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Abstract: During hydraulic fracturing of waxy shale oil reservoirs, the presence of fracturing fluid can
influence the phase behavior of the fluid within the reservoir, and heat exchange between the fluids
causes wax precipitation that impacts reservoir development. To investigate multiscale fluid phase
transition and microscale flow impacted by fracturing fluid injection, this study conducted no-water
phase behavior experiments, water injection wax precipitation experiments, and water-condition
phase behavior experiments using a nanofluidic chip model. The results show that in the no-water
phase experiment, the gasification occurred first in the large cracks, while the matrix throat was the
last, and the bubble point pressure difference between the two was 12.1 MPa. The wax precipitation
phenomena during fracturing fluid injection can be divided into granular wax in cracks, flake wax in
cracks, and wax precipitation in the matrix throat, and the wax mainly accumulated in the microcracks
and remained in the form of particles. Compared with the no-water conditions, the large cracks and
matrix throat bubble point in the water conditions decreased by 6.1 MPa and 3.5 MPa, respectively,
and the presence of the water phase reduced the material occupancy ratio at each pore scale. For the
smallest matrix throat, the final gas occupancy ratio under the water conditions decreased from 32%
to 24% in the experiment without water. This study provides valuable insight into reservoir fracture
modification and guidance for the efficient development of similar reservoirs.

Keywords: shale oil reservoir; hydraulic fracturing; nanofluidic; phase behavior experiment; wax
precipitation

1. Introduction

The demands for oil and natural gas are increasing as human society continues to
develop. However, conventional oil and gas resources are becoming scarce. As a result,
people are now focusing on unconventional resources, such as shale oil and gas, which
have shown great potential [1–4]. Shale reservoirs are extremely dense reservoirs char-
acterized by high heterogeneity, ultralow porosity and permeability [5–7], and abundant
nanopores [8,9]. Intermolecular interaction forces between the confined fluid and the pore
wall in nanoscale space become as important as intermolecular interactions within the
confined fluid, and the strong solid–liquid interactions have a significant impact on the
adsorption, distribution, mass transfer, and thermodynamic properties of the fluid. These
interactions also cause noticeable differences in the physical properties of the fluid in both
the bulk phase and nanopores [10,11].

The study of phase behavior in confined spaces has been explored extensively using
experimental [12–14], analytical [15,16], and simulation methods [17–19]. Xu et al. [20]
conducted a comprehensive study on the two-phase transport properties of shale gas
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and water in hydrophilic and hydrophobic nanopores by combining molecular dynam-
ics simulations and analytical modeling. Zhang et al. [21] developed a comprehensive
thermodynamic model to study the phase behavior of nanopore-confined C1–C10 and
C1–C4 mixtures based on pore geometry. The results show that capillarity and adsorption
lead to significant deviations in the phase envelope. To study the effect of dynamic capil-
lary pressure on two-phase flow processes, Abbasi et al. [22] proposed a hidden iteration
method and implemented it. The results show that the algorithm has good convergence
and, considering the dynamic capillary effect, is the key to simulating two-phase flow
in porous media. Li et al. [23] proposed a two-phase flow analysis model that takes into
account the presence of the water phase. The results show that the oil flow curves of the
two-phase and single-phase models are both parabolic, but because of the influences of the
flow space and internal water, the oil flow rate decreases. Sharma [24] studied the confined
phase behavior of ethane at different pore sizes and temperatures in the ordered meso-
porous material MCM-41 at the nanoscale. The results show that the capillary condensation
pressure increases with an increasing pore size and temperature.

Shale oil is a complex mixture that comprises waxes, colloids, asphaltenes, aromatics,
and light hydrocarbons. This intricate composition poses a significant challenge for the
development of shale oil, particularly when the reservoir fluids have a high wax con-
tent [25,26]. The shale oil and gas resources of Liang2’s lower submember in the Fuxing
area are 656 million tons of oil and 530 billion square meters of gas, which are large-scale
resources. However, the shale reservoir has a high-waxy fluid, the size difference of matrix
nanopores and microfractures is large, and the characterization of the wax precipitation in
the reservoir fluid during fracturing will seriously affect the reservoir development effect.

