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Abstract: Hydrothermal carbonization (HTC) has recently emerged as a promising technology for
converting diverse forms of waste with a high moisture content into value-added products such as
biofuel, biochar, and activated carbon. With an increasing demand for sustainable and carbon-neutral
energy sources, HTC has attracted considerable attention in the literature. However, a successful
transition from laboratory-scale to large-scale industrial applications entails notable challenges.
This review critically assesses the upscaling of hydrothermal carbonization processes, emphasizing
the challenges, innovations, and environmental implications associated with this transition. The
challenges inherent in upscaling HTC are comprehensively discussed, including aspects such as
reactor design, process optimization, and the current treatment technology for process water. This
review presents recent innovations and technological advancements that address these challenges and
explores integrated solutions to enhancing hydrothermal carbonization’s scalability. Additionally, this
review highlights key companies that have developed and implemented HTC plants for commercial
purposes. By overcoming the obstacles and achieving advancements in the upscaling of hydrothermal
carbonization, this review contributes to the ongoing efforts to realize the full potential of HTC as a
sustainable and scalable biomass conversion technology and proposes future directions.

Keywords: hydrothermal carbonization; upscaling; pilot scale; industrial scale; process water

1. Introduction

In the last four to five decades, researchers have conducted extensive studies to find
innovative technologies with which to develop sustainable methods to mitigate the envi-
ronmental pollution caused by organic waste and convert it into renewable energy and
valuable products. Landfill and compost are two affordable technologies for treating waste
in terms of the economic aspects [1]. However, compost has a large footprint and elicits
a lot of complaints from neighbors due to odor issues, and it also generates greenhouse
gases such as N2O and CH4. Landfills are also not a suitable solution for the future due
to the lack of available land and the potential risk of second-hand contamination such
as groundwater and soil pollution. The thermochemical carbonization of biomass has
more benefits compared to biochemical treatment. Instead of taking days or moths by the
biochemical treatment, this process generally takes only several hours. There are a variety
of thermochemical processes for converting biomass into various products with higher
carbon content, such as dry pyrolysis and wet pyrolysis which is called as hydrothermal
carbonization. Pyrolysis can only be used to treat feedstock with a low moisture content
(under 20%), at high temperatures, and with oxygen limitation [2]. However, most organic
waste has a high water content and a high degree of heterogeneity in form and composition.
To utilize this method, an additional pre-drying step is required, resulting in high energy
consumption and increasing operating costs. Nevertheless, hydrothermal treatment can
overcome these drawbacks. It enables the treatment of wet waste without pre-drying,
saving up to 70% energy consumption via the recirculation of wasted heat [3]. As Kruse

Energies 2024, 17, 1918. https://doi.org/10.3390/en17081918 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en17081918
https://doi.org/10.3390/en17081918
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://doi.org/10.3390/en17081918
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en17081918?type=check_update&version=1


Energies 2024, 17, 1918 2 of 18

et al. [4] mentioned, subcritical water hydrothermal treatment can be “an excellent reac-
tion environment, reactant, and solvent for a diverse range of reactions”. Hydrothermal
processes include thermal hydrolysis (THP), hydrothermal carbonization (HTC), hydrother-
mal liquefaction (HTL), and hydrothermal gasification (HTG) under different operating
conditions [5]. In Table 1, four different (dry) pyrolysis and four different wet pyrolysis
methods are compared in terms of their operating conditions and final products.

Furthermore, thermal hydrolysis, an example of successful upscaling to industrial and
commercial scales, has drawn significant attention for treating sewage sludge, which is
not easily degradable because of its glue zone or sticky phase zone. The thermal hydroly-
sis treatment process (THP) breaks down the organic structure of feedstock through the
process of cracking under high-pressure and high-temperature steam [6]. This process is
known as the pre-treatment process of anaerobic digestion (AD) for producing biogas and
fertilizer from sewage sludge, and it is applied in wastewater treatment plants. Meanwhile,
there is always an argument for a clear cut between the THP and HTC, but the authors
want to define the THP as an endothermic reaction that absorbs heat from its surroundings,
while HTC is an exothermic reaction thanks to its decarboxylation reaction [7]. For its
energy consumption efficiency and the high demand for renewable fuel, HTC stands out as
a developing technology in contrast to the other thermochemical methods used for treating
wet biomass. HTC was known to researchers over a century ago and was first discovered
by Friedrich Bergius, who was awarded the Nobel Prize in 1913 for the transformation of
cellulose, through wet thermochemical conversion, into different products with various
applications [7,8]. HTC is a complicated simultaneous process involving hydrolysis, dehy-
dration, decarboxylation, condensation, aromatization, and polymerization [9–11]. Zhung
et al. [11] presented the details of the mechanisms of lignocellulose and non-lignocellulose
biowastes during the HTC process. In this process, some organic compounds are present,
such as acetic acid, alkenes, aldehydes, and aromatics like phenolic compounds and furan.
The decarboxylation process inevitably produces CO2 gas. The major solid product of
HTC, hydrochar, has an enriched carbon content with different characteristics, different
yields and a wide range of HHVs, depending on the feedstock and process conditions,
such as the temperature, residence time, catalyst, and pH [12–15]. A higher temperature
and a longer residence time result in a decrease in the yield rate of hydrochar, while a
higher carbon content in hydrochar with a higher heating value results in lower hydrogen
and oxygen content [4,7–10,15]. In the HTC process, one type of feedstock is normally
used as an input, but reliance on a single feedstock boosts the uncertainties regarding the
sustainability of industrial production methods. Recently, co-hydrothermal carbonization
has been identified as a promising method for treating two or more types of feedstock
combinations such as biomass–biomass, biomass–PVC, and biomass–coal [16,17]. Most
studies have reported that co-HTC treatment can enhance the carbon content of hydrochar,
increase its solid yield, and yield higher heating values (HHVs), as well as provide higher
dechlorination/desulfurization efficiency when compared to a single feedstock. HTC is an
elaborate thermochemical process dealing with many reaction mechanisms and pathways
that result in changes in the chemical and structural compositions of hydrochar, as reported
by Xue Y. et al. and Fakudze S. et al. [18–20]. Microwave-assisted HTC is also a new way of
addressing the limitations associated with the traditional HTC methods, such as heat loss,
uncontrolled side reactions, and non-selective heating. This technology demonstrated the
capability to generate hydrochar with characteristics comparable to those of solid fuel with
energy efficiency [21,22]. To further develop this method, more large-scale trials need to be
conducted.

