, because of cost-effectiveness, fascinating electrochemical properties,
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high-power density, high-energy-density and long-term cyclic durability in electric ve-
hicles [8–11]. Herein, an interesting bi-functional oriented Ba0.5Sr0.5Co0.8Fe0.2O3−δbased
g-C3N4-supported Vulcan carbon composite electrode catalyst also expedites an efficient
suitable air cathode for the ORR and OER process [12]. The cost-effective electrode materials
of double perovskite CaCu3Ti4O12 (CCTO) have gained significant attention due to lower
overpotential, excellent electrocatalytic performances and high electrode stability for both
ORR and OER reactions [13]. Furthermore, developing Fe-based Bi0.5Sr0.5Fe0.95Mo0.05O3−δ

perovskite electrodes have successfully been studied as a potential electrode candidate
for practical uses in solid-oxide fuel cells (SOFCs). In addition to that, thermal expansion
behavior, phase structure and electrochemical properties are also evaluated [14]. Recently,
Vij and his co-workers [8] have reviewed nickel-based electrode catalysts, which display
exciting electronic properties, better surface adsorption assets, high corrosive resistance
with a synergetic effect that takes place between nickel and their neighbouring molecules
for their clean energy applications. Rai et al. [15] have developed an inexpensive, efficient
and bi-functional fluorinated-based copper-manganese oxide (FCMO) electrode catalyst,
which was showed both ORR and OER under acid and alkaline conditions. The catalyst
also exhibited excellent electrochemical reactions, and it was found to be a two-electron
transfer process. The bi-functionality-natured nitrogen-doped carbon nanostructures (CNs)
have been prepared by the ball-milling method. Thus, the ORR and OER electrocatalytic
activity has been observed to increase in the pyridinic-N site and can be used as a rational
catalyst [16]. La0.8Sr0.2Mn0.95Sc0.25Po0.025O3−δ (LSMSP) is one of the most significant active
and robust-perovskite-based electrode catalysts for superior ORR studies. The developed
co-doping LSMSP perovskite oxide can play a crucial role in ORR activity and excellent
cyclic durability under alkaline conditions [17]. On the other hand, Zhang et al. [18]
have reported a novel perovskite composition of SrSc0.175Nb0.025Co0.8O3−δ (SSNC) and
Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) that can enable oxygen reduction reaction with the deliv-
ered power density value of910 mW cm−2. Accordingly, a non-precious metal (NPM)-based
cobalt and N-doped multi-walled carbon nanotube (N-MWCNTs-Co) catalyst has been
synthesized via solid-state pyrolysis (SSP) method, where the fabricated N-MWCNTs-
Co catalyst can interact with hydrated alkali metal cations and adsorbed oxygen-based
species for ORR and OER activities [19]. In particular, a novel cobalt-free-based perovskite
(SrSc0.025Nb0.075Fe0.9O3−δ) composite has received special attention, because of its favor-
able structural arrangements and for the treatment of improved activity for ORR, which
significantly enhances their CO2 resistivity [20]. Xu et al. [21] have fabricated tin and iron
co-doped BaCo0.9-xFexSn0.1O3−δ (BCFSn) perovskite by a conventional solid-state reaction-
based method, while the developed BCFSn perovskite displayed intrinsic OER activity
under alkaline conditions with superior electrode OER stability. Recently, Kuai et al. [22] de-
signed BaCo0.4Fe0.4Zr0.4Y0.1O3−δ (BCFZY) cathode materials, which showed better phase
stability, attractive performance at low-to-medium temperature conditions and significantly
enhanced their ORR activity with the reported specific resistance value of 0.011 Ω·cm2.
Zhuang et al. [23] have prepared ultrathin iron-cobalt oxide (FexCoy-ONSs) nanosheets by
a chemical method, based on abundant active sites and high surface area of the FexCoy-
ONSs electrode catalyst leading to significantly enhanced their electrode conductivity
and could improve the catalytic activity of OER. Table S1 compares the synthesis route,
morphologies and supporting electrolytes for ORR and OER of different types of perovskite-
based electrocatalysts. A brief schematic representation of an energy-based application
is given in Scheme 1. The mechanism is mainly focused on perovskite-based electrode
catalysts for ORR and OER.



Materials 2021, 14, 2976 3 of 27
Materials 2021, 14, x FOR PEER REVIEW 3 of 27 
 

 

 

Scheme 1. Mechanism of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) 

in alkaline medium. 

In this article, we elaborated on the recent development of nanocomposite-based bi-

functional perovskite electrode catalyst, which emphasizes the possible mechanism and 

electrochemical energy storage in both ORR and OER. Additionally, we discussed design, 

various synthesis approaches, different analytical and electrochemical characterizations, 

fabrication of nanocomposites and extensive studies of electrocatalyst based on perov-

skite-based composites. Extensive investigations are made to analyze their physical prop-

erties and the charge transfer between A (mono-valet metallic cation) and B (di-valent 

metallic cation), which could play an essential role in electrochemical applications. Fur-

thermore, the designing of high-performance-based bi-functional-supported perovskite 

electrocatalyst highlighted better ORR and OER activities. 

2. Synthesis of Perovskites 

Several methodologies have been established to synthesize perovskite oxides, includ-

ing the conventional solid-state method [24], combustion synthesis [25], co-precipitation 

[26], hydrothermal/solvothermal methods [27], sol–gel [28] and polymer-assisted ap-

proach [29]. The solid-state reaction, combustion and co-precipitation methods, amongst 

others, necessitate extreme reaction temperature as well as other adverse unfavorable con-

ditions like elevated pressure and special equipment. Furthermore, the synthesized sub-

stance generally has relatively large-sized particles (micron size) and a small surface area, 

which is not conducive to improving their electrocatalytic activities. Although the hydro-

thermal/solvothermal approach could be employed to synthesize perovskites with a vari-

ety of distinct surface structures, its efficiency is limited due to reactor size constraints. 

Consequently, the sol–gel and polymer-assisted methods were used to achieve perov-

skites for broad-scale manufacturing. While the sol–gel process requires more than one 

step, which initially converts the sol into gel followed by a calcination process, the poly-

mer-assisted method only encompasses the thermal treatment of the metal–polymer com-

plex solution to obtain the desired product, and it is also suitable for broad-scale produc-

tion [30]. Additionally, several other methods for synthesizing perovskites have been de-

vised. For instance, Chang et al. [31] have prepared La0.6Ca0.4CoIr0.25O3.5−δ perovskite pow-

ders using a mechanical alloying process. The galvanometric measurements showed that 

the electrocatalytic stabilities of the prepared perovskite powders are stable and sustain-

able. Thermal decomposition of freeze-dried citrates and the Pechini process were used to 

obtain nickel and iron substituted LaCoO3 with rhombohedral distorted perovskite struc-

tures in the temperature range of 600–900 °C [32]. Moreover, a simple electrospinning 

Scheme 1. Mechanism of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in
alkaline medium.

In this article, we elaborated on the recent development of nanocomposite-based
bi-functional perovskite electrode catalyst, which emphasizes the possible mechanism and
electrochemical energy storage in both ORR and OER. Additionally, we discussed design,
various synthesis approaches, different analytical and electrochemical characterizations,
fabrication of nanocomposites and extensive studies of electrocatalyst based on perovskite-
based composites. Extensive investigations are made to analyze their physical properties
and the charge transfer between A (mono-valet metallic cation) and B (di-valent metallic
cation), which could play an essential role in electrochemical applications. Furthermore, the
designing of high-performance-based bi-functional-supported perovskite electrocatalyst
highlighted better ORR and OER activities.