The nanofluidic chip is an emerging experimental technology that allows for the study
of heat–mass transfer and physicochemical properties of fluids at the nanoscale. This
technology combines semiconductor chip processing with interdisciplinary approaches. It
offers precise pore processing at the nanoscale, allows for the design of flow channel
structures with a high degree of freedom, enables the flexible treatment of pore sur-
face wettability, and allows for the visual detection and manipulation of fluid states
at the nanoscale [27]. It has gradually been applied in the petroleum field, in which
Wang et al. applied a nanofluidic device to visualize the phase transitions of pure alkanes
and alkane mixtures under nanocondensation as a means of approximating the oil/gas
phase behavior in nanopore rocks [28]. Alfi et al. utilized lab-on-a-chip techniques, along
with high-resolution imaging, specifically using inverse confocal microscopy equipment,
to investigate the phase behavior of hydrocarbons in nanoscale capillaries, also known as
nanochannels. The results of this study indicate that this method holds great potential for
experimental research on phase behavior within nanoscale pores [29]. Hu et al. utilized
nanofluidic technology to construct a shale micromodel to characterize salt precipitation
and dissolution. This study successfully differentiated various phases ranging from 50 nm
to 5 µm, allowing for the identification of the salt precipitation point and the examination
of the precipitation dynamics during CO2 injection [30].

Because of the unclear understanding of the microscopic seepage mechanism of waxy
shale oil at present, conventional laboratory experimental methods cannot reveal the char-
acteristics of continuous phase transition before and after fracturing fluid injection under
the condition of a nanoconfined effect, as well as the influence of the wax precipitation
on the reservoir fluid flow characteristics. This study carried out a multiscale phase be-
havior experiment simulation of shale oil revisors after fracturing reconstruction based on
nanofluidic technology. The multiscale phase transition phenomenon and wax precipita-
tion phenomenon during water injection was directly observed in the visible area of the
experiment, and the influence of the existence of the water phase on the multiscale phase
transition was revealed through the analysis of the experimental data. This research offers
valuable insight into waxy oil reservoir fracturing, identifies potential strategies for the
development of analogous shale reservoirs, and serves as a theoretical guide and reference.
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2. Experimental Part
2.1. Chip Design and Preparation

According to the reservoir’s physical parameters and fracture characteristics with
large differences in the pore sizes and scales, the size of the matrix and pore network was
determined by considering the contribution degree of the porosity. Subsequently, a chip
model that aligns with the conditions of the fractured reservoir was designed and prepared.
As shown in Figure 1, the white part is the matrix throat (13 nm), the yellow parts are the
matrix pores (510 nm), the red area is the large crack (10 µm level), and the green areas are
the microcracks (1 µm level).
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Figure 1. Chip model design. (a) The pore network model; (b) The pore-crack coupling model.

To fulfill the requirements of the nanofluidic visualization experiments, the nanochan-
nels etched onto the chip were standardized into one-dimensional confined flow channels
(specifically, channels with a one-dimensional flow channel section within the designated
nanometer scale) during the chip’s preparation. The whole chip production included
coating and drying, exposure and development, and then the etching machine etched the
developed silicon wafer; after the detection met the design requirements, the film was
produced, and, finally, the full chip was obtained by anodic bonding [31,32]. The final
design of the real chip model is shown in Figure 2.
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Figure 2. The actual chip models.

2.2. Experimental Materials and Equipment

The oil used in the experiment was taken from the Xingye L1HF well oil sample
(Figure 3a). The fracturing fluid was purified water. Based on the chip model, this study
built a flow visualization test bench, including a chip fixture, microinjection pump, pressure
sensor, constant-temperature water bath, temperature sensor, microscope, and camera,
according to the needs of the experiments, as shown in Figure 3b. The chip model and the
experimental platform together constitute the whole system used in the conduction of the
research experiment.
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2.3. Experimental Scheme and Process

The experimental procedure is illustrated in Figure 4. The nanofluidic chip was affixed
within a custom-made, high-temperature and high-pressure stainless-steel fixture, designed
for conducting tests under elevated temperature and pressure conditions. The fixture
was linked to a piston, plunger pump, and gas cylinder to facilitate fluid injection. For
simulating the reservoir temperature, a water bath was connected to a hose on the fixture’s
side, allowing for the circulation of hot water, and the experimental temperature was
monitored by inserting a thermocouple. Then, the experiment was carried out according
to the following steps: (1) turn on the heating system of the nanofluidic chip stage and
the intermediate container, set the experimental temperature to the reservoir temperature
(70.8 ◦C), and vacuum the equipment for 3 h. (2) Step by step, increase the pressure
to the reservoir’s pressure condition (37.7 MPa) and stabilize for 24 h. (3) Gradually
reduce the pressure and record the phase transition and corresponding pressure of the oil
at various scales through a microscope. (4) Restore the chip pressure to the reservoir’s
pressure condition and the oil sample to the single phase; then, the fracturing fluid at room
temperature, and continuously injection for 8 PV (pore volume). (5) Stop the injection of
the fracturing fluid so that the chip can be stabilized for 24 h under the condition of the
reservoir’s temperature and the distribution of the oil, water, and wax at all pore scale
levels can be balanced. (6) Repeat the pressure reduction operation, and observe and record
the phase transition and corresponding pressures of the oil samples at various scales under
water conditions through a microscope.
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3. Results and Discussion