Due to the demand for the upscaling of the HTC process to the pilot and industrial
scales, it is necessary to review the current upscaling scenario, accounting for its challenges
in terms of the technical aspects and environmental and economic effects. There are some
review papers discussing the status of industrial-scale HTC by Romano et al. and Child,
M. [8,14]. In these papers, the current trend of upscaling from the lab to the industrial
scale and new approaches to designing and implementing an HTC plant at a large scale
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are reviewed to explore the potential of HTC technology’s expansion in this industry.
Additionally, different combinations of HTC with other technologies and solutions for
treating process water are presented, alongside the future direction of HTC technology.

Table 1. Comparison of different thermal treatments.

Process Moisture of Feedstock Process Conditions Main
Product/Purpose Ref.

Fast
Pyrolysis 10–20% 800 ◦C or Higher, 0.5–10 s,

Limited Oxygen Supply, 1 bar Bio-oil (60–75%) [23,24]

Intermediate Pyrolysis <10% 400–500 ◦C, 0.5–20 s,
Absence of Air, 1 bar

Biochar (25–40%), Bio-oil
(35–50%), Gas (20–30%) [2,24]

Slow
Pyrolysis 15–20% 300–500 ◦C, 5 min–12 h,

Absence of Air, 1 bar
Solid (25–35%), Liquid
(20–30%), Gas (25–35%) [23]

Torrefaction <10% 200–300 ◦C, 0.5–4 h,
Absence of Air, 1 bar Char (80–90%) [25]

HTC 70–85% 180–260 ◦C, 0.5–8 h,
Vacuum, 10–60 bar Hydrochar (50–80%) [4,5,9]

HTL 70–85% 260–375 ◦C, Vacuum,
50–220 bar Bio-oil, Bio-crude (30–60%) [5]

HTG 70–85% 375–800 ◦C, Vacuum,
220 bar or higher Syngas (30–80%) [5]

THP 70–85% 140 ◦C–170 ◦C, 20 min to
Several Hours, 6–9 bar Pre-treatment of AD, Fertilizer [6]

2. Upscaling Case of HTC and Challenges

Although HTC technology has attracted significant attention from numerous re-
searchers on producing hydrochar with various applications, the corresponding approaches
are mostly implemented in batch mode with a lab-scale autoclave, bench scales, and a
few pilot scales. A review of the HTC process from the lab to pilot scale is presented in
Table 2 below to reveal the challenges and perspectives at a large scale.

To obtain the intended physical-chemical characteristics of the HTC product, it is
crucial to adjust the specific process conditions. These parameters typically include temper-
ature, residence time, pressure, catalyst, biomass/water ratio (BWR), and other relevant
factors.

The relations of process parameters at the lab and pilot scales are useful for obtaining
more favorable working circumstances on an industrial scale. Areeprasert C. et al. used
a pilot-scale cylindrical batch-type reactor with a capacity of 1 m3 to apply the optimal
conditions, which can be determined from lab-scale experiments on a vertical reactor with
a size of 500 mL [26]. The optimal process condition of the lab-scale process was 200 ◦C,
whereas 197 ◦C with the same holding time of 30 min is optimal for the pilot scale. The fuel
recovery of the pilot scale has a larger gap than that of the lab scale due to the mass loss.
However, 15.4% of the required energy for the whole HTC process is reduced when scaling
up due to the utilization of a part of the obtained hydrochar as boiler fuel. The heating
value of hydrochar at the pilot scale was slightly higher than that at the lab scale; this result
is in agreement with the findings of the study by Gusman, M. H. et al. [27]. Teribele, T. et al
performed an experiment on a pilot plant involving the treatment of corn stover residues
in a cylindrical reactor at 250 ◦C, employing a duration of 1–4 h with different BWRs [28].
Pre-treatment of some feedstock, such as corn stoves, wood waste, or green waste, before
transferring it to the HTC reactor is sometimes required to ensure operating efficiency and
stability. Reducing biomass size can enhance the reaction kinetics when the feedstock is
milled or sieved to achieve a specific particle size. The results also demonstrated that a
higher BWR resulted in a higher hydrochar yield, a result that is in agreement with other
research [29–31], while a longer residence time reduced the solid yield but increased the
carbon content in hydrochar [32,33]. The optimal conditions for decomposing corn stover
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in this study were achieving a BWR of 1:10 in 4 h. In many studies, the use of catalysts in
the HTC process demonstrated the ability to increase the heating value (HHV) of hydrochar
and decrease the reaction time and temperature [34–38]. Shin et al. [39] produced bio-
coal products from wood waste and conducted a comparative study with and without
catalysts in HTC process at lab and pilot scales. The pilot plant was a binary reactor system
designed by Kinava Co. and presented in the previous research reported by Mackintosh
et al. [40]. The hydrochar produced through the pilot-scale HTC process at a temperature
of 220 ◦C with a 1.5 h residence time and a catalyst showed a high calorific value of over
27 MJ/kg, which is 18% higher than that of coal. It also satisfied the hazardous substances
standard, similar to the lab experiment’s results, but required a 1.5-times higher catalyst
concentration. This study indicated that the development of catalysts for each feedstock
was crucial for industrial applications to increase the value of hydrochar. The mixture of
different feedstocks to add in the HTC process called co-HTC is an innovative method for
treating different wastes at the same time. A pilot-scale plant involving a reactor volume
of 200 L was used to perform the co-HTC process of a 20 kg mixture of paper waste and
food waste according to the optimal condition at the lab scale [41]. The results indicated
that the mixture ratio with the higher mixture ratio of paper waste significantly increased
the carbon content and calorific value of hydrochar. This should be studied to attain the
optimal ratio when upscaling, and the mixture of different types of biomass waste will
contribute to not only reducing large amounts of waste but also enhancing the properties
of HTC products.