2. Synthesis of Perovskites

Several methodologies have been established to synthesize perovskite oxides, including
the conventional solid-state method [24], combustion synthesis [25], co-precipitation [26],
hydrothermal/solvothermal methods [27], sol–gel [28] and polymer-assisted approach [29].
The solid-state reaction, combustion and co-precipitation methods, amongst others, ne-
cessitate extreme reaction temperature as well as other adverse unfavorable conditions
like elevated pressure and special equipment. Furthermore, the synthesized substance
generally has relatively large-sized particles (micron size) and a small surface area, which
is not conducive to improving their electrocatalytic activities. Although the hydrother-
mal/solvothermal approach could be employed to synthesize perovskites with a variety of
distinct surface structures, its efficiency is limited due to reactor size constraints. Conse-
quently, the sol–gel and polymer-assisted methods were used to achieve perovskites for
broad-scale manufacturing. While the sol–gel process requires more than one step, which
initially converts the sol into gel followed by a calcination process, the polymer-assisted
method only encompasses the thermal treatment of the metal–polymer complex solution
to obtain the desired product, and it is also suitable for broad-scale production [30]. Ad-
ditionally, several other methods for synthesizing perovskites have been devised. For
instance, Chang et al. [31] have prepared La0.6Ca0.4CoIr0.25O3.5−δ perovskite powders
using a mechanical alloying process. The galvanometric measurements showed that the
electrocatalytic stabilities of the prepared perovskite powders are stable and sustainable.
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Thermal decomposition of freeze-dried citrates and the Pechini process were used to obtain
nickel and iron substituted LaCoO3 with rhombohedral distorted perovskite structures in
the temperature range of 600–900 ◦C [32]. Moreover, a simple electrospinning technique
coupled with successive calcination was used to synthesize Mg-doped perovskite LaNiO3
(LNO) nanofibers (LNMO NFs) [33]. The aforementioned synthesis methods necessitate
a complex process as well as specialized equipment, which increases the possibility of
material synthesis and the cost of the products. In this regard, a suitable and feasible
synthesizing method needs to be chosen based on the perovskites applications [34]. The
Hydrothermal/Solvothermal method pertains to the preparation of materials via chemical
processes in solution at temperatures and pressures above ambient in a sealed setting [35].
La2O2CO3-La0.7Sr0.3MnO3 (LC-LSM) hybrid material was prepared via the hydrother-
mal method. The solvents strontium nitrate, manganese nitrate and lanthanum nitrate,
cetyltrimethyl ammonium bromide in different molar ratios were dissolved in distilled
water. The KOH solution was then added to the above mixture, and the pH of the solution
was adjusted to 9. The solution was taken in a Teflon container. The hydrothermal tank
was heated to 180 ◦C and maintained at the temperature for 2 h. The deposit was washed
three times with deionized water and with ethanol. Eventually, the product was dried at
80 ◦C for 24 h and calcined at 500 ◦C for 2 h. Figure 1 shows the schematic representation
for synthesizing the LC-LSM hybrid catalyst [36].
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Figure 1. Synthesis of the LC-LSM hybrid catalyst. Copyright 2018 by the American Chemical Society [36].

An ionic-liquid method was employed to synthesize highly crystalline
Ba0.5Sr0.5CoxFe1−xO3−δ with the whole compositional range, resulting in a high degree
of phase purity [37]. Interestingly Du and his co-authors [38] have synthesized the non-
stoichiometric CaMnO3-δusing the Pechini route. The as-prepared perovskite material
showed an enhanced electrical property. Moreover, it is a promising active, low-cost bi-
functional catalytic material for reversible ORR and OER reactions. The sol–gel method
entails converting a liquid to gel, followed by post-treatment to produce the solid substance.
The key advantage of the sol–gel approach is that it can produce materials with excellent
purity and uniform nanostructures. Accordingly, the sol–gel method has been extensively
used in a variety of fields, including the preparation of catalysts, specifically perovskite
oxides [39,40]. Liu et al. [41] reported the synthesis of dual perovskite Sr2CoMo1−xNixO6-δ
using the sol–gel method. Initially, Sr(NO3)2, Co(NO3)2·6H2O, (NH4)6Mo7O24·4H2O and
Ni(NO3)2.6H2O were dissolved in distilled water in the appropriate molar ratios. In or-
der to form a clear solution, it was made to stir vigorously on a hot plate at 200 ◦C. The
EDTA and CA were then mixed into the above solution to acts as complexing agents. To
prevent precipitation, the pH of the solution was set to about 7 using NH3·H2O. After
completely removing the water from the solution through evaporation under thermal treat-
ment, a transparent sol–gel was obtained, which was then transferred to a muffle furnace
to be sintered in air at 600 ◦C for 4 h and then at 1100 ◦C to get the desired double per-
ovskite oxide powder. Similarly, Fabbri et al. [42] studied the electrochemical activity and
selectivity toward the oxygen reduction reaction for Ba0.5Sr0.5Co0.8Fe0.2O3-δcomposite elec-
trode prepared via the sol–gel route. In the experimental procedure, Ba(NO3)2, Sr(NO3)2,
Co(NO3)2·6H2O and Fe(NO3)2 were dissolved in nitric acid solution. Citric acid was used
as a chelating agent. The pH of the resultant transparent solution was adjusted between 6
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and 8 by NH4OH solutions. After that, thermal treatment was used to extract the water con-
tent before it converted into a gel and was then ignited to produce black ash. Cao et al. [43]
reported the synthesis of Cu2ZnSnS4 nanoparticles via a hot injection technique. In this
technique, the authors used CZTS nanoparticle ink to prepare a hole transporting layer in a
paintable carbon electrode. Furthermore, the spin-coating speed and annealing time of the
CZTS hole transporting layer are optimized sequentially. Perovskite type barium titanate
nanoparticles decorated on RGO (reduced graphene oxide) nanosheets were synthesized
successfully using the sonochemical process for determining ractopamine in meat sam-
ples [44]. La4BaCu5O13+δ and La6.4Sr1.6Cu8O20±δ perovskites have been synthesized by a
Pechini method. The synthesized perovskite materials exhibit good electrical conductivity
and have been explored as promising cathode materials for IT-SOFC applications [45].
Perovskites can be known as a compound made up of two metal oxides. Consequently,
perovskites are typically synthesized using the solid-state approach, wherein two metal
oxides are combined and incorporated through high-temperature calcination. For instance,
perovskite NdBaMn2O5 has been synthesized by the solid-state method in decreasing the
atmosphere. Moreover, this material was considered a fascinating material for anode and
cathode symmetric SOFC [46].

3. Morphology of Perovskites

Perovskite materials have received much interest because of their power efficiency,
ease of fabrication, low cost and other photovoltaic applications. The morphology of
the perovskites is very important when it comes to applications. In this section, we dis-
cussed various perovskite materials and their morphological structures from a different
perspective. LaNiO3 and LaNi0.85Mg0.15O3 nanofibers were synthesized via an electro-
spinning method. The prepared LNMO NFs exhibit superior catalytic activity over OER
and ORR than LaNiO3, and also it had a more positive half-wave potential (0.63 V) and
lower overpotential of 0.45 V at a current density of 10 mA cm−2. As shown in Figure 2,
the morphology of the LNMO has remained unchanged after calcination (Figure 2a), and
the LNMO NFs have shrunk slightly (Figure 2b) [33]. Since the LNMO has a strong
surface oxygen-binding that increases OER activity (Figure 2c), it can be used as a promis-
ing bifunctional catalyst for Zinc–air battery applications. A novel composite cathode
PrSrFe0.5Co0.5O4−Pr0.4Sr0.6Fe0.5Co0.5O3 (PSFC214-113) was synthesized by a sol–gel method.
The voltage output of the composite cathode at a steady current load demonstrated that
the cell voltage remained stable over time, verifying the excellent ORR stability of the
PSFC214-113. In addition, the intensity of the spent materials is lower than that of the fresh
sample. The cross-sectional scanning electron micrographs reveal no substantial SrO after
stability measurement. Additionally, the electrode retains its original morphology and only
partial agglomeration after stability testing [47].
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Figure 2. (a) SEM image of the as-electrospun product of LNMO (b) SEM image of the LNMO NFs
after calcination at 700 ◦C (c) Computed reaction free energy diagram for ORR/OER reactions on
LNMO 001 surfaces. Copyright 2019 by the American Chemical Society [33].