After the saturated oil was finished, it was found that at room temperature (25 ◦C),
the oil sample had obvious wax precipitation characteristics, the wax showed a large
range of flaked connections, and the darker the color, the more wax was precipitated.
Dark-colored areas were more common in the corners of cracks and blind ends. This is
because with the continuous erosion of the saturated oil, wax precipitated while being
trapped to flow toward the outlet, gradually accumulating in the corners and blind ends
(see Figure 5a). Because of the small size of the matrix pores and throats, the amount of
wax precipitation was less, and no obvious phenomenon could be seen in the visual field.
After the temperature gradually increased to the reservoir’s temperature (70.8 ◦C), the
wax in the original precipitation position gradually dissolved in the oil and disappeared
from view. A relatively transparent uniform fluid appeared in the visual field, as shown
in Figure 5b. It can be seen that the waxy shale oil was in a single liquid phase at the
reservoir’s temperature.
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3.1. Multiscale Phase Behavior Experiments under No-Water Conditions

After the oil sample in the chip reached a stable equilibrium state, the multiscale phase
behavior experiment was carried out under the conditions of no water. Figure 6 shows the
bubble points of various pore scales measured under a constant temperature and pressure
reduction. It was found that when the pressure was reduced to 34.3 MPa, the large crack
was the first to vaporize. This is due to the largest pore size of the large cracks in the chip,
and when the pressure is reduced from the inlet, the pressure is transmitted more rapidly
to the large cracks so that it first reaches the bubble point. However, the pore sizes of the
other channels were relatively small, and they were still in the single-phase oil state due
to the space limitation effect. When the pressure continued to decrease to 32.7 MPa, the
bubble point was reached, and bubbles appeared in the microcracks. In the subsequent
depressurizing process, the matrix pores and throat reached their respective bubble point
pressures successively, which were 30.1 MPa and 22.2 MPa, respectively.

The results of the multiscale phase behavior experiments without water show that the
smaller the pore size of the channel, the stronger the limiting effect and the more significant the
drop in the bubble point pressure. Moreover, with the decrease in pore size, the bubble point
has a greater inhibition effect. For example, the bubble point pressures of the microcracks,
matrix pores, and throat decreased by 1.6 MPa, 4.2 MPa, and 12.1 MPa, respectively, compared
with that of the large cracks, and the degree of reduction gradually increased.
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3.2. Wax Precipitation during Fracturing Fluid Injection

For the observation of the wax precipitation in the waxy oil during the fracturing fluid
injection, the system’s pressure was initially restored to the reservoir’s pressure conditions.
After recovering the oil samples to a single-phase state, water injection at room temperature
was initiated to simulate the fracturing fluid injection process, with a total injection volume
of 8 PV. The changes in the oil and the wax precipitation process during the fracturing fluid
injection were monitored using a camera attached to an optical microscope.

In the process of injection, it was noted that wax crystals gradually developed in the
field of view. This is because, with its injection, the fracturing fluid began to exchange heat
with the chip and the internal fluid, the continuous injection of the fracturing fluid caused
the temperature in the channel to continue to decrease, and the wax previously dissolved
in the oil was reprecipitated. At the end of the injection process, the wax precipitation
phenomena during the whole experiment can be divided into the following three situations:
granular wax in cracks, flake wax in cracks, and wax precipitation in the nanopore throat.
The injection time can also be divided into early, middle, and late injections. Figure 7 shows
the wax precipitation in the reservoir at different injection volumes of fracturing fluid.

In the early stage of fracturing fluid injection (0~3 PV), the fracturing fluid first played
a flooding role, and only oil–water two-phase flow could be observed in the visual field.
When the fracturing fluid was injected for 1 PV, because of the small injection amount, the
cooling effect of the fluid was not significant, and there was no obvious wax precipitation
in the fracture channel. When the injection amount reached 2 PV, a small amount of
granular wax began to precipitate and adhere to the wall surface to form a raised surface.
When the fracturing fluid was injected for 3 PV, the granular wax gradually increases
and accumulates, and a large amount of granular wax can be seen in the whole field of
vision, with an average diameter of about 2 microns, and an obvious wax-forming interface
appears at the oil–water interface at the blind end of the microfracture. This is because the
dead oil at the blind end continued to exchange heat with the injected fracturing fluid, the
temperature at the oil–water interface decreased significantly, and the wax could not be
taken away, resulting in wax deposition.