Based on the above experiments, the optimal temperature and catalyst concentration
could have a minor gap between the lab and pilot scales, and this discrepancy extends
to the residence time and BWR as well. The mixture of two or more different feedstocks
could affect upscaling in terms of hydrochar characteristics and yield rate. Determining
the trend of temperature after conducting many trials at both the lab scale and pilot scale
is important before designing a large plant. These determinants can predict the trend
of the characteristics of final products and operating conditions and be used to propose
the optimal design for upscaling HTC plant. Choosing between a batch reactor and a
continuous reactor is a significant factor in large-scale hydrothermal carbonization. In
small-scale experiments or some of the above pilot-scale trials, a batch reactor was mostly
used due to its easy handling and ability to connect to various feeding systems. However,
the drawback of a batch reactor is the interruption of the process required to fill an empty
reactor [42]. Meanwhile, continuous reactors are more complex and require a special design
to handle the flow stream of a feedstock [43].

Hoekman S. et al. [44] reported the fabrication of a larger-scale process development
unit (PDU) with a V-shaped tubular design in order to carry out a semi-continuous HTC
process for bio-fuel production from 3 kg of wood chips. The hydrochar properties in this
system were aligned with the results obtained in a batch reactor. A twin-screw extrusion
system (TSE) developed by Hoekman S.’s group was used to perform a fast HTC to treat
loblolly pine feedstock in continuous mode [45]. The biomass was fed and then carbonized
and cooled in one direct flow. This approach allowed for a slight reduction in reaction
time, but the reaction temperature of this system is higher, amounting to 290 ◦C, compared
to the batch process’ reaction temperature of 230 ◦C in 30 min. Its hydrochar, however,
was produced in a higher yield than the batch process with similar process conditions
(54.2–69.7% vs. 50.9–63.7%). In another study, Ipiales, R.P. et al. performed a swine manure
treatment (TS 5%) experiment to compare batch and continuous operation [46]. HTC in
batch mode was carried out in a cylinder-type Zipper Claver pressure vessel with a volume
of 4L at the temperature in range of 180 to 250 ◦C for 45 min, while other reactors were
used in continuous mode. The continuous-type pilot reactor comprises a feeding tank
with stirring capacity and employs a screw pump to convey the feedstock to the reactor.
The reactor, made of stainless steel, is a tube equipped with a mixing system designed
to prevent the settling and buildup of solids on its walls. The tube reactor is divided
into five zones, namely, two for pre-heating and three for the reaction, which allows the
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process to run continuously and be more complex than the batch system. The hydrochar
characteristics that were obtained at similar operating conditions from batch and continuous
reactors were compared. The HHV and carbon content were similar in both modes, but
continuous operation provided a much higher yield of hydrochar than that of the batch
process (22.7–71.8% vs. 19.9–42.9%). The process water of the continuous reactor was also
more biodegradable than that of the batch reactor. These results indicated that the HTC
process induced using a continuous reactor provides higher quality in terms of both solid
and liquid products than batch reactors. However, a continuous reactor has a more complex
system to deal with inputting the feedstock with a high-pressure pump working against the
inner pressure of the reactor. Therefore, continuous reactors are not profitable because of
high CAFEX when upscaling in a large plant for commercial/industrial purposes. On top
of this, the pipe-type continuous processes inevitably have inherent limitations regarding
capacity. The various solutions to treat biomass waste through HTC process using batch
reactor and continuous/semi-continuous reactor are presented in Section 3.