Perovskite-structured calcium and strontium-doped rare-earth cobaltate powders
were synthesized by various processes. The powders prepared have a cubic or rhom-
bohedral structure form of different morphologies [48]. The new types of ligand-free
powdersbased on two different layered (La0.5Sr1.5MnO4, pc-LSMO) and pseudocubic
(La0.7Sr0.3MnO3, I-LSMO) perovskites were synthesized by one-pot route (Figure 3a).
Among these nanocubes (Figure 3b) and nanocrystals (Figure 3c), pc-LSMO nanocrystals
could exhibit better ORR activity (21.4 A g−1) with remarkable cyclic stability under alka-
line conditions [49]. Ruthenium-based pyrochlores (A2Ru2O7, A=Y, Nd, Bi) composite has
shown the distribution of nanoparticles, which is analyzed by STEM-EDX analysis and the
systematic theoretical study of OER activities [50].
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Figure 3. (a) Reaction pathway yielding layered perovskite (l-LSMO) nanoparticles from pc-LSMO
into molten NaNO2, (b) HRTEM images of pc-LSMO nanocubes and (c) HRTEM image of an l-LSMO
nanoparticle and corresponding fast Fourier transform.Copyright 2020 by the American Chemical
Society [49].

LaNiO3, La2NiO4, and SrLaNiO4 nanoparticles were synthesized through the molten
salts synthesis method. According to Scanning Electron Microscopy (SEM) and Trans-
mission Electron Microscopy (TEM), LaNiO3 is made up of well faceted truncated cubes
with an average particle size of 100 nm. Tiny particles as small as 20 nm can also be seen
in these micrographs [51]. Song et al. [52] synthesized Ni/Mn promoted cobaltite by a
one-step wet-chemical method. The inclusion of Mn might pull apart the microspheres
and nanosheets, prohibiting Meso-Co nanoparticles from aggregating, and this is consis-
tent with the SEM results (Figure 4a,b). Moreover, as the Mn content increases, the X%
Mn-Co content decreases resulting in an increase in surface area. The lattice fringes in the
HR-TEM image and the SAED ring patterns in the figure confirm the good crystallinity of
the prepared mesoporous materials (Figure 4c).
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La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF) perovskites have been synthesized by a wet chemical
process. Field Emission Scanning Electron Microscopy (Fe-SEM) reveals that the LSCF
perovskites have a smooth surface. When the weight percentage of Pd increases to 30%, Pd
particles entirely cover the surface of LSCF [53]. Similarly, the PrBa0.94Co2O5+δ sample was
prepared by a solid-state reaction method. SEM micrographs reveal that the particles are
embellished with a few nanorods. The precursor PBC−1, on the other hand, is comprised
of irregular particles ranging in size from 0.5 to 1.5 µm [54].

4. Electrochemical Impedance Spectroscopy (EIS)

Electrochemical impedance spectroscopy (EIS) denotes a method that is used to ac-
quire insight into the bulk and interfacial properties of multi-junction devices, it is being
used to analyze the devices under various in-situ conditions such as a function of dc
voltage, illumination intensity and temperature. Over decades, it has been used by sev-
eral researchers to study the response of perovskite solar cells under different operating
temperatures. This EIS technique provides the impedance spectra of the samples against a
frequency range of 0.1–1 MHz against an AC voltage. It is also interpreted as a Nyquist
plot with Z real and Z imaginary along the x-axis and y-axis, respectively [55]. This EIS
analysis has been used for the study of electrochemical/structural properties of heteroge-
neous systems, like porous membranes and different kinds of modified nanocomposite
electrodes. Additionally, it can measure the polarization resistance (low-frequency) and
solution resistance (high-frequency), respectively [56]. Porous-based one-dimensional
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LaFe1−xNixO3 (LFNO NFs) perovskite nanofiber was prepared by a feasible electrospin-
ning technique (Figure 5a), which generally enables one to measure interplanar distance
(0.377 and 0.378 nm) by HR-TEM analysis (Figure 5b). From the Nyquist plot studies, LFNO
NFs-III catalyst could exhibit lower charge–transfer resistance (RCT) value and improve its
OER activities (Figure 5c) [57].
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of LFNOSe-III. Copyright 2020 by the American Chemical Society [57].

Amiripour et al. [58] prepared an inexpensive, novel and highly active AuNi bimetal-
lic metal modified on a nano X zeolite (AuNiNXZ) composite considered as the green
method (Figure 6a). The nonhomogeneous surface structured bimetallic nanoparticles
information was received from TEM analysis (Figure 6b)and it can be recognized as a
potential electrode catalyst, which can improve their electrocatalytic activity with favorable
low overpotential (210 mV@10 mA cm−2) for OER (Figure 6c). The symmetrical study of
Zr-doped NdBaCo1.95Zr0.05O5+δ double perovskite (Figure 7a) electrode catalyst resulted
in attractive cathode materials, good chemical compatibility with high SOFC conversion ef-
ficiency. From the scanning electron microscope (SEM) analysis, the unique morphological
lattice structure, particle size and cathode porosity for NBCZrOare shown inFigure 7b. The
typical EIS analysis can exhibit lower ASR values and the polarization impedance values
can be reached at 0.006, 0.012, 0.024, 0.057 and 0.189 Ω cm−2 (applied temperatures 800,
750, 700, 650 and 600 ◦C), which indicates high ORR activity (Figure 7c) [59].

Interestingly, the crystal structure of cobalt-free BaFeO3−δ (BF) perovskite has be-
come an innovative new class of electrode catalyst, specifically the surface-active cathode
materials that play an important role in the development of oxygen-ion conductivity
for SOFCs and exhibit a power density value of 870 mW cm−2 [60]. Wang et al. [61]
have developed a high-performance-based A-site cation-layered EuBa0.5Sr0.5Co2-xFexO5+δ
(EBSCF0.4-20RuO2) bifunctional perovskite that can be used as an efficient electrocatalyst
for OER and water splitting.
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5. Perovskite Electrocatalysts with A-Site Deficiency and Substitution

Most of the perovskite-based catalysts reported in the literature act as bifunctional
catalysts, and they can be used for ORR and OER. Basically, perovskite-based catalysts
exhibited superior catalytic activity for ORR and OER compared to the conventional noble
metal catalysts such as Ru, Ir, Pt, and Co [62–65]. In the following section, the fabrication
of perovskite catalysts with different variations for achieving the best catalytic response is
briefly discussed.

