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Abstract: Comprehending the spatiotemporal complementarity of variable renewable energy (VRE)
sources and their supplemental ability to meet electricity demand is a promising move towards
broadening their share in the power supply mix without sacrificing either supply security or overall
cost efficiency of power system operation. Increasing VRE share into the energy mix has to be
followed with measures to manage technical challenges associated with grid operations. Most
sub-Saharan countries can be considered ‘greenfield’ due to their relatively low power generation
baseline and are more likely to be advantaged in planning their future grids around the idea of
integrating high VRE sources into the grid from the outset. An essential measure for achieving this
objective entails exploring the possibility of integrating renewable hybrid power plants into the
existing hydropower grid, leveraging on existing synergies and benefiting from the use of existing
infrastructure and grid connection points. This study evaluates the potential for hybridizing existing
hydropower-dominated networks to accommodate solar- and wind-energy sources. The existing
synergy is quantified using correlation and energy indicators by evaluating complementarity at
daily, monthly and annual intervals. The proposed metric serves as a tool to improve planning
on increasing the VRE fraction into the existing systems with the aim to achieve optimal power
mixes. In comparison to cases in which the same kind of resource is over-planted while expanding
installed capacity, the results demonstrate that wind and solar resources hold a positive degree of
complementarity, allowing a greater share of VRE sources into the grid. The study shows that Kenya
bears favorable climatic conditions that allow hybrid power plant concepts to be widely explored and
scaled up on a large and efficient scale. The results can be applicable in other regions and represent
an important contribution to promoting the integration of VRE sources into sub-Saharan power grids.

Keywords: variable renewable energy sources; complementarity; compromise programming; grid
integration; power system flexibility

1. Introduction

In today’s power dynamics, renewable energy sources (RES) continue to steadily gain
prominence. The key enabler of this growth has majorly been based on subsidies such
as feed-in tariffs and have played a crucial role in driving this impressive growth. These
measures are designed to combat air pollution by encouraging the substitution of fossil
fuels with cleaner energy sources. A global transition holds significant importance due
to the fact that energy consumption is the primary contributor to global greenhouse gas
(GHG) emissions [1]. Shifting towards greater reliance on renewable energy (RE) sources
plays a crucial role in attaining universal access to clean and affordable energy, while
also abating greenhouse gas emissions and addressing water scarcity concerns by ceasing
freshwater consumption associated with thermal power plants [2,3]. This transition is
already underway, with renewable energy accounting for over 27% of global electricity
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generation by the end of 2019 [4,5], notably with almost 11% generated from renewable
energy technologies, largely from wind and solar.

Africa, particularly its sub-Saharan region, is likely to face a unique set of challenges
and opportunities as a result of the global energy transition. Many African countries are
likely to undergo extremely high rates of energy demand growth in the near future, driven
by a range of factors like rapid population growth, sustained economic development and
relatively poor access to basic electricity that many African countries are faced with [6].

With unprecedented cost reductions, solar and wind power are becoming an increas-
ingly attractive option for many African countries to contribute to their growing needs,
although most African countries still mostly depend on hydropower and natural gas as the
main sources of energy [7,8]. One can think of small-scale approaches, such as solar panels
on roofs to run household appliances or street lighting with solar panels and batteries;
but also of large-scale, grid-connected solar or wind farms. Recent interest to advance
non-hydro renewable energy is already stimulating research efforts such as on grid en-
hancement, flexible hydropower and battery storage to support variable renewable energy
(VRE) in specific case studies in Africa [4,9,10].

One might argue that many sub-Saharan countries can be considered ‘greenfield’
compared to the rest of the world due to their relatively low power generation baseline.
Indeed, sub-Saharan countries may be more likely to be advantaged in planning their
future grids around the idea of integrating high VRE sources from the outset. Africa’s
energy transition may be sluggish unless these efforts are scaled up soon [11].