For the post-process of HTC, the solid phase and liquid phase are separated for fur-
ther treatment. The final solid product, hydrochar, can usually be used as solid fuel. For
other applications, hydrochar should be treated in more steps so that it can be utilized in
different applications. Ketwong, T. et al. [47] produced activated carbon in a pilot-scale
reactor through the activation process adding to the HTC of an empty fruit bunch. More-
over, hydrochar could be used as fertilizer [48,49] and biochar [50–52], which should be
more readily implemented in upscaling projects. Process water is one of the drawbacks
of HTC and is hard to manage on a large scale, so the valorization of process water (PW)
is critical. The main characteristic of PW is that it is highly acidic, with a pH in the range
of 2.7–4.5, and contains toxins with high COD and TOC, alongside complex recalcitrant
organic compounds [53–56]. Anaerobic digestion (AD) is a possible method for treating
PW to produce biogas for energy applications [57–60]. This combination was demonstrated
in a 25 L reactor by Oliveria, L. et al. [61] for producing biogas, although it eslimits the
biogas generation due to recalcitrant chemicals. The recirculation of PW into the HTC
process is applied to mostly reduce the amount of fresh water, increase the hydrochar
yield, improve the energy efficiency, and make the HTC process more environment-friendly
[62–66]. HTC PW can be used for nutrient recovery [67,68], liquid fertilizer [69], bio-
chemical production [70], and algae cultivation [71,72]. Wet oxidation has recently become
well-known as an advanced technology for treating HTC process water in order to decom-
pose the organic compounds, offering the ability to reduce COD by 50–70% and allowing
for the recovery of energy or valuable byproducts from the treated water [73–75]. In fact, the
use of HTC PW reformation to produce hydrogen and clean water may play a promising
role in the future [76,77].

To improve energy recovery, it is essential to combine HTC with other methods in a
process and then perform different technical experiments with mass and energy balance
analysis to support commercialization. Attasophonwattana, P. et al. [78] integrated a HTC
pilot-scale involving 1 m3 reactor with gasification of AD system to process the oil palm
fruit bunch (EFB) based on a circular-economy. This pilot-scale project showed a potential
for energy recovery, a positive environmental influence, and economic efficiency when
combining these technologies in one process to treat waste.

One essential method for upscaling from the small scale to the large scale is simulation.
After obtaining data from numerous experiments on a small scale, the results can be used
to predict the trend of operation for the HTC process on a large scale. The simulation of the
HTC process represents an innovative approach that consolidates findings from extensive
experimental HTC investigations involving diverse feedstocks. Using Comsol and Multi-
physics for the reactor design allows for the evaluation of the reaction kinetics, mass, and
heat transfer and the prediction of the optimal reaction conditions [79,80]. Modeling the
whole HTC process or its combination with other technologies has been attempted using
Aspen simulation (Aspen Plus V11.1) [81,82] or artificial neural networks [83,84]. Ismail
et al. [85] conducted a numerical evaluation of HTC process parameters to evaluate the
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efficiency of HTC in converting municipal waste into hydrochar on a commercial scale. The
benefit of such simulations is their ability to reduce experiment fees by estimating mass
and energy balance, reaction conditions, solid yield, and even the properties of products.
The simulations can be integrated with life cycle assessment (LCA) and techno-economic
analysis to evaluate environmental and economic implications in a general way [86–88].
Mohammadi, A. et al. [89] performed an LCA analysis on two different scenarios for a
combination of HTC on a large scale and combined heat and power systems (CHP), which
can offer a synergistic approach to sustainable energy production and waste management.
Further research is required to enhance the reliability of the models, ensuring their accuracy
through comparisons with real-world applications.

Table 2. The upscaling of HTC from the lab to bench and pilot scales.

Feedstock Reactor Process Conditions Final Products Ref.

Paper Sludge
Lab: 0.5 L

Pilot: 1000 L
Batch

Lab: 180–240 ◦C, 2.8–2.4 MPa, 0.5 h
Pilot: 197 ◦C, 1.9 MPa, 0.5 h

Solid Fuel
Lab: Up to 13.6 MJ/kg
Pilot: 14.1–14.7 MJ/kg

[26]

EFB
Lab: 2.5 L

Pilot: 250 L
Batch

175 ◦C, 0.5 h, BWR: 1:3
Solid Fuel,

Lab: 18.5 MJ/kg;
Pilot: 18.56 MJ/kg

[27]

Corn Stover Pilot: 18.75 L
Cylindrical Batch 250 ◦C, 1–4 h, BWR: 1:10, 1:15, 1:20 Biochar Surface Area: 4.35 m2/g,

Solid Yield: 31.08–35.82%, [28]

Wood Chips
Lab: 2 L

Pilot: 40 L
Semi-continuous

235–275 ◦C,
0.5 h

Solid Fuel
HHV: 22–28 MJ/kg [44]

Swine
Manure

Lab: 4 L (Batch)
Pilot: Screw Continuous

180–250 ◦C,
0.75 h

Solid Fuel
HHV: 19–21 MJ/kg, FC: 22–24% [46]

Wood
Waste

Lab: 0.2 L
Pilot: 500 L

Batch

220 ◦C, 1.5 h
Catalyst

Solid Fuel,
HHV: 27 MJ/kg [39]

Food Waste and Paper Waste
Lab: 0.5 L

Pilot: 200 L
Batch

Lab: 150–280 ◦C, 1.3–5.5 Mpa, 0.5 h
Pilot: 200 ◦C, 1.6 MPa, 1 h

Solid fuel,
HHV up to 17.2 MJ/kg [41]

EFB Pilot: 1000 L
Batch

200 ◦C, 20 bar, 0.5 h + Activation
(KOH, 800 ◦C, 1 h, Ar, Air)

Activated Carbon
SSA: 810 m2/g

Vpore: 511 cm3/g
[47]

Agriculture Residue 25 L, Autoclave
Batch 180–220 ◦C, 4 h

Solid Fuel, Yield of 52.5%,
HHV: 26.6 MJ/kg,

Biogas: 16.3 L CH4/kg
[61]

An overview of upscaling challenges has been presented, revealing that the challenges
to upscaling are the optimal operating conditions for the process, the reactor type or process
type, the post-treatment of process water from the HTC reactor, and the method used to
efficiently enhance the HTC process using other facilities. To provide a more comprehensive
viewpoint, Section 3 explores commercial HTC companies and their technologies to resolve
the aforementioned challenges when operating at an industrial scale.