In general, the A-site cations in the perovskite catalyst are not directly involved in ORR
or OER kinetics. Nevertheless, they facilitate the catalytic reaction indirectly. It is evident
from many reports that the catalytic response has been significantly improved upon A-site
substitution. For instance, double perovskite oxide materials LnBa0.5Sr0.5Co1.5Fe0.5O6
(LnBSCF, Ln=Pr, Nd, Sm, and Gd) were proposed as a bifunctional catalyst for ORR and
OER [66]. It is considered that the double perovskite oxides are one of the most promising
bifunctional electrocatalysts for ORR and OER due to their adjustable electronic structures
for supporting the doping of different metal cations. A-site cation Ln can be replaced with
other metal ions such asPr, Nd, Sm, and Gd. The developed catalysts investigated the
ORR and OER activity in alkaline media.Among the catalysts, Gd-doped BSCF (GBSCF)
exhibited superior catalytic performance for both OER and ORR in terms of catalytic
current density as well as overpotential, as shown in Figure 8. Additionally noted is that
the rest of the other metal-doped BSCF shows better activity compared to the undoped
BSCF. This is due to the electronic defects and oxygen deficiencies generated by cation
doping. The observed ORR catalytic currents follow the trend GBSCF > SBSCF > NBSCF >
PBSCF > BSCF.
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Further, very recently, Wei et al. developed the A-site deficient (Ba2+) perovskites
from BaCo0.4Fe0.4Zr0.1Y0.1O3−δ(BCFZY) using nitrate–citrate complexing and the self-
combustion method [67]. The results showed that a 10% A-site deficiency in BCFZY cathode
dramatically reduced the area-specific resistance (ASR) from 0.73 Ω·cm2 to 0.13 Ω·cm2 at
650 ◦C in air. Additionally, A-site deficient BCFZY showed a power density of 730 mW·cm−2

at 800 ◦C when compared to the stoichiometric BCFZY. The EIS technique was employed
to investigate the influence of A-site Ba2+ deficiency on the ORR catalytic activity of the
BCFZY electrode in the temperature range between 650 to 800 ◦C. Among different stoi-
chiometriesof Ba2+ investigated, the B0.90CFZY cathode exhibited the highest ORR catalytic
activity. It was concluded that the A-site Ba2+ deficiency generated the oxygen vacancies in
the lattice structure, which would accelerate the surface exchange and bulk diffusion of
oxygen and subsequently improving the ORR catalytic activity. Overall, it is interesting
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that a proper deficiency in A-site cation could contribute to high effectiveness in promoting
the ORR activity of the electrode. Another A-site deficient perovskite (La0.8Sr0.2)1−xMnO3
(x = 0, 0.02, 0.05) (LSM) and Fe-doped perovskite (La0.8Sr0.2)0.95Mn0.5Fe0.5O3 (LSMF) were
developed by Leung and co-workers and used for catalytic ORR and OER applications [68].

The prepared perovskite catalysts showed significant ORR activity and found that
onset potential at 0.5 mA cm−2 notably increases when A-site deficiency increases. For
instance, the pristine (La0.8Sr0.2)1-0MnO3 (LSM1) displayed the onset potential of −0.15 V
vs. Ag/AgCl and it was shifted to −0.14 V and −0.134 V for (La0.8Sr0.2)1-0.02MnO3 (LSM2),
and (La0.8Sr0.2)1-0.05MnO3 (LSM3), respectively. This clearly indicates that the introduction
of A-site deficiency into LSM-based catalysts can effectively enhance the ORR activity.
Moreover, the ORR activity significantly increased, and onset potential shifted to 0.124 V
vs. Ag/AgCl when Mn was substituted by Fe in LSM3. Further, the durability of the
perovskite was examined, and it was found that LSMF exhibited the current retention of
97.1% after 10,000 s compared to the commercial 20 wt % Pt/C whose retention is 93.5%
after 10,000 s. The developed A-site-deficient perovskites were also investigated for OER
activity, and they showed the onset potential of 0.68, 0.60 and 0.57 V vs. Ag/AgCl for
LSM1, LSM2 and LSM3, respectively. The onset potential further shifted to 0.53 V when
Mn was substituted by Fe. The observed ORR and OER activity is mainly attributed to
the valence state of oxygen species present on the surface of the perovskite catalysts and
also the rate of O2

2−/OH− displacement and OH− regeneration [69,70]. Therefore, the
XPS technique was employed to evaluate the adsorbed oxygen species on the catalysis and
revealed that LSMF has 49% when compared to the LSM3 (36%), which indicates amore
adsorbed hydroxyl group and a correspondingly stronger covalence of Mn–O bond.

Manganite-based perovskites (LnMnO3+δ) were developed with different sizes of the
A-site cation such as La, Pr, Sm, and Gd by using the glycine-nitrate process [71]. It has
been realized that the perovskite lattice became more and more distorted upon lowering the
size of the A-site cation. Meanwhile, the electrical conductivity markedly decreased. This
effect is called a super exchange, and it is generated due to a lower overlap between the
p-orbitals from the oxygen and the d-orbitals from the B-site cation. Finally, the fabricated
perovskites were successfully used for ORR and nitric oxide reduction in the temperature
range from 200 to 400 ◦C. The electrode materials showed a better catalytic response for
nitric oxide reduction than ORR at a lower temperature, whereas both ORRand nitric oxide
reduction activity were identical at a higher temperature. Among the different A-site cation
incorporated perovskites, the activation energies for the ORR and nitric oxide reduction
were similar for Sm and Gd-doped SmMnO3+δand GdMnO3+δ whereas they were slightly
different for La and Pr-doped LaMnO3+δand PrMnO3+δ. Overall, the Pr incorporated
manganite displayed a low catalytic response due to the oxidation state of Pr(IV), which
generates a higher concentration of cation vacancies in the perovskite structure. On the
other hand, the catalytic activity of LaMnO3+δ perovskite is very different from other
perovskites due to the mobility of oxide ions at a higher temperature. Therefore, it was
expected that the A-site cation would attract more electron density from oxygen when the
size of the cation is decreased. Subsequently, the oxygen can attract more electron density
from the B-site cation, making it easier to reduce the B-site cation.

6. Perovskite Electrocatalysts with B-Site Substitution

It is well established that the B-site cations are directly involved in the ORR and OER
catalytic reaction [72,73]. Thus, B-site cations substitution is considered a very efficient
way to improve the performance of the perovskite-based catalyst. The development of
lanthanum-based double perovskite oxide (La2-xSrxNiMnO6 = LSNMO-x, x = 0, 0.2, 0.4,
0.6 and 0.8) bi-functional catalyst has been reported recently by Zhang and co-workers [74].
The study relates systematic doping of strontium (Sr) at B-site and its application in ORR
and OER activities. The catalytic response orderly increased from 0.2 to 0.6% doping of
Sr and then started to decrease at 0.8% due to the formation of NiO. It is well known that
NiO has poor catalytic activity towards both OER and ORR. Further, ORR activity was
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investigated in 0.1 M KOH at 1600 rpm. The onset potential and half-wave potential of
LSNMO-x samples systematically increase with increasing Sr doping (x ≤ 0.6), attained the
onset and half-wave potential of 0.86 V and 0.72 V vs. RHE, respectively, for LSNMO-0.6.