A number of developed countries appear to be at an advanced stage in planning
their transition to renewable energy, but the situation is rather different in many African
countries. While there are undoubtedly several examples of best practice, some countries in
Africa lack even basic resource assessments of VRE potential, thus hampering their efforts
to plan towards the progression to renewable energy dependency [12]. With the advent
of RE, researchers continue to explore the possibility of combining different renewable
energy sources to improve supply security as well as overall system efficiency. In principle,
such an analysis can be conducted for either a specific geographic location or for broader
regions such as across countries and continents. Presently, the focus of the research carried
out has been on stand-alone systems in underdeveloped nations where connection to the
grid has been either unfeasible or prohibitively expensive. Some key studies analyzing the
prospects for the transition to renewable energy on the African continent are discussed in
the following paragraphs.

Utilizing a least-cost optimization model, Barasa et al. [13] assert that greatly expanded
VRE, battery storage, and power-to-gas, along with biomass and flexible hydropower, may
entirely meet the region’s energy needs at a cheap cost by 2030. Oyewo et al. [10] examined
the model results for a cost-optimized power systems in West Africa, reaching a conclusion
that by 2050 it would favor a broad adoption of solar PV systems paired with storage
across the entire West African region complemented by biomass, wind and the existing
hydropower.

A study conducted in [14] presents various scenarios for the expansion of Variable
Renewable Energy (VRE) in Eastern and Southern African countries. The study highlights
the enormous potential on how improving solar, wind and hydropower and interconnec-
tions would significantly reduce greenhouse gas emissions from electricity generation by
2030. Similarly, ref. [15] analyzes the potential of solar PV, wind and Concentrated Solar
Power (CSP), emphasizing the importance of international interconnections in expanding
VRE capacity and adopting cost-optimal electricity systems. As for South Africa, ref. [16]
investigates approaches to shift the country’s electricity generation away from coal by 2050.
The study highlights the critical role of photovoltaic, wind and battery storage for daily
energy storage and power-to-gas technologies for seasonal power balance.

In addition to the Southern African context, ref. [16] also analyzes the decarbonization
options for the North African region’s electricity network by 2030. Their findings align
with the South African scenario, emphasizing the significance of solar PV and wind power,
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along with battery storage and potential contributions from power-to-gas technology to
cater for industrial energy demands. This indicates that the adoption of VRE is crucial for
Africa’s electricity systems to successfully transition to renewable energy sources. However,
according to [11], the current policies in place suggest that VRE will constitute less than
10 percent of Africa’s electricity mix by 2030. This prognosis strengthens the position of
renewables relative to fossil fuels and raises concerns about the risks of carbon lock-in
unless immediate steps are taken to phase out planned fossil fuel power plants.

One of the practical approaches to address the limitations of individual VRE sources
is through the integration of multiple sources that complement each other. This concept,
known as energetic complementarity, is often quantified using a complementarity index.
Complementarity refers to the synergy between energy sources to minimize power output
fluctuations on spatial, temporal, or spatio-temporal scales, ensuring energy security.
Hybrid renewable energy systems that exploit complementarities between VRE sources
may exhibit system reliability and efficiency with less need of energy storage facilities as
compared to those based solely on a single energy source.

Due to their weather- and climate-dependent nature, VRE point to unpredictable
potential deterring national policymakers and utility companies from considering them
as viable alternatives to fossil-fuel-based power generation. For this reason, it is of great
importance that weather and climate characteristics targeted at the power generation sector
in Africa are put in place. The characteristics of VRE on the African continent may be better
mapped out and integrated in power system models. Unfortunately, such services for
Africa are in short supply [17]. This hampers the scientific depth of assessments whose main
conclusions are centered around strong VRE expansion and increased interconnections.
Notably, renewable resource profiles and their mutual synergies and complementarities
have not been studied in detail for the African continent, although understanding these is
crucial for power systems modeling.

Therefore, with sound conditions, a hybrid system consisting of solar PV, wind, and
hydropower could be a good candidate for the region, provided that solar PV and wind
power complement each other effectively on diurnal as well as annual scales without
requiring significant flexibility options, and when the system’s daily and seasonal variability
remains low. There is scarce literature that attempts to quantify the synergy between RE
resources in East Africa. The current data on RE potential are primarily limited to annual
average resource availabilities [18–22]. Solar/wind power mixes have also received much
attention lately, although estimates for East Africa remain scanty [23].