3. Industrial-Scale Review

The commercialization of hydrothermal carbonization involves addressing techni-
cal, economic, and regulatory challenges. By strategically navigating these factors, busi-
nesses can unlock the full potential of HTC technologies and contribute to sustainable and
environment-friendly solutions. After conducting numerous trial tests, several companies
have developed processes for creating commercial HTC technologies on a large scale. An
overview of recent commercial HTC technology is shown in Table 3.

As mentioned in Section 2, the drawback of the batch reactor during a scale-up is the
interruption of the process required to fulfill an empty reactor, so the multi-batch concept
is the practical solution to this problem in terms of heat and water recovery ability. The
industrial plant of AVA-CO2 operates HTC process parallel reactors as a multi-batch system
and can treat different types of feedstock together in the range of 25–70 wt%. A modular
design with a multi-batch concept is the key feature of AVA-CO2, which can scale up based
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on the desired capacity. A process diagram for AVA-CO2 is presented in Figure 1a. The
feedstock is mixed with water and then pumped into the mixing tank to preheat at 160 ◦C
and 10 bar. Then, the preheated mixed feedstock is pumped into the HTC reactor for
carbonization. After reaction, the HTC slurry enters the cooling tank, then heat and steam
are recovered to preheat the next batch. The cooled slurry is filtered to separate into the
solid and liquid fractions for hydrochar production and wastewater treatment. A part of
the process water is recirculated to mix in the input feedstock, contributing to reducing
freshwater consumption. The heat recovery and steam-recycling system utilized make the
whole process of the AVA-CO2 plant more efficient in terms of energy consumption [90].
The commercial HTC plant of AVA in Relzow, Germany, has a plant size of two reactors
for 8000 T/year of biomass feedstock and 2664 T/year of biocoal production, which can
be scaled up to six reactors [91]. Another process developed by AVA-CO2 called “AVA
Cleanphos” enables the recovery of phosphorus from the hydrochar of HTC sewage sludge,
achieving yields of up to 80% and lowering energy cost [92]. Moreover, HTC process water
is exploited to produce bio-based chemical products. AVA Biochem is one of the plants of
AVA-CO2, producing 5-HMF at purity levels up to 99.9% [93,94] thanks to the extraction
and purification steps that make the process more effective, as shown in Figure 1b. The
main challenges in HMF production are the formation of side-products, especially solid
humins, and the separation of HMF from the reaction media, as well as its subsequent
purification. These side products not only affect the purification but also the economic
feasibility of the HMF production [94].
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Table 3. Global HTC commercialization businesses.

Company Feedstock Process Type and
Capacity

Heating System and Process
Conditions Final Products Ref

AVA-CO2 Biowaste Multi-batch
40,000–50,000 T/year

Steam 220–230 ◦C, 2.2–2.6 MPa,
5–10 h, Catalyst

Biocoal, 5-HMF,
P Recovery [90–94]

CarboRem Agro-industrial Digested
Sludge

Semi-continuous
5000 T/year

Diathermic Oil
190 ◦C, 1.5 MPa, 1 h

Biocoal,
P Recovery [95,96]

C-Green Biowaste Semi-continuous
33,000 T/year Steam 200 ◦C, 2 MPa, 1–4 h Biocoal, P recovery and

Nitrogen Recovery [97–99]

TerraNova Energy Biowaste or Sewage Sludge Semi-continuous
14,000 T/year

Diathermic Oil
180–200 ◦C, 2–3.5 MPa,

4 h, Catalyst

Biocoal,
P recovery [8,100–102]
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Table 3. Cont.

Company Feedstock Process Type and
Capacity

Heating System and Process
Conditions Final Products Ref

Ingelia S.L. Agricultural Waste,
Residential Green Waste

Semi-continuous
78,000 T/year

Steam 180–220 ◦C, 1.7–2.4 MPa,
4–8 h

Biocoal,
Biochemical,

Fertilizers
[3,8,103–107]

HTCycle Sewage Sludge and
Agricultural Waste

Multi-batch
8000–16,000 T/year Steam 200–220 ◦C, 2–2.5 MPa, 4 h

Biocoal,
P recovery,

Activated Carbon
[108–110]

Antaco Sludge and Paper Mill Continuous
31,000–150,000 T/year

Steam 180–250 ◦C, 1.5–2 MPa,
4–10 h

Biocoal,
Activated Carbon,

Biogas
[111,112]

Suncoal
Industries Biowaste Semi-continuous

50,000 T/year
Steam 200 ◦C, 2 MPa,

6–12 h Biocoal [8,113,114]

Carbon
Solutions Sewage Sludge Semi-continuous

10,000 T/year 160–250 ◦C, 1–6 MPa, 1.5 h Biocoal, Activated
Carbon [115,116]