In the middle stage of the fracturing fluid injection (4~5 PV), with the continuous
erosion of the fracturing fluid, the oil content in the fracture gradually decreased, the
granular wax began to migrate and further accumulate, and the flake crystals gradually
formed. As can be seen from Figure 7, during the middle stage of the injection, the wax
crystals were connected in sheets and showed a pattern of ups and downs on the wall. At
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this time, it can be seen in the optical microscope field that different shapes of flake crystals
developed in different positions of the crack.

In the late stage of the fracturing fluid injection (6~8 PV), the oil in the large cracks
and microcracks was removed. With the further erosion of the fracturing fluid, part of the
dead oil in the matrix pores and throat was removed, and a small amount of wax occurred
in the matrix pores and throat near the fractures. In the visual field, it can be seen that flake
wax precipitated from the matrix pores, but the matrix pores and throat were too small to
distinguish the crystal shape of the wax phase. It can be observed that the fluid flow in
the nanopore throat was less smooth than that before the fracturing fluid injection, and it
can be concluded that wax was generated and seriously affected the two-phase oil–water
seepage in the matrix throat.
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3.3. Multiscale Phase Behavior Experiments under Water Conditions

After the observation of the wax precipitation phenomenon of the fracturing fluid
injection, the injection was stopped, and the temperature was raised to stabilize the chip
for 24 h under the condition of the formation temperature so that the distribution of the oil,
water, and wax, at all pore scale levels, was stable and balanced. Then, the bubble point
pressure, at all pore scales, under water conditions was measured by reducing the pressure
again, and the phase behavior and corresponding pressure of the volatile oil, at all scales,
under water conditions were observed and recorded through a microscope.

During the 24 h holding stage at the formation temperature, studies have found that
the waxy flake crystals during the fracturing fluid injection stage disappeared, and some of
them remained in the fracture in the form of particles and no longer melted, affecting the
two-phase oil–water seepage flow and causing certain damage to the fracture conductivity.
Therefore, it can be proved that for waxy shale oil, the formation of the wax precipitation
phenomenon will cause cold damage to the reservoir.

The subsequent pressure reduction experiment results show that under the water
conditions, the volatilization of oil still occurs first in the large fracture, and bubbles first
nucleate in the water phase at the water–oil interface and then immediately jump to the
oil phase to grow and expand. At this time, the bubble point pressure measured in the
large fracture was 28.2 MPa, which significantly decreased by 6.1 MPa compared with that
without water. When the pressure was reduced to 26.5 MPa, bubbles began to appear in
the microcracks. The bubble point pressure of the microcracks was measured. Shortly after
bubbles appeared in the microcracks, the bubble point pressure also reached the matrix
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pores, at which time the pressure was 24.9 MPa. Finally, gas was precipitated in the matrix
throat when the pressure dropped to 18.7 MPa, as shown in Figure 8.
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The results of the experiments under the water conditions show that the presence
of fracturing fluid can significantly affect the bubble point change, at all pore scales; the
presence of the water phase severely inhibits the bubble point; and the bubble point
hysteresis occurs at all pore scales. As shown in Figure 9, the larger the pore scale, the more
significant the impact. The bubble point pressure of the large cracks and microcracks at
the micron scale decreased by about 6 MPa under the water conditions compared with the
no-water conditions. The drop in the bubble point pressure in the 100 nm matrix pores was
5.2 MPa, and the drop in the bubble point pressure in the 10 nm matrix throat was only
3.5 MPa. This is also because the smaller the pore scale, the less fracturing fluid that enters,
so the smaller the inhibition effect on it.
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3.4. Material Occupancy Ratios at Different Pore Scales

With micro-nanofluidic technology, the ratio of oil–water/oil–gas–water occupancy
in the flow channels at all pore scales in the reservoir can be monitored and captured in
real time. Figures 10 and 11 show the proportions of two-phase oil–water and three-phase
oil–gas–water, at all pore scales, under the no-water conditions and water conditions. As
can be seen in Figure 10, in the experiment at various pore scales under the conditions
of no water, the gas occupancy of the large cracks was the highest, which is in line with
the normal phenomenon. Because of the high bubble point pressure of the large cracks,
gasification occurred first; then, the pressure gradually decreased, and the gas continued to
precipitate. As can be seen in the figure, when the bubble point pressure was 34.4 MPa, the
gas occupancy ratio was only 0.83%, and then it rose rapidly until the pressure dropped to
15 MPa; the increase flattened gradually, the final gas occupancy ratio reached 78.63%, and
the remaining oil is only 21.37%. When the microcracks reached the bubble point, the gas
occupancy ratio was 0.37%, and the final gas occupancy ratio was 56.56%. The final gas
occupancy ratio of the matrix pores and throat increased to 45.54% and 32%, respectively.
It also shows that with the decrease in the pore size, the smaller the gas occupancy ratio,
and the more difficult it is for oil to develop in the pores.
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Figure 11 shows the occupancy ratio of the three-phase oil, gas, and water under
water conditions. After large-scale fracturing fluid injection, the water phase occupancy
of the large cracks reached 66%, that of microcracks was 55%, and the matrix pores and
matrix throats were 46% and 30%, respectively. With the gradual reduction in the pressure,
the amount of gas precipitation in the pores, at all levels, was inhibited under the water
conditions. When the pressure dropped to 4 MPa, the gas occupancy ratios in the pores, at
all levels, were 40%, 30%, 30%, and 24%, respectively. The corresponding final oil phase
occupancy ratios were 13%, 25%, 38%, and 55%, respectively. The results show that the
presence of the water phase inhibited the gas production, at all pore scales, and thus
affected the degree of oil phase utilization.

To more intuitively characterize the influence under water conditions on the amount
of gas precipitated, at various pore scales, this paper selected the oil–gas/oil–gas–water
occupancy ratio for each pore scale under the final experimental pressure of 4 MPa for the
calculations. The relative gas–oil occupancy (Rg

l ) was used as an index to characterize the
degassing of oil samples per unit volume.

Rg
l =

Rg

Rl
(1)

where Rg is the gas phase occupancy, at all pore scales, when the pressure is 4 MPa; Rl is
the oil phase occupancy, at all pore scales, when pressure is 4 MPa. The corresponding data
can be directly read in Figures 10 and 11. Figure 12 shows the trend in the relative gas–oil
occupancy, at all pore scales, under the following two conditions: without fracturing fluid
and with fracturing fluid. It can be seen from the figure that, affected by the presence of
the water phase, the relative gas–oil occupancies in the large cracks, microcracks, matrix
pores, and matrix throat decreased by 0.6, 0.1, 0.05, and 0.03, respectively. The decrease
was the greatest in the large cracks. It is intuitively proved that gas production, at all pore
scales, will be inhibited under water conditions, and the larger the pore scale, the greater
the influence of water on the gas precipitation.
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4. Conclusions

In this work, this study focused on the characteristics of continuous phase transition
before and after fracturing fluid injection and the impact of wax precipitation characteristics.
Our findings are as follows:
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(1) In the multiscale phase behavior experiment under the no-water conditions, it was ob-
served that gasification initiated first in the large cracks, with a corresponding bubble
point pressure of 34.3 MPa. In the subsequent process with a constant temperature
and pressure reduction, with the decreases in the pore size, bubble point pressure
of the microcracks, matrix pores, and matrix throat were 32.7 MPa, 30.1 MPa, and
22.2 MPa, respectively.

(2) During the process of the fracturing fluid injection, the wax precipitation phenomena
manifested in the following three cases: granular wax and flake wax in the cracks,
and wax formation in the matrix pores and throat. Wax precipitation was primarily
concentrated in micron-sized cracks, retaining a granular form. This impeded the
fluid flow and, to some extent, compromised the conductivity of the cracks.

(3) The bubble point pressures of the different pore scales decreased further due to the
influence of the water phase. The bubble point pressure of the large cracks was
28.2 MPa, representing a significant decrease of 6.1 MPa compared to the no-water
conditions, the bubble points corresponding to the microcracks, matrix pores, and
matrix throats decreased by 6.2 MPa, 5.2 MPa, and 3.5 MPa, respectively.

(4) The water phase also significantly influenced the material occupancy ratios across the
different pore scales. The Rg

l value intuitively proves that gas production at different
pore scales will be inhibited under the water conditions, and the larger the pore scale,
the greater the influence of the water on the gas precipitation.

The nanofluidic technology was used in this study to reveal the phase transition
hysteresis at the multiscale and to illustrate the effects of water. The presence of the water
phase would not only precipitate wax in crude oil but also affect the permeability of the
pores, to a certain extent, and inhibit the bubble point at each pore scale. Also, the water
phase would inhibit the gas precipitation at different pore scales. In the future development
of similar waxy shale reservoirs, the impact of water can be reduced as much as possible to
enhance oil recovery.
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