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Abstract: The ion storage layer in electrochromic devices (ECDs) stores protons or lithium ions
to provide electrochemical stability and extend cycle durability. This paper reports on the perfor-
mance and stability of ECDs paired with various ion storage layers (NiO, V2O5, and IrO2 films).
The complementary ECD using a V2O5 ion storage layer presented the fastest response time, but
the lowest optical contrast. In addition, the ECD using an IrO2 ion storage layer proved the most
effective as an ion storage layer, due to its high optical modulation ability capability and long-term
stability. Chronoamperometry analysis revealed that IrO2-based ECD (glass/IZTO/WO3/liquid
electrolyte/IrO2/IZTO/glass) can be highly effective in modulating optical transmittance, as indi-
cated by T = 61.5% (from Tbleaching (69.6%) to Tcoloring (8.1%)) and switching times of 5.3 s for coloring
and 7.3 s for bleaching at 633 nm.

Keywords: electrochromic device; ion storage layer; nickel oxides; vanadium oxides; iridium oxides

1. Introduction

Electrochromic devices (ECDs) are attracting considerable attention for use in smart
windows [1], optical displays [2], and rear-view mirrors [3] due to their low power usage,
reversible changing, low-power driving, large optical modulation, and good memory [1–4].
Smart windows based on electrochromic (EC) materials make it easy to control the ingress
of sunlight and solar heat, reducing the energy required for heating and cooling [5]. The
practical applicability of ECDs can be estimated according to electrochromic efficiency,
optical contrast, response time, stability, and durability [6,7]. Satisfying all of these cri-
teria at the same time will require the development of novel materials and novel ECD
structures [5–7].

Researchers have developed a wide variety of electrochromic (EC) materials [8–12],
including transition-metal oxides, such as nickel oxide (NiO) [13], tungsten oxide (WO3),
molybdenum trioxide (MoO3) [14,15], niobium oxide (Nb2O5), titanium dioxide (TiO2) [16],
iridium oxide (IrO2) [12], and vanadium oxide (V2O5) [17]. Oxide films can be colored
anodically (Ir, Ni) or cathodically (W, Mo). Complementary electrochromic devices are
another class of devices in which one anodic coloration material is combined with one
cathodic coloration material within a multi-layer structure. WO3 films have been widely
studied for use as cathodic materials, due to their good electrochromic properties and high
stability [18]. WO3 can be reversibly switched between colorless and blue under applied
positive or negative voltage, respectively [19,20]. The ion storage layer in electrochromic
devices (ECDs) stores protons or lithium ions to provide electrochemical stability and
extend cycle durability [21]. NiO, IrO2, and V2O5 films are commonly used as ionic storage
materials in ECDs.

High optical contrast and long-term durability are the two criteria of greatest im-
portance to the practical implementation of electrochromic devices. Note, however, that
ECDs are highly susceptible to degraded optical modulation when a portion of the injected
ions become trapped, i.e., cannot be extracted from the ECD. The trapping of lithium
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ions can have a profound effect on the performance of electrochromic thin films based
on WO3 and NiO layers [22–25] undergoing lithiation and delithiation. Diao et al. [22]
attributed the degradation of cycled all-solid-state WO3/NiO electrochromic devices to the
trapping of lithium ions. Note that the accumulation of trapped ions can lead to mechani-
cal degradation of the ECD material; a few researchers have addressed this issue [26,27].
The mechanism by which ion trapping undermines optical modulation and subsequent
electrochromic reactions has yet to be elucidated. Furthermore, researchers have yet to
explain why this degradation usually occurs in conjunction with a decrease in the charge
density of inserted ions [13,28].

In this study, cycle voltammetry (CV) and chronoamperometry (CA) analyses were
used to study the performance and stability of ECDs based on a variety of ion storage
layers (NiO, V2O5, IrO2) [17,29–31]. Ion quantity and the cycle-dependent evolution
of open-circuit-potential (OCP) were derived from CV curves. CA and in situ optical
transmittance measurements were used to assess changes in the performance and stability
of ECDs. The findings obtained in this study provide a valuable contribution to the current
understanding of ion storage layers and their influence on the performance and stability of
electrochromic devices.