Like AVA-CO2, the Ingelia plant also increased the number of reactors to increase the
treatment capacity, which reduces the scalability risk. Each modular unit has a capacity of
6000 T/year of wet biomass. Ingelia’s HTC process can also treat different feedstocks with
a moisture content in the range of 30–90% inside inverted flow reactors for a continuous
process and generate biocoal and liquid fertilizer [103–105]. Different from the AVA-CO2
plant, a pretreatment process is employed in the Ingelia HTC plant to mill the input
feedstock into a particle size of below 8mm and then pump it into the reactor through a
long pre-heating tube. The pre-treatment process makes the feedstock transfer to the HTC
reactor more stable and increases the carbonization efficiency. This pre-heated feedstock
is fed from the bottom of the cylindrical vertical reactor like in the AVA-CO2 process.
Hydrochar slurry is also removed from the bottom, and the gases are collected from the
top [3,106]. The Ingelia HTC process is shown in Figure 2. Like in AVA-CO2, the process
water is recycled to mix the input feedstock and used to produce bio-based chemicals or
throughout some treatments for liquid fertilizer application. Ingelia S.L. ran many trial
plants in different countries, especially in the UK. They installed the first HTC commercial-
scale plant in collaboration with CPL industries and subsequently installed a 78,000 T/year
biomass plant in Italy for the life cycle assessment. In terms of environmental impact, the
number of reactors is greater due to the modular nature of this plant, which is located
near waste sources, and it does not cause any odor issues. The total CO2 emissions of
green waste is 0.0624 T CO2 equivalent, which is very low. Moreover, carbon recovery
from the waste is high, amounting to around 64.04%, which makes Ingelia technology very
impactful [103]. As a promising technology, Ingelia S.L. was entered into the NEWAPP
European project for converting biomass residues into high-quality carbonaceous products
with an HHV of 24 MJ/kg and an over-58% carbon content [107].
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HTCycle also has modular units of multi-batch systems akin to AVA-CO2 and Ingelia L.S.
HTCycle provides plants with two kinds of capacity: 8000 T/year and 16,000 T/year [108,109].
Figure 3 illustrates the HTCycle process. The mixture feedstock is pumped into the pulper tank
to preheat at 90 ◦C for 1 h and then transferred to the reactor tank. Steam is injected directly
into the reactor to increase the mixing capacity until it reaches the reaction temperature. A part
of the process water is recycled for mixing with the input feedstock, or it can be used as liquid
fertilizer. One of the main advantages of the HTCycle process is phosphorus extraction via
leaching HTCycle coal with sulfuric acid. Process water can be used as liquid fertilizer, but there
is no reported data from HTCycle about its toxicity and nutrient content which was suitable
for fertilizer applications. According to the report titled “Sewage Sludge Reuse Phosphate
Recovery with an Innovative HTC Technology”, the project of HTCycle for 50,000 tons of
biomass, including sewage sludge, can generate up to 11,000 tons of HTC coal, up to 1750 tons
of activated carbon, 1200 tons of phosphorus recovery, or 2000 tons of sulfur [110].
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Like AVA-CO2, Ingelia, and HTCycle, the SunCoal HTC plant has a batch-reactor
modular design with a capacity of producing 50,000 T/year of raw material in a semi-
continuous process [113]. This HTC process can transform green or organic waste into a
solid biofuel called SunCoal. This biofuel exhibits characteristics comparable to dry brown
coal [8]. Moreover, upgraded hydrochar can be used to produce bio-based chemicals,
biochar, or activated carbon. The pre-processing of feedstock by crushing to achieve a
uniform size of 60 mm and removing impurities, is required in the SunCoal HTC process.
The low- and high-pressure steam used for heating is recycled, along with the process
water. For other applications, to attain bio-based filler for rubber compounds, CarboREN
technology is used to convert hydrothermally treated lignin biomass into functional bio-
based filler for rubber compounds via the addition of silane coupling agents [114].

Another technology from Carbon Solutions (CS-HTC90) in Germany provides a semi-
continuous HTC process [115]. The biomass is mixed with a part of the process water
and preheated before entering from the top of the HTC reactor. This process can convert
10,000 tons of biomass into biocoke. In comparison with other company processes, the
Carbon Solutions process uniquely involves the use of CarbonPure, their proprietary
technology, to treat process water after filter pressing. CarbonPure converts the chemical
oxygen demand (COD) of the process water from 50–80 g/L to less than 2 g/L, recovers
energy in a steam generator, and produces liquid fertilizer [116].