Away from Africa, similar research has been conducted across the globe. Without
taking into account the local demand profiles, [24] explores how different regions around
the world can benefit from supply side complementarity using the stability coefficient
defined in [25]. In [26], an optimization model is formulated to find the most optimal
placement of wind and PV power plants for achieving an independent power system.
This approach is exemplified through a case study in Serbia, showcasing the long-term
planning for the complete decarbonization of electricity generation using renewable energy
sources. The model presented in [27] utilizes a generation expansion planning approach
that incorporates unit commitment and clustered representative days is employed to
investigate the most optimal decarbonization strategies for the United Kingdom. The study
by [28] analyzes an optimal energy mix planning model for the Korean power system,
taking into account the government’s support for renewable energy through a renewable
portfolio standard (RPS). Meanwhile, [29] investigates various energy and climate change
policy scenarios using a comprehensive long-range energy alternatives planning model to
determine the optimal power generation structure in South Korea. The study conducted
by [30] investigates the efficiency of cost-effective policy incentives in achieving an optimal
energy balance in Japan with a primary goal of minimizing the nation’s dependence on
nuclear power generation. The study utilizes a recursive computable general equilibrium
model, coupled with renewable energy input–output tables as an analytical tool. Finally,
ref. [31] delves into the intricacies of a well-planned transition towards a zero-emissions
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pathway for Chile’s electricity system by focusing on capacity expansion and operations to
outline an optimal strategy using the ETEM (Energy Technology Environment Model).

With the growing presence of VRE sources in a power system, the operations of the
system become more intricate and sophisticated [32]. This is due to the gradual integration
of VRE, which introduces greater unpredictability and variability into the net load. The
net load profile is an important system characteristic as it enables the extraction of vital
information for long-term power system design, particularly for power systems with high
VRE shares. Examining the net load profile across different combinations of variable
renewable energy sources is a vital undertaking in order to effectively plan for system
flexibility as it provides valuable insight on the capability of meeting the load demand
by dispatchable generators [33]. This work strives to go beyond the existing averages by
introducing a new metric for measuring the synergy between solar PV and wind power
potential for hybrid systems on diurnal and seasonal scales, and highlighting its relevance
for East Africa’s settings with its hydropower dominance. The approach utilizes the system
power generation flexibility by first assessing the synergies between the three RES (wind,
solar and hydropower) before the hybrid mixes of VREs can be ‘tuned’ to effectively meet
the local demand based on the share index. The metric proposed provides a clear framework
for determining the ideal combination of solar and wind power mix to coherently model
the transition towards renewable energy.

This article is organized as follows: Section 2 introduces the system model formulation
and input assumptions. Section 3 provides an in-depth discussion of the case study area.
The results obtained from simulations on the case study and a comparison analysis are
presented in Section 4. Finally, Section 5 draws the conclusion and provides remarks for
future work.

2. Model Formulation: Algorithm and Input Assumptions

Wind, hydro, and solar power plants and the related space-time features were selected
as the focus of the study.

Diurnal, monthly and annual time scales are utilized to examine the complementary
characteristics. To quantify the overall level of complementarity, a multidimensional
complementary index is constructed using a space vector approach. Figure 1 illustrates
the study’s framework and structure. The proposed metric serves as a tool to improve
planning on increasing the VRE fraction into the existing systems with the aim to achieve
optimal power mixes.

East Africa is set to continue its growth, with the population expected to increase by
25% by 2030, and economic growth following suit. This study assumes that the narrative
demographic and economic factors lead to a rise in demand for energy, which is consistent
with the current trend in the region [7]. In an effort to lessen GHG emissions, investments
in power grids would result in huge growth in solar and wind energy use. Synergies of
wind–solar–hydro potential for several scenarios of meeting the electricity demand are
considered. For each case, different shares of solar and wind power generation are studied
that may minimize the residual demand which would basically be supplied by backup
generation, potentially at significant monetary and carbon costs.