2. Materials and Methods
2.1. Preparation of Films

After evacuating a deposition chamber to a high-vacuum base pressure of less than
1 × 10−5 torr using a turbo pump, IZTO films [32] were deposited on glass substrates
(10 × 10 cm2) via DC magnetron sputtering (100 W) using an IZTO target (70 at.% In2O3 +
10 at.% SnO2 + 20 at.% ZnO) under a working pressure of 2.5 × 10−3 torr with argon (Ar)
gas without substrate heating.

Under a base chamber pressure of less than 2 × 10−5 torr, films of WO3, NiO, V2O5,
and IrO2 were respectively deposited via Cathodic arc Plasma, CAP using targets of metallic
tungsten (W) (99.95% purity), metallic nickel (Ni) (99.95% purity), V2O5 (99.95% purity),
or metallic iridium (Ir) (99.95% purity) under Ar/O2 gas flow at a ratio of 1/3 on finished
TCO/glass substrates.

Deposition parameters are detailed in Table 1.

Table 1. The deposition parameters for both the electrochromic, ion layer, and the transparent
conducting layer were determined.

Target Ar/O2 (sccm) W.P.
(mTorr)

DC
Power

(W)

Deposition
Time
(min)

Deposition
Rate

(nm/min)

Deposition
Temp
(◦C)

Thickness
(nm)

ITO 1/0
(Ar = 30) 2.5 100 10 30 RT 300

W Metal 1/3
(Ar = 100) 8 1500 15 13 50 200

Ni Metal 1/3
(Ar = 120) 8 650 3 20 50 60

V
Metal

1/3
(Ar = 20) 2.5 1200 12 5 100 80

Ir Metal 1/3
(Ar = 120) 8 650 3 20 50 60

2.2. Fabrication of Electrochromic Devices (ECDs)

The multiple layers in a typical ECDs structure are stacked as follows: transparent
electrode (300 nm)/electrochromic active electrode (200 nm)/electrolyte/counter electrode
(80 nm)/transparent electrode (300 nm). The ECDs in the current study comprised an IZTO
transparent electrode, a WO3 active electrochromic electrode, an electrolyte of 1M LiClO4
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Propylene Carbonate (PC, C4H6O3, Sigma-Aldrich, St. Louis, MO, USA), and NiO, V2O5,
or IrO2 as counter electrodes.

2.3. Experiment Details

Cycle voltammetry (CV) and chronoamperometry (CA) values (Autolab PGSTAT30,
Utrecht, The Netherlands) were used to derive electrochemical characteristics. The optical
transmittance of the films over a wavelength range of 300 to 900 nm was measured using
an ultraviolet-visible (UV-Vis) spectrophotometer (model DH-2000-BAL, Ocean Optics,
Dunedin, FL, USA) with samples in colored or bleached states.

3. Results
3.1. Mechanisms Underlying the Operations of Electrochromic Devices (ECD) Based on Counter
Layers of NiO, V2O5, or IrO2

This study compared the electrochemical and electrochromic properties of ECDs
fabricated with a matched electrochromic active layer (WO3 films) and counter layers of
various materials (NiO, V2O5, or IrO2). Cycle voltammetry (CV) has been widely used to
assess the electrochemical and electrochromic proprties of ECDs. CV analysis simplifies
the characterization of electrochemical reactions, the charge density of inserted/extracted
ions, and the elecrtrochromic efficiency of ECDs. As shown in Figure 1, under an applied
negative voltage, the CV characteristics of ECDs based on IrO2 and NiO are similar to those
of WO3 film, as indicated by a maximum reduction in current density at −2.5 V. Under
an applied positive voltage, the NiO-based ECD underwent an initial oxidation reaction
involving the WO3 electrode at −2.5 and 0 V, followed by an oxidation reaction involving
NiO at 1 V. The V2O5-based ECD presented two peaks at −0.91 and −1.45 V, indicative of a
reduction reaction involving a portion of the vanadium (+5) to vanadium sites (+4), which
is similar to the CV characteristic curves of V2O5 films during coloration. The V2O5-based
ECD also presented two peaks at −0.81 and +0.03 V, indicative of an oxidation reaction.
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presented the highest optical transmittance of ∆T = 53% (from Tbleaching (67%) to Tcoloring 
(14%)). The optical transmittance values of the NiO-based and V2O5-based ECDs were 45% 
and 40%, respectively. Coloration behavior in ECDs is affected by the insertion of ions into 
the host structure, and ion transport behavior can be calculated according to the results of 
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Figure 1. CV curves of ECDs fabricated using a matched electrochromic active layer (WO3 films)
with counter layers comprising films of (a) NiO, (b) V2O5, and (c) IrO2.