The C-700 HTC plant process is another industrial-scale semi-continuous HTC tech-
nology of CarboRem. It can treat 5000 T/year of sludge with a solid content in the range of
2–10 wt% [95]. This containerized plant comprises a stainless-steel HTC plug flow reactor,
a diathermic oil boiler for supplying thermal energy, a heat exchanger, a PLC, and two
storage tanks. The HTC process of the C-700 plant is illustrated in Figure 4. The digestate
sludge is fed by a pump against the pressure inside the HTC reactor. The heat exchanger
placed before the reactor is used to recover heat from the hot HTC slurry after the reaction;
it then preheats the input flow pumped into the reactor. This HTC process is conducted at
190 ◦C for 1 h. The HTC slurry of the digestate is then treated by using different acids like
HCl, H2SO4, or citric acid to remove the heavy metal content, releasing phosphorus into
the liquid phase upto 97% and enhancing dewaterability. The separated solid hydrochar
with a high solid yield of 80–89 wt%, showing potential for application in soil fertilizer, has
a high carbon concentration, consisting of up to 16.8% fixed carbon, and low heavy metal
content. The struvite precipitation technology is applied for the recovery of P in the liquid
phase at up to 91 wt% when compared to the digestate sludge [96]. The HTC liquid can
be transferred to the AD system for waste management to increase biogas production and
generate energy for heating the diathermic oil in the HTC system. This combination of AD
and HTC enhances the process efficiency.
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Like CarboRem, TerraNova in Germany also serves as an example of a semi-continuous
HTC plant that has a similar process with some different parts [100]. This entails a clever
integration of high-pressure pumps, a continuous stirred-tank reactor that employs heat
exchanger tubes and acts as a tubular reactor, dewatering, and drying equipment. In this
semi-continuous system, a heat exchanger used to recover heat from HTC slurry plays
an important role in improving the efficiency of HTC production, as shown for both the
CarboRem and TerraNova systems. Note that the heating systems of the two technologies
use diathermic oil. Compared to steam, diathermic oil is safe and simple for operations
and can reach up to 350 ◦C while the pressure remains low. However, it requires a more
complex and expensive heat regulation system. Notably, a catalyst such as H2SO4 is added
into the HTC reactor to accelerate the process. An HTC process flow diagram is presented
in Figure 5. A commercial HTC plant produced by TerraNova Energy was introduced in
2016 and installed in Jining, China for sewage sludge treatment. A total of 14,000 tons/year
of dewatered sewage sludge with 68% dry matter content was treated to generate solid fuel
or up to 80% of phosphorous recovered by adding calcium silicate hydrate to the filtrate or
via acid leaching [101,102]. It also contributed to reducing the mass of sewage sludge by
75%, which is typically disposed of, providing a new approach for efficient P recovery.
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Different from other technologies, the OxyPower HTC, C-Green, provides an innova-
tive process by uniquely integrating a semi-continuous HTC reactor with wet oxidation
(WO) technology in a semi-continuous process to convert sludge from wastewater treat-
ment into valuable products such as nitrogen fertilizer, solid fuel, or hydrochar for soil
improvement. The sludge is heated two times with the steam fraction before entering the
HTC reactor and reacted at 180–250 ◦C. Then, the obtained HTC slurry is mixed with an
oxidizing agent such as oxygen gas, which may be added directly into the reactor, and
the gas goes towards the gas treatement chamber. The oxygen is provided through an
oxygen compressor to the filtrate oxidizer. A wet oxidation reaction occurs preferably at
220–260 ◦C, and the energy can be self sustained. The wet oxidized slurry is subjected to
flashing to recover the steam for preheating the input sludge and then cooled; then, it is
separated into solid and liquid phases [97]. Applying the wet oxidation method not only
results in a lower COD of 15 g/L [102] in HTC process water but also decreases the volume
of the solid fraction and enriches the nitrogen and phosphorous. The first HTC plant of
C-Green was erected in Finland in 2020 and can treat pulp and paper sludge at a capacity
of 18,000 T/year, which can reduce greenhouse gas emissions by up to 77% [98]. Wet
oxidation contributes to reducing wastewater generation and improving energy efficiency.
The innovative combination of HTC and wet oxidation with other methods such as AD
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should be further investigated. The process of OxyPower HTC technology is shown in
Figure 6.

Energies 2024, 17, x FOR PEER REVIEW 12 of 18 
 

 

A study comparing the efficiency in energy recovery and economic performance ob-
tained by integrating HTC utilizing TerraNova and C-Green with other technology was 
presented by Bagheri, M. et al. [102], involving the combination of AD and CHP; AD, CHP 
and WO of C-Green or AD, CHP and HTC of TerraNova (using H2SO4 as a catalyst) for 
the wastewater treatment process. Overall, adding WO can balance the investment costs, 
self-heating ability, and power output, but it is still not attractive for profitable invest-
ments. However, the combination of HTC and AD, when HTC process water is directly 
added in AD, can improve biogas production and reduce the disposal cost of sewage 
sludge, resulting in a significant investment opportunity. 

 
Figure 6. Schematic diagram of the OxyPower HTCTM process [99]. 

The technology produced by Antaco uses continuous processes with a tube-type re-
actor, which makes their process different from other companies’ approaches. It can deal 
with 30,000 to 150,000 T/year of feedstock on a dry and wet base, respectively. The distinct 
aspect of this process is that after the completion of the reaction, the energy present within 
the slurry is efficiently recycled to facilitate the processing of incoming biomass. Follow-
ing this, the HTC slurry is subjected to a series of steps, including dewatering, drying, and 
pelletization, ultimately yielding biocoal. The biocoal has a heat value of 23 MJ/kg, like 
fossil coal [111]. Just like CarboRem, Antaco also applies an anaerobic digestion system to 
process the wastewater. Campbell, B. S., et al. reported on the HTC of spent coffee grounds 
integrated with an Antaco anaerobic digestion plant to investigate the stability of an AD 
system. Process water resulted in a higher yield of methane and higher COD degradation 
throughout the 190 days of operation [112]. The main issue with the Antaco AD system is 
that it is only 25% efficient in biogas production, which falls significantly short of industry 
standards. 