In the reference case (current demand with no solar and wind generation), the energy
demand is met largely by hydropower generation and additional backup to fulfill residual
demand imported from the wider grid network (Figure 1). For the sake of simplicity, the
electrical demand time series is normalized (i.e., hourly average demand = 1). Power
generation time series are also normalized relative to the average demand of the initial case.
The rest of the analysis is carried out by varying the normalised contribution from wind
and solar power sources to attain the optimal mix.
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Figure 1. Flow chart of the adopted analytical framework.

2.1. Complementary Characteristics by Means of the Correlation Coefficients

Kendall Tau correlation coefficient is a correlation measure that takes into account
the rank of random variables. It indicates the presence of monotonic correlations between
variables, capturing the consistency of changing trends [34–36].

The premise of consistency underlies the tenets of Kendall’s tau. If (xj, yj) and (xk, yk)
are two elements of a sample {(xi, yi)}n

i=1 from a bivariate population, one affirms that
(xi, yi) and (xj, yj) are consistent if (xi − xj)(yi − yj) > 0, otherwise inconsistent when
(xi − xj)(yi − yj) < 0.

There are
(

n
2

)
distinct pairs of observations in the sample, and each pair (excepting

ties) is either consistent or inconsistent. Denoting K for the number of consistent pairs (c)
minus the number of inconsistent pairs (d), then the Kendall tau correlation coefficient for
the reference sample can be defined as follows:

τ =
c− d
c + d

=
K(
n
2

) =
2K

n(n− 1)
(1)

K = ∑n−1
i=1 ∑n

j=i+1 ζ(xi, xj, yi, yj),

ζ(xi, xj, yi, yj) =


1
0
−1

i f (xi − xj)(yi − yj) > 0
i f (xi − xj)(yi − yj) = 0
i f (xi − xj)(yi − yj) < 0

The correlation coefficient is a measure that usually varies between −1 and +1. Values
close to zero signify little or no correlation between the matched sets of variables. A positive
correlation coefficient suggests that a decrease or increase in one set of variables coincides
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with a similar decrease or increase in the other set of variables. Conversely, a negative
correlation means that as one set of variables increases, the other set of variables decreases,
and vice versa. Table 1, extracted from the study by Canales [37], illustrates the relationship
between energy complementarity and correlation coefficient values.

Table 1. Implications of the correlation coefficient level.

Property Correlation Coefficient Range Implication

Similarity

0.9 to 1.0 Very strong
0.6 to 0.9 Strong
0.3 to 0.6 Moderate
0.0 to 0.3 Weak

Complementary

−0.9 to 1.0 Very strong
−0.6 to −0.9 Strong
−0.3 to −0.6 Moderate
0.0 to −0.3 Weak

With such an integrated energy system, the output fluctuation can effectively be
reduced and stability maintained by its complimentary operation mode.

2.2. Space-Vector-Based Multidimensional Complementary Index

A 3D complementary vector, denoted as c, is designed to capture the complementarity
of solar and wind alongside hydropower. The vector, formulated systematically, reflects the
correlation between each set of the paired energy sources. Equation (2) illustrates the three
terms within the three-dimensional complementary vector, representing the correlation
coefficients or complementarity between the energy sources. The Kendall Tau correlation
method was employed to calculate each of these correlation coefficients (CC).

c = ŵs · CCws + ŵh · CCwh + ŝh · CCsh (2)

Here, solar PV is denoted by s, wind power by w, while h indicates hydropower.
Similarly, ws, wh and sh denote wind–solar PV power complementary vector, wind–hydro
power complementary vector and solar PV–hydropower complementary vector, respec-
tively. Figure 2 explains vector c representation in 3D space.

Figure 2. Wind–photovoltaic–hydropower complementary space vector.
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The 3D complementary properties of energy combinations allows us to simultaneously
measure the degree of complementarity of each pair of energy combinations. However,
this 3D vector can only show the extent to which the two energy sources complement one
another. Further analysis is therefore required as the complementary properties of the three
energy sources cannot be analyzed simultaneously.

In this article, we choose a compromise programming algorithm to further process
3D vector data [38]. This algorithm is utilised to compute the distance between each 3D
vector solution as well as the optimal solution to finally