3.2. Electrochemical and Optical Properties as Functions of Counter Layer Types (NiO, V2O5, IrO2)

Figure 2 illustrates the in situ optical transmittance (wavelength = 633 nm) through
ECDs under the effects of coloring or bleaching (voltage sweep of −2.5 V to 2.5 V) based
on measurements obtained at a consistent scanning rate of 0.05 V/s. The IrO2-based ECD
presented the highest optical transmittance of ∆T = 53% (from Tbleaching (67%) to Tcoloring
(14%)). The optical transmittance values of the NiO-based and V2O5-based ECDs were 45%
and 40%, respectively. Coloration behavior in ECDs is affected by the insertion of ions into
the host structure, and ion transport behavior can be calculated according to the results
of the CV envelope area under the effects of ions insertion/extraction. The charge density
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of inserted and extracted ions can be calculated by respectively integrating negative CV
curves or positive CV curves using the following equation:

Q =

∫
IdV
v

(1)
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Figure 2. In situ optical transmittance of ECDs at a wavelength of 633 nm under an applied sweep
voltage from −2.5 V to 2.5 V with a set scanning rate of 0.05 V/s.

The calculated charge densities of inserted and extracted ions are shown in Figure 3.
These CV test results indicate that the coloration of IrO2-based ECD and NiO-based ECDs
was deeper than that of the V2O5-based ECD, due to the insertion of more ions into the
electrode films. Figure 3 revealed an obvious discrepancy between inserted charge density
and extracted charge density, indicating that a significant proportion of the inserted ions
could not be extracted. Ions that cannot be extracted are referred to as trapped ions. The
optical modulation of the NiO-based ECD failed to match that of the IrO2-based ECD, due
to the trapping of an excessive number of ions in the host structure.

Ion transport behavior depends on the direction, intensity, and duration of the driving
force, which is in turn dependent on the relative intensity of operation-potential (E) to
open-circuit-potential (OCP). Note that OCP is defined as the voltage corresponding to net
zero current flow. During a negative scan (when the response current density is zero), the
voltage corresponding to this zero-current (indicated as E1) is equal to OCP1 of the ECD in a
bleached state. The fact that the current generated using applied voltage E is more strongly
negative than E1 induces ion insertion into the ECDs and subsequent coloring. During a
positive scan (when the response current density is zero), the voltage corresponding to
this zero-current (marked as E2) is equal to OCP2 of the ECD in the colored state, at which
point the density of inserted ions is maximized. The fact that the current generated with
applied voltage E is more strongly negative than E2 induces the extraction of ions out of
the ECD and subsequent bleaching. The driving force underlying ion transport depends
on the relative intensity of applied voltage E to OCP, wherein a larger gap between applied
voltage E and OCP produces a stronger force to drive ion transport. The OCP values of all
ECDs are listed in Table 2.
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Table 2. OCP values of the three ECD types.