Yoshikawa, K. et al. [117] implemented a commercial demonstration plant in Indone-
sia. The plant produced biocoal from municipal solid waste using HTC in a single year. 
The treatment capacity of this plant was 50 T/day. The procedure utilizing the steam gen-
erator was completed in a 10 m3 batch-type reactor. The hydrochar that was obtained had 
an HHV greater than 17 MJ/kg. Using 15% of the obtained biocoal was sufficient for 
providing the necessary steam during the HTC process, making the overall process more 
energy efficient. 

By reviewing the HTC processes employed by different commercial companies, one 
may conclude that HTC on a large scale brings many advantages to the environment and 
economy by reducing the amount of biomass waste, reducing wastewater treatment costs, 
and producing valuable end products like fertilizer, biofuel, biochar, biogas, and bio-
chemicals. A number of factors need to be considered when operating a plant on a large 

Figure 6. Schematic diagram of the OxyPower HTCTM process [99].

A study comparing the efficiency in energy recovery and economic performance
obtained by integrating HTC utilizing TerraNova and C-Green with other technology was
presented by Bagheri, M. et al. [102], involving the combination of AD and CHP; AD, CHP
and WO of C-Green or AD, CHP and HTC of TerraNova (using H2SO4 as a catalyst) for
the wastewater treatment process. Overall, adding WO can balance the investment costs,
self-heating ability, and power output, but it is still not attractive for profitable investments.
However, the combination of HTC and AD, when HTC process water is directly added
in AD, can improve biogas production and reduce the disposal cost of sewage sludge,
resulting in a significant investment opportunity.

The technology produced by Antaco uses continuous processes with a tube-type
reactor, which makes their process different from other companies’ approaches. It can deal
with 30,000 to 150,000 T/year of feedstock on a dry and wet base, respectively. The distinct
aspect of this process is that after the completion of the reaction, the energy present within
the slurry is efficiently recycled to facilitate the processing of incoming biomass. Following
this, the HTC slurry is subjected to a series of steps, including dewatering, drying, and
pelletization, ultimately yielding biocoal. The biocoal has a heat value of 23 MJ/kg, like
fossil coal [111]. Just like CarboRem, Antaco also applies an anaerobic digestion system to
process the wastewater. Campbell, B. S., et al. reported on the HTC of spent coffee grounds
integrated with an Antaco anaerobic digestion plant to investigate the stability of an AD
system. Process water resulted in a higher yield of methane and higher COD degradation
throughout the 190 days of operation [112]. The main issue with the Antaco AD system is
that it is only 25% efficient in biogas production, which falls significantly short of industry
standards.

Yoshikawa, K. et al. [117] implemented a commercial demonstration plant in Indonesia.
The plant produced biocoal from municipal solid waste using HTC in a single year. The
treatment capacity of this plant was 50 T/day. The procedure utilizing the steam generator
was completed in a 10 m3 batch-type reactor. The hydrochar that was obtained had an HHV
greater than 17 MJ/kg. Using 15% of the obtained biocoal was sufficient for providing the
necessary steam during the HTC process, making the overall process more energy efficient.

By reviewing the HTC processes employed by different commercial companies, one
may conclude that HTC on a large scale brings many advantages to the environment
and economy by reducing the amount of biomass waste, reducing wastewater treatment
costs, and producing valuable end products like fertilizer, biofuel, biochar, biogas, and
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bio-chemicals. A number of factors need to be considered when operating a plant on a large
scale: the selection of a suitable HTC reactor, either batch or continuous; the number of
cycles per day or the capacity of treatment; the necessity of pretreatment for feedstock; the
heating system, i.e., steam- or diathermal-oil-based; an efficient waste-heat recovery system;
proper control of odor during the process; and the optimal operation conditions, such as
temperature, residence time, and catalyst. Combining HTC and other technologies like
AD and WO to treat process water not only creates a new energy source but also reduces
wastewater treatment costs and makes the HTC process more eco-friendly with higher
performance efficiency. However, a number of non-technical issues should be addressed
and assessed in a systematic way, such as life cycle assessment or techno-economic analysis.

4. Conclusions

Based on recent studies about upscaling from the lab scale to pilot scale, it is evident
that reaction temperature, pressure, residence time, type of feedstock, reactor type, energy
recovery, mass balance, and energy balance are the crucial process parameters for designing
an industrial scale HTC plant. Determining the optimal process parameters related to a
cost–benefit analysis is also necessary when carrying out the HTC process on a large scale.
Many companies like Ingelia, AVA-CO2, CarboRem, SunCoal, Antaco, Carbon Solution,
TerrNova, HTCycle, and C-Green have successfully developed industrial-level plants, but
they still face several challenges, particularly in terms of plant design and in the sector of
wastewater treatment plant. Innovative reactor designs intended to improve productivity,
such as continuous systems and multi-batch reactors, should be carefully chosen for suit-
able processes to accommodate different purposes of production. Upscaling is necessary
because it can optimize resource utilization through increasing process efficiency, leading
to reduced cost and labor requirements. Moreover, larger-scale HTC operations should
meet the demands of industries and markets for commercialization. When upscaling
HTC technology, a significant quantity of organic waste from landfills can be diverted to
valuable products, reducing greenhouse gas emissions and mitigating the environmental
impact. However, the challenges and caveats to upscaling should be recognized. The
treatment of process water will need more research to address valorization and reducing
wastewater treatment costs on an industrial scale. By integrating HTC (Hydrothermal
Carbonization) with other waste treatment methods like anaerobic digestion, combustion,
and wet oxidation can indeed offer several potential benefits in terms of energy efficiency
and sustainability.
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