In contrast, undoped LNMO showed the onset and half-wave potential of 0.78 V
and 0.68 V, respectively, which were about 78 mV and 33 mV positive shifts compared to
the LSNMO-0.6. Further, the electronic structure of the catalyst was analyzed by valence
band X-ray photoelectron spectroscopy (VB XPS) and it was deduced that the valance
band shifted towards Fermi level (Ef) with the O 2p band upon Sr doping. This electronic
modulation influences the hybridization of O 2p with Ni/Mn 3d, which favours the electron
exchange at the catalyst−intermediate interface. As depicted in Figure 9, the increase of
occupied states near Ef induced the efficient orbital overlapping with absorbed oxygen
species, thereby OH− regeneration is facilitated by O2

2−/OH− exchange. In addition, this
hybridization process also minimizes the charge–transfer gap between TM 3d and O 2p,
which promotes the OER kinetics. Additionally, the significant change of hole states is
attributed to the increasing concentration of high-valent Ni3+ introduced by Sr.
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Zhou and co-workers proposed a bifunctional perovskite catalyst La0.8Sr0.2MnO3
(LSM) in the form of nanoparticles with the size of 30 to 80 nm for ORR and OER ap-
plications, and it was synthesized by the polymer-assisted chemical solution (PACS)
method [75]. The catalyst was fabricated in different forms, such as A-site cation de-
ficient (La0.8Sr0.2)0.95MnO3−δ (ALSM) and also the A-site cation deficient with the B-site
cobalt-doped (La0.8Sr0.2)1−xMn1−xCoxO3−δ (x = 0.05 and 0.1 for LSMC5 and LSMC10,
respectively). In terms of ORR activity, LSM displayed the onset potential at ca. −0.09 V
vs. Ag/AgCl, which significantly low compared to the same material reported by an-
other group [76]. It was expected that the enhanced ORR activity was attributed to the
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particle size of the LSM which promotes the oxygen transfer and diffusion between the
nanoparticles to enable the catalysis at early onset potential [77]. Further, A-site-deficient
ALSM showed poor ORR activity in terms of onset potential (−0.12 V) and half-wave
potential (80 mV increase compared to LSM). The XRD data revealed that the crystallinity
of 5% A-site deficiency ALSM was decreased notably, and this directly influences the ORR
performance. Nevertheless, Co-doped catalysts (LSMC5 and LSMC10) have similar onset
potential of LSM, but 15–20 mV reduced half-wave potentials due to increased Mn4+ con-
tent and consequently, which facilitates the orbital hybridization for stronger metal–oxygen
bond formation and driving force for O2−/OH− exchange [78].

As reported by other groups, LSM is a very poor catalyst for OER activity due to
insufficient electrons in the structure and can hardly deprotonate oxyhydroxide groups
and form peroxide ions [79]. However, the catalytic response of LSM was drastically
improved when generating the A-site deficiency and oxygen vacancy. For instance, 170%
in OER current density at 0.8 V enhanced for ALSM due to increasing the oxygen vacancy
as it adsorbs highly oxidative oxygenated species and OH− in alkaline media. Further,
Co-doped LSMC5 and LSMC10 outshine ALSM due to increased hybridization of six-fold
Co-O structure support for the formation of stronger O-2p, which boost the charge transfer
between B-site cations and adsorbates.

Xiao et al. developed rare-earth metals lanthanum manganate (LaMnO3)-based bi-
functional perovskite-type oxide catalyst for ORR and OER activities [80]. The fabricated
materials showed an excellent catalytic response towards the ORR performance but a very
poor catalytic response towards OER. To resolve this issue, a sol–gel method followed
by a calcination process was employed to substitute the cobalt into the LaMnO3. Citric
acid was used as a complexing agent. The sol changed intoa gel after evaporation of the
solvent. Subsequently, the calcination process was performed to remove the excess citric
acid and degrade the nitrate ion to produce the perovskite oxides LaMn1−xCoxO3. This
calcination process created porosity in the material due to the elimination of citric acid and
the thermal decomposition of nitrate. The surface area and pore structure of the perovskite
LaMn0.7Co0.3O3 were investigated and it was found that the specific surface area is about
15.20 m2g−1, and the pore sizes ranged between 8 to 30 nm and suggesting that they
are associated with the mesoporous material. The catalytic response of LaMn1−xCoxO3
towards ORR and OER isshown in Figure 10. As mentioned above, the developed materials
exhibited an excellent catalytic response for ORR. In particular, among the different ratios
of Mn/Co tested, the LaMn0.5Co0.5O3showed 130 mV more negative onset potential than
the commercial Pt/C catalyst towards ORR activity. On the other hand, LaMn0.7Co0.3O3
(1.82 V vs. RHE) has superior catalytic performance towards OER among the series of
LaMn1−xCoxO3 (x = 0, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5) (1.82 V to 1.97 V).

It is expected that the poor OER catalytic response of Co-free LaMnO3 is associated
with the average Mn–Mn bond distance, which is considered too long to form the O–O
bond [81]. This is because the formation of O–O bond plays a very imperative role in the
OER process. Therefore, the O–O bond formation process can be adjusted by the doping of
Co into the perovskite LaMnO3. This doping process effectively shortens the lattice space,
and consequently, Mn–Mn distance becomes reduced. In addition, the doping of Co also
induced the O–O bond formation on the surface of LaMnO3.
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Figure 10. (a) The LSV curves of LaMn1−xCoxO3 and commercial 20 wt % Pt/C for the ORR at
1600 rpm. (b) The LSV curves of LaMn1−xCoxO3 and LaCoO3 for the OER at 1600 rpm. The LSV
curves of LaMn0.7Co0.3O3 and LaMnO3 for the ORR (c) and OER (d) at 1600 rpm. Copyright 2018 by
the Wiley-VCH Verlag, GmbH & Co. KGa, Weinheim [80].

Although the Co-based materials have shown excellent electrochemical performance
for the ORR activity, they have some disadvantages when used as solid oxide fuel cell
(SOFC) cathode due to thermo-mechanical mismatch with the yttria-stabilized zirconia
(YSZ) electrolyte and chemical side reaction [82]. Therefore, a buffer layer could always
be employed to avoid the formation of insulating secondary phases between YSZ and
Co-based cathode [83]. In this regard, a Co-free perovskite oxide material was developed by
using the mixture of Pr, Ba, Sr, and Fe cations in the presence of routinely used complexing
agents such as citric acid and polyethylene glycol [84]. Two types of perovskite oxides,
Pr0.5Ba0.5FeO3−δ(PBF) and Pr0.5Ba0.4Sr0.1FeO3−δ(PBSF), were prepared by the Pechini
method. The electrochemical impedance spectroscopy (EIS) technique was performed to
evaluate the electrocatalytic activity towards ORRin YSZ electrolyte-supported symmetric
half-cells in the presence of air. It was found that PBF exhibited the area-specific resistance
(ASR) value of 0.07 Ω·cm2 compared to the value obtained for Sr-doped PBSF (0.05 Ω·cm2)
as a result of enhanced electrical conductivity.

Perovskite-based bifunctional catalysts were fabricated by using alkaline earth metals
(Ba, Sr, Ca, and Mg)-doped bismuth iron oxides Bi0.6M0.4FeO3 (BFO) [85]. These metal-
doped particles were mixed with carbon black to improve the electronic conductivity.
Among these metals, the catalyst prepared with Ca (Bi0.6Ca0.4FeO3 (BCFO)) exhibited
remarkable OER and ORR catalytic activity than the pristine BiFeO3 (BFO) in alkaline
media at room temperature.For instance, BFO showed an onset potential of 0.633 V vs.
RHE for ORR activity, and it was shifted to 0.705 V upon doping with Ca (BCFO). In
addition, the current density increased from 3.23 × 10−9 (pristine BFO) to 5.17 × 10−8

mA cm−2 (BCFO). OER activity was also examined for pristine BFO and also alkaline
earth metal-doped BFOs. Again, BCFO showed higher catalytic performance over other
BFOs. As reported, BCFO exhibited the current density of 6.93 mA cm−2 (jOER), at a fixed
overpotential of 0.42 V (1.65 V vs. RHE) for OER, which is approximately two folds higher
value compared to the other catalysts (3.06 to 4.04 mA cm−2).
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7. Perovskite Electrocatalysts with A-Site and B-Site Co-Substitution

The co-doping at the A-site and B-site is afascinating method for enhancing the elec-
trocatalytic performance of perovskite material towards ORR and OER applications. In this
regard, a significant number of works have appeared in the literature. For instance, calcium
and indium co-doped at A and B-sites of BaFeO3−δ respectively was proposed for ORR
application [86]. Although the doping of high valence cation can improve the structural
stability of the catalyst but diminish the oxygen vacancy concentration, it affects the overall
catalytic performance. Therefore, to obtain a stable catalyst, light isovalent and lower-
valence elements such as 5% Ca2+ are substituted in the Ba2+ site and 5% In3+ substituted
in the Fe3+/Fe4+ site. The catalytic performance of the co-doped catalyst was investigated
by the EIS technique. The co-doped Ba0.95Ca0.05Fe0.95In0.05O3−δ (BCFI) exhibited a low
polarization resistance of 0.038 Ω·cm2 compared tothe calcium (0.127 Ω·cm2)and indium
(0.526 Ω·cm2) individually doped catalyst. Additionally, BCFI displayed a higher catalytic
response for ORR among them due to the stabilization of the catalyst cubic structure,
improvement of conductivity as well as oxygen vacancies and enhancement of oxygen
transport rate. In another study, calcium co-doped in A and A’-site of PrBaCo2O5+δ catalyst
was developed for ORR activity [87]. It was found that calcium ion substitution at the Ba
site significantly enhanced the electrical conductivity of the catalyst. Substitution of low
ionic radii of Ca2+ (1.120 Å) into PrBaCo2O5+δcan decrease the mismatch between the ionic
radii in A site of Pr 3+/4+ (1.126 Å) and A’ site of Ba2+ (1.420 Å) and can reduce unit-cell
volume, and it supports to reduce the segregation and to improve structural stability and
oxygen-ion mobility.

Qiang et al. developed nanoparticle-based La1-ySryNi1−xFexO3 catalyst (x = 0, 0.1, 0.3,
0.5, 0.7, 1; y = 0.2, 0.4, 0.6) by co-doping Fe and Sr into the LaNiO3 for OER applications [88].
TEM image confirmed that the size of the catalyst was 25 nm. The fabricated catalyst was
applied for the OER activity and the electrochemical performance was compared with
LaNiO3 and LaFeO3 and also commercial RuO2. LaNi0.5Fe0.5O3 displayed an overpotential
of 340 mV vs. RHE than the undoped LaNiO3 (473 mV). Further, the overpotential de-
creased to 320 mV for La0.4Sr0.6Ni0.5Fe0.5O3 upon co-doping of Fe and Sr, which is almost
the same overpotential as the commercial RuO2 catalyst. These results clearly indicate
that Fe doping at B-site is the prime cause for reducing the overpotential, and also, the
Sr doping in the A-site enhances the catalytic performance. Further, the durability of the
catalyst was investigated, and it was found as 9.3% activity loss after 10 h.

8. Perovskite Electrocatalysts with Oxygen Vacancies

Generating the oxygen vacancies in the catalyst is also a promising strategy to develop
an efficient catalyst that promotes fast oxygen ion diffusion rates for ORR and OER catalytic
reactions.A simple annealing method was used to fabricate a layered PrBaMn2O5+δ (H-
PBM) from its pristine form of Pr0.5Ba0.5MnO3−δ (PBM) [89]. The carbon was incorporated
to improve the conductivity of the catalysts in the perovskite oxide to carbonratio of 1:3.
Figure 11 displays the ORR activity of the developed catalysts and catalytic response
compared with commercial Pt/C and RuO2. In the absence of carbon, both PBM and
H-PBM showed a very low catalytic response.

On the other hand, the catalytic activity was drastically improved in terms of onset
potential and catalytic limiting current densities when carbon was introduced into the
catalysts. The onset potential appeared at 0.68 and 0.74 V vs. RHE for PBM/C and H-
PBM/C (Figure 11A). As it can be seen from Figure 11B, H-PBM/C exhibited a higher
current density than the commercial Pt/C. Similarly, a higher catalytic response with the
lowest onset potential for OER activity was achieved in H-PBM/C compared to the other
catalysts. However, the commercial RuO2 displayed a higher current density. These results
demonstrate that the conversion of PBM into layered H-PBM effectively enhances both
ORR and OER activities. The higher catalytic activity of H-PBM is attributed to different
factors such as (i) structural evolution from cubic to layered structure to support the O–O
bonds formation, (ii) eg filling of the transition metal which determine the binding strength
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of intermediate and (iii) introduction of additional oxygen vacancies as confirmed from
δ values 0.13 and 0.63 for PBM and H-PBM. The oxygen vacancy was achieved by the
reduction of the transition metal ions by H2 treatment.
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María et al. investigated the structural effects and oxygen quantity of LaNiO3 on the
ORR activity [90]. The catalyst was prepared at different temperature ranges from 500 to
1000 ◦C and catalytic performances were tested. The catalyst prepared at 500 ◦C did not
show any catalytic response and revealed that the perovskite structure formed at a lower
temperature. Among the temperatures, the catalyst at800 ◦C exhibited a higher current
density. It has been reported that the observed higher catalytic response is associated with
the generation of oxygen vacancies in LaNiO3, and it was achieved by the reduction of B-
site cation Ni3+ into Ni2+. Moreover, the decline of catalytic response at higher temperature
(>900 ◦C) owes to the formation of large-size LaNiO3 particles with lower surface area.

An in-situ reducing and phosphating process was utilized to fabricate the
nanoparticle (~20 nm)-based perovskite oxides/(CoFe)P2 heterointerfaces on the surface of
La0.8Sr1.2Co0.2Fe0.8O4+δ (LSCF) layered perovskite oxides and was successfully applied for
OER applications [91]. Firstly, LSFC oxides were reduced (r-LSFC) in Ar/H2 atmosphere.
During this process, Co and Fe ions can be exsolved to form Co-Fe alloy nanoparticles and
adsorbed on the surface of the parent perovskite oxides. Then, the subsequent phosphating
process at low temperatures induces the formation of island-like (CoFe)P2 nanoparticles
(LSCF-P). The developed catalysts were tested for OER activity and compared with the
commercial IrO2.The observed onset potential for OER is 1.55 V, 1.52 V, 1.50 V and 1.48 V
for the r-LSCF, LSCF, r-LSCF-P and IrO2, respectively. The enhanced catalytic response of
(CoFe)P2/LSCFis due to the improved conductivity and also the charge–transfer process.

9. Perovskite Electrocatalysts with High Surface Area

In general, an extremely hightemperature is used in the calcination process for the
preparation of perovskite catalysts. In this process, perovskite catalysts are obtained in
bulk form with a very low surface area. It affects the catalyst performance in several ways,
including (i) utilization of the active sites, (ii) limit the wetting of the electrode by the
electrolyte, and (iii) constrained ion transportation and electron transfer. Therefore, to
obtain a higher surface area, many approaches have been explored in the literature.

To achieve a higher surface area of the catalyst, Jani and co-workers have employed
the development of a nanotube form of perovskite oxide Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF)
by using one of the most promising platforms, namely nanoporous anodic aluminium
oxide (NAAO) [92]. The combination of 10 wt % BSCF nanotubes with BSCF nano spherical
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powder showed the specific surface area (15.02 m2 g−1) and porosity (27%)compared to the
pristine BSCF (surface area = 9.28 m2 g−1 and porosity (23%). The porosity increased to 35%
upon the addition of 20 wt % BSCF nanotubes. The resulting BSCF10NTs:90NPs,demonstrated
high ORR performance with the best area-specific resistance (ASR) value of 0.06 Ω·cm2 at
800 ◦C, which was 50% enhancement relative to the pristine BSCF.

Another approach, namely laser ablation synthesis in solution (LASiS) technique,
was used to fabricate the perovskite-based LaMnO3+d nanoparticles (LMO NPs) with a
higher surface area and successfully used for ORR activity [93]. The bulk LMO in size
above 200 nm was observed as a result of the long duration of the solid-state reaction.
Nevertheless, the average LMO particle size drastically reduced down to 12 nm after
the LASiS process. The synthesized LMO NPs coated on the GC electrode and used for
catalytic ORR in 0.1 M KOH.Meanwhile, the commercial Pt/C (20 wt % Pt) was also tested
under the same conditions for comparison. The bulk LMO exhibited a very low catalytic
response for ORR, owing to a low surface area/large particle size (>200 nm). Similarly,
LASiS-treated LMO also displayed a poor catalytic activity whichis due to its amorphous
nature. In contrast, 600 ◦C-annealed LMO (LASiS LMO 600) and 800 ◦C-annealed LMO
(LASiS LMO 800) catalysts showed enhanced catalytic current at 0.9 V vs. RHE, which
indicates that the combination of increased surface area, reduced particle size (<55 nm) and
crystalline quality dramatically amplified the catalytic response. Additionally, the observed
catalytic current at 0.9 V was almost identical to the commercial Pt/C catalyst. Overall, the
LASiS LMO 800 catalyst showed an ORR mass activity of 22 µA/µgoxide, which was nearly
20 times higher than that of the bulk LMO (1.09 µA/µgoxide).

The conventional sol–gel used to develop the perovskite-type LaCrxFe1−xO3 nanopar-
ticle with a higher surface area for OER applications [94]. As shown in Figure 12, the linear
sweep voltammetry (LSV) of LaCr0.5Fe0.5O3 reveals an OER overpotential of 390 mV at
10 mA/cm2, which is significantly lower than 510 mV of LaFeO3 and 550 mV of LaCrO3.
Further, the RCT value evaluated for these materials and found that LaCr0.5Fe0.5O3 exhib-
ited a lower value compared to their counterparts LaFeO3 and LaCrO3, demonstrating that
LaCr0.5Fe0.5O3 owns the fastest OER rates and the optimal charge transfer capability. The
observed higher catalytic OER activity of LaCr0.5Fe0.5O3 is associated with the stronger
bond between the metal atom and the adsorbed oxygen-containing substance, along with
the greater electrical conductivity.
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10. Nanomaterials Incorporated Perovskites Catalysts

Although the pristine form of perovskite catalysts showed excellent activity, they
have inherent drawbacks such as low surface area and high resistivity, which severely
affect the electrochemical performances. The integration of nanomaterials with perovskite
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oxides is an effective way to improve the performance of the perovskite catalysts as the
conductivity enormously improved. To date, several nanomaterials have been incorporated
with perovskite oxides and successfully demonstrated for oxygen electrode reactions.

Dengjie and co-workers developed a bifunctional perovskite-based composite ma-
terial for ORR and OER applications [12]. The composite material was fabricated by the
combination of Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF), graphitic carbon nitride (g-C3N4) and Vul-
can carbon (VC). Although g-C3N4 has several advantages such as high nitrogen content
and good chemical stability, it has inherent drawbacks: inferior electronic conductivity
and low surface area. Figure 13 represents the electrocatalytic activity towards ORR and
OER activity at various electrodes recorded at a rotating rate of 1600 rpm in O2-saturated
0.1 M KOH solution at a scan rate of 5 mV s−1. The composite BSCF/g-C3N4-VC showed a
drastically enhanced catalytic response than the individual or other combination of mate-
rials due to the improved conductance by the VC. As shown in Figure 13a, g-C3N4 and
BSCF displayed the onset potential of −0.28 V, whereas BSCF/VC has an onset potential
of −0.16 V. Further, it is noted that no significant change in the onset potential between
pure g–C3N4 and g–C3N4–VC, which indicates that there is a synergistic effect between
BSCF and VC. Additionally, the catalytic response is amplified in magnitude after the
addition of BSCF into g–C3N4–VC, which suggests that perovskite BSCF plays a critical
role in improving the catalytic activity of the composite. Additionally, it was proposed that
the sheet-like structure and the negative zeta potential of g-C3N4 induced the diffusion
of electrolyte all over the active sites through effective dispersing of BSCF and VC in the
BSCF/g–C3N4–VC composite.
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Very recently, Alevtina and co-workers demonstrated graphene-supported
praseodymium (PrNixCo1−xO3−δ) and samarium (SmNixCo1−xO3−δ) perovskites for ORR
and OER catalytic applications in alkaline media [65]. The glycine-nitrate-based sol–gel
method was used to synthesis these perovskites. The particle size varied depending upon
the temperature and the size of 30, 35 and 40 nm obtained at 700, 900 and 1200 ◦C, re-
spectively, for PrNixCo1−xO3−δ. The rationale behind that is, at a higher temperature, the
number of oxygen vacancies increases and therefore the oxidation states of the B-site metal
are decreased in order to maintain overall electroneutrality. This leads to crystal lattice
expansion. In terms of catalytic activity, the pristine form of perovskite displayed a high
overpotential and poor ORR activity. However, while incorporating the graphene into
the perovskite, the composites gradually start to enable the catalysis at lower overpoten-
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tials with higher current densities. It was found that Sm-based catalysts demonstrated
overall higher ORR activity compared to the Pr-based catalysts. Further, OER activity was
investigated with the PrNixCo1−xO3-graphene composite and is depicted in Figure 14. The
highest catalytic response was achieved for the perovskite prepared with the nickel content
ofx = 0.1 and 700 ◦C. Overall, it showed 60 mA/mg for ORR and 680 mA/mg for OER,
which is nearly 50% higher activity than the conventional IrO2 catalyst.
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In another report, the facile and low-cost graphene oxide (GO) and carbon Vulcan
(C)-integrated bimetallic Fe-Mn oxide perovskite-type nanoparticles were synthesized
and utilized for ORR activity in neutral media [95]. Based on XPS, the ABO3 perovskite
structure was stabilized with high oxidation states of iron and manganese, which are
beneficial for ORR. The bare FeMnO3 exhibited the catalytic response for ORR at −0.6 V
vs. SCE in addition to a couple of redox peaks between 0.4 to 0.6 V, owing to the redox
reaction of manganese and iron species on the electrode surface. However, the catalytic
peak at −0.6 V was shifted to −0.3 V upon integration of the graphene oxide or carbon
Vulcan into the FeMnO3. Further, the EIStechnique was used to evaluate the conductivity
of the nanomaterials and found that C-FeMnO3 and GO-FeMnO3 showed the double
layer capacitance (CDL) of 2.36 mF cm−2 and 0.02 mF cm−2,respectively. The obtained
significantly higher CDL value indicates that the surface area for oxygen ion adsorption at
the interface of the C-FeMnO3 electrode is higher than that of GO-FeMnO3. As presumed,
the aggregation and restacking process during synthesis of GO sheet cause the loss of
effective, accessible surface area and also these process might hinder the dispersion of
metal oxides particles which lower metal oxide utilization efficiency [96]. As a result,
GO-FeMnO3 exhibited a higher charge transfer resistance (RCT) value (429 Ucm−2) than
the C-FeMnO3 (69.8 Ucm−2). Overall, these superior electrochemical characteristics of
C-FeMnO3 lead to a faster and better response for ORR compared to that of GO-FeMnO3.

Further, the nitrogen-doped reduced graphene oxide (r-GO)-incorporated perovskite-
type bifunctional hybrid catalysts were developed for ORR and OER activity [97]. The
glycine-nitrate-based combustion process was carried out for the synthesis of double
perovskite bi-functional hybrid catalysts such as Ba0.5Sr0.5Co0.8Fe0.2-O3−δ (BSCF) and
LnBa0.5Sr0.5Co1.5Fe0.5O5+δ (LBSCF, Ln = Nd, Sm, and Gd). The nitrogen doping was
executed by the hydrothermal reaction. In term of OER activity, these perovskite materials
have the activity in the order of NBSCF (0.361 V) < SBSCF (0.372 V) < GBSCF (0.390 V) <
BSCF (0.416 V) at 10 mA cm−2. It is clear that the NBSCF catalyst exhibited a lower onset
potential than the other perovskite-based catalysts studied. Additionally, the catalytic
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response was compared with the commercial carbon-supported Ir nanoparticles (Ir/C) and
found that the activity of NBSCF almost identical.

Moreover, these perovskite catalysts also demonstrated significant ORR activities in
0.1 M KOH at room temperature. The observed on-set potential of BSCF, GBSCF, SBSCF,
and NBSCF are 0.790, 0.805, 0.797, and 0.791 V vs.RHE, respectively at −0.1 mA cm−2.
Although NBSCF exhibited the best performance for the ORR among the perovskite-based
materials, a significant performance gap is still observed between the Pt/C and NBSCF
catalyst. The NBSCF catalyst was −230 mV less active than Pt/C at the half-wave potential
for the ORR. Hence, the nitrogen-doped r-GO was incorporated with the perovskite to
improve the catalytic activity. The onset potential of NBSCF improved from 0.791 V to
0.988 V when integrated the N-rGO with NBSCF (NBSCF/N-rGO), which was almost
similar to the value obtained with the commercial Pt/C catalyst (0.990 V).

Further, based on the Koutecky–Levich analysis, the electron transfer number of
NBSCF/N-rGOwas estimated to be 4.0 for the ORR, indicating that the reaction occurred
mainly through a four-electron pathway. The observed excellent bi-functional performance
of NBSCF/N-rGO can be associated with the high surface area with a microstructure.
The surface area of NBSCF significantly increased from 4.6 to 119.6 m2 g−1 upon the
incorporation of N-doped rGO. Additionally, the electrical conductivity of NBSCF/N-rGO
enormously increased, as evidenced by the decreasing Rct value of NBSCF from 0.568 to
0.029 Ω·cm2.

Carbon nanofiber-embedded Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF@C) electrode material
fabricated by sol–gel method for ORR and OER [98]. The catalytic activity of BSCF@C was
investigated in 1 M LiTFSI/DMSO electrolyte in the potential window of 2 to 4.5 V vs.
Li+/Li. A well-established cathodic peak appeared at 2.5 V attributed to O2

− generation
during the discharge process. In addition, two anodic peaks were apparent at 3.2 V and
3.8 V, which are associated with the multiple Li2O2 oxidation pathways during the charging
process. The observed catalytic response of BSCF@C was compared with BSCF and no
significant change was found with ORR activity but there was a remarkably increased
OER activity. Further, the stability of the catalytic response was investigated by continuous
cycling in the operating window of 2 to 4.5 V. The catalytic response of BSCF significantly
decreased after 250 cycles. In contrast, the catalytic activity of BSCF@C nanofibers was
still considerable after 250 cycles. These results revealed that BSCF@C could not only
facilitate the ORR and OER catalysis but also hinder BSCF from aggregation during the
discharge–charge cycling process.

Kim et al. have developed a bifunctional catalyst for ORR and OER-based on triple
perovskite, Nd1.5Ba1.5CoFeMnO9−d (NBCFM) [99]. The catalytic activity and durability
of NBCFM were compared with single Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) and double per-
ovskites [NdBa0.5Sr0.5Co1.5Fe0.5O5+δ (NBSCF)]. The size of perovskites was investigated by
the Scherrer equation and was estimated to be 5.84, 4.82, and 4.83 nm for BSCF, NBSCF, and
NBCFM, respectively. Additionally, the crystal structure data revealed that BSCF, NBSCF,
and NBCFM are present as cubic, orthorhombic, and tetragonal structures, respectively. As
depicted in Figure 15, the ORR and OER catalytic activities of perovskites were investigated
in 0.1 M KOH and compared with commercial Ir/C and Pt/C catalysts. It is clear that
the triple perovskite (NBCFM) catalyst exhibits superior OER activity with higher current
density and lower overpotential when compared to the other two catalysts.
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Figure 15. Bifunctional oxygen electrode activities and durabilities of the perovskites, NBCFM/N-rGO, and precious
metal catalysts. (A) OER/ORR polarization curves for perovskite-based catalysts and precious metal catalysts. (B) Oxygen
electrode activities (EOER−EORR) of perovskite-based catalysts and precious metal catalysts. (C) Comparisons of oxygen
electrode activities of NBCFM/N-rGO with the previously reported bifunctional catalysts. The numbers on the x-axis denote
reference numbers. (D) OER potential increase and ORR potential decrease of perovskite-based catalysts and precious metal
catalysts after durability tests. Copyright by the American Association for the advancement of Science [99].

The observed overpotential is 359 mV for NBCFM, 374 mV for NBSCF and 395 mV
vs. RHE for BSCF at the current density of 10 mA cm−2. Similarly, NBCFM exhibits
the best ORR activity among the three perovskite catalysts analysed. The observed half-
wave potential for the ORR activity is 0.698 V, 0.653 V and 0.641 V for NBCFM, NBSCF
and BSCF, respectively. Based on the Koutecky–Levich analysis, the electron transfer
number was estimated as 3.9 for NBCFM, which was significantly higher than the other
two catalysts, such as 3.6 for NBSCF and 2.8 for BSCF. Again, NBCFM showed a higher
diffusion-limited current density of −5.9 mA cm−2, which is notably higher than those of
NBSCF (−5.1 mA cm−2) and BSCF (−4.8 mA cm−2).

Among the catalyst, the NBCFM exhibited excellent oxygen electrode activity. How-
ever, the activity is relatively lower compared to the commercial electrode due to the low
electrical conductivity of fabricated perovskites. To overcome this limitation, perovskites
were integrated with the nitrogen-doped reduced graphene oxide (N-rGO). No significant
improvement was achieved towards the OER activity. However, NBCFM/N-rGO showed
a half-wave potential of 0.889 V, which was 0.191 V higher than NBCFM and surpassed
that of Pt/C (0.801 V). These excellent characteristics were associated with the combination
of multiple factors, including enriched oxygen defects, low Rct, and small hybridization
strength between O 2p and Co 3d orbitals.

11. Conclusions and Challenges

In summary, we overviewed the recent development and novel integration of ad-
vanced BFPECs, various synthesis routes, different sizes, morphological analyses and
efficient electrocatalytic applications in ORR/OER behavior. BFPECs are found as promis-
ing biocatalysts that could be applied in the field of ORR/OER. Despite this, the electrode
materials have broad electrocatalytic properties like high-surface to volume ratio, low-cost
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and high-performance energy storage device applications. This review mainly focused on
bi-functional-based electrode catalysts with doping and co-doping of both A-site and B-site
cation, generation of oxygen vacancies, and incorporation of nanomaterials, which shows
exceptional ORR/OER activities under alkaline conditions. The mechanism associated
with the stronger bond between the metal atom and oxygen-containing substrates is dis-
cussed elaborately along with their electrical conductivity. The few methods to synthesize
the BFPECs are found to be tedious and very expensive. Consequently, current reviews
onbifunctional supported perovskite catalystsare summarized, including nano particle size,
electronic structure optimization, charge–transfer properties and electrocatalytic perfor-
mance for both ORR and OER, which is a big challenge for current and future researchers.
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