OCP1 OCP2

NiO-based ECD 1.22 V −2.10 V

V2O5-based ECD 1.35 V −1.54 V

IrO2-based ECD 1.03 V −2.12 V

As shown in Figure 4, the ratio of inserted ions to extracted ions largely determined
the driving force underlying ion transport [33]. As shown in Figure 4a, the coloration of the
NiO-based ECD was examined under negative current density by sweeping the potential
from 1.22 V to −2.5 V and back to −2.1 V. Figure 4b, the bleaching process of the NiO-
based ECD was examined under positive current density by sweeping the potential from
−2.1 V to 2.50 V and back to 1.22 V. Again, the curve representing the inserted charge ratio
presented two distinct parts. The first part (voltage of 1.22 to −1.5 V) revealed gradual ion
insertion, while the driving force in the second part was sufficient to induce the insertion of
most ions into the WO3. Based on the same methods, the OCP values of IrO2-based ECD
were as follows: OCP1 (1.03 V) and OCP2 (−2.12 V). As shown in Figure 4a, the CV curve of
the IrO2-based ECD was similar to that of the NiO-based ECD; however, the curve for the
inserted charge ratio could not be divided into two parts (see Figure 4). This indicates that
unlike the NiO-based ECD, when E was more strongly negative than OCP1, the IrO2-based
ECD did not require a strong driving force for ion insertion. When E was more strongly
positive than OCP2, the curve of the extracted charge ratio appeared as a straight line,
indicating that the IrO2-based ECD did not require a strong driving force for ion extraction.

As shown in Figure 4b, the coloration process of the V2O5-based ECD was examined
under negative current density by sweeping the potential from 1.35 V to −2.50 V and back
to −1.54 V. The bleaching process of the V2O5-based ECD was examined under positive
current density by sweeping the potential from −1.54 V to 2.50 V and back to 1.35 V. The
slope of the curve for the inserted/extracted charge ratio was larger in this ECD than in
the other ECDs, indicating that the insertion/extraction of ions could be achieved using a
weaker driving force than is required for NiO-based ECDs and IrO2-based ECDs.
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3.3. CV Curves of ECDs as a Function of Scanning Rate

Figure 5 plots current density versus voltage potential in the first cycle of applied
sweep voltage ranging from −2.5 V to 2.5 V at scanning rates of 0.05, 0.10, and 0.15 V/s.
The area under the CV curve of all three ECDs increased with the scanning rate. Figure 6
presents the charge density of inserted and extracted ions, as calculated using Equation (1).
Our results revealed that charge density varied directly with the area under the CV curve,
but inversely with scanning rate. The minimum charge density of all three ECD types was
0.15 mA/cm2 (regardless of scanning rate), with scanning rates higher than 0.1 V/s and
0.05 V/s. Figure 6d illustrates the relationship between the charge density of trapped ions
versus the scanning rate. Overall, slower scanning rates were associated with the trapping
of more ions.
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Figure 7 presents the in situ optical transmittance (wavelength = 633 nm) of the three
ECDs throughout the coloring/bleaching processes. All three ECDs presented the deepest
coloration (i.e., the most pronounced optical modulation) under the slowest scanning rate
(0.05 V/s). During the CV test, the ion storage capacity and optical modulation of the ECDs
varied with the scanning rate.
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3.4. ECD Performance: Long-Term Stability and Durability

The long-term stability of ECDs is crucial to their practical applicability in the real
world. The ECD must be resistant to the accumulation of trapped ions (Qtrap), which can be
calculated as follows:

Qtrap =
∫ m

1 {(1 − R)× Qin}dn (2)

where Qin refers to the number of inserted ions, while R refers to ion transport reversibility
expressed as the ratio of extracted ions to inserted ions. Qtrap depends on Qin and the
degree of reversibility. Figure 8 compares the three ECDs in terms of long-term durability
(100 CV cycles). Overall, the shapes of the CV curves and peak positions did not vary
throughout the 100 cycles.

Figure 9 illustrates the evolution of the charges associated with the inserted/extracted
ions (as derived using Equation (2)). Under 0.05 V, all three ECDs exhibited capacity
degradation throughout the 100 cycles. As shown in Figure 9d, the reversibility (R) of the
V2O5-based ECD (0.97~1.02) exceeded that of the other ECDs, and the quantity of inserted
ions was lower. The NiO-based ECD presented the lowest overall R and the smallest
quantity of inserted ions. Accordingly, the three materials were ranked according to the
quantity of trapped ions as follows: NiO > IrO2 > V2O5. Taken together, it appears that
R was inversely proportional to the quantity of trapped ions and the likelihood of ion
blocking, which can affect the driving force and time-evolution required for ion insertion.

Figure 10 presents the OCP values in the 1st cycle versus the 100th cycle. We deter-
mined that in the bleaching state, the OCP of the NiO and IrO2-based ECDs shifted to
a more negative potential, whereas the OCP of the V2O5-based ECD shifted to a more
positive potential, due to the accumulation of trapped ions. The electric field force required
to drive ions into the ECD depends on the relative intensity of operation potential to OCP
in the negative direction. Figure 11 plots the inserted charge ratio versus driving force as a
function of cycle number under an applied sweep voltage of −2.5 V to 2.5 V at a scanning
rate of 0.05. The NiO-based ECD presented an obvious decay in the inserted charge ratio as
a function of driving force, due to the accumulation of trapped ions.
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Figure 11. Inserted charge ratio versus driving force as a function of cycle number under an applied
sweep voltage of −2.5 V to 2.5 V at a scanning rate of 0.05 for ECDs based on (a) NiO, (b) V2O5, and
(c) IrO2.

Coloration in the NiO-based ECD in the 1st cycle occurred under an applied voltage
of 1.22 V to −2.50 V, and the ion insertion time (based on the ratio of potential to a scanning
rate of 0.05 V/s) was 82.4 s. Coloration after 100 cycles occurred under 1.07 V to −2.50 V,
and the ion insertion time was 79 s. Coloration in the IrO2-based ECD required negative
voltage and the ion insertion time decreased with the number of cycles. It is interesting
to note that the evolution of OCP in the V2O5-based ECD was reversed. Essentially, the
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R value was higher in the 100th cycle than in the 1st cycle, indicating a reduction in the
quantity of accumulated ions.

Figure 12 presents the CA curves of all ECDs as a function of voltage potential (−2.0 V
to 2.0 V) over a period of 30 s, and the corresponding in situ transmittance response under
a fixed wavelength of 633 nm. The modulation of optical transmittance by the IrO2-based
ECD (∆T = 61.5%; from Tbleaching (69.6%) to Tcoloring (8.1%)) exceeded that of the other ECDs.
Note that the modulation of optical transmittance based on CA curves was qualitatively
the same as that based on CV curves. The speed of coloration and bleaching (i.e., switching
times) are crucial to the effectiveness of ECD systems. Switching time is defined as the
time required to achieve a change in transmittance equivalent to 90% of full modulation.
Figure 12 was evaluated tc values were as follows: NiO-based ECD (13.9 s), V2O5-based
ECD (2.1 s), and IrO2-based ECDs (5.3 s). The tb values were as follows: NiO-based ECD
(5.7 s), V2O5-based ECD (2.1 s), and IrO2-based ECDs (7.3 s). Overall, the switching of the
V2O5-based ECD was faster than that of the other ECDs, due presumably to the underlying
electrochromic mechanism.
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(a) NiO, (b) V2O5, and (c) IrO2.

4. Conclusions

The practical applicability of ECDs can be assessed in terms of electrochromic efficiency,
optical contrast, response time, stability, and durability. This paper reports on the use of
cycle voltammetry (CV) and chronoamperometry (CA) to investigate the performance
and stability of composite ECDs based on various ion storage layers (NiO, V2O5, or IrO2
films). In CV analysis, the ECD with a V2O5 ion storage layer demonstrated response
times faster than those of the other devices and required less driving force, due to the fact
that the electrochromic mechanism in this device is primarily affected by the V2O5 layer.
Note, however, that the optical contrast of the V2O5-based ECD was lower than that of
the other devices. The long-term stability of ECDs is determined largely by the quantity
of trapped ions. During the CV test, the accumulation of trapped ions was shown to
decrease optical modulation ability and increase the driving force required for ion transport.
Thus, the reversibility of the IrO2-based ECD exceeded that of the NiO-based ECD, which
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accumulated a large quantity of trapped ions. Overall, IrO2 provided the most effective ion
storage layer in terms of optical modulation ability and long-term stability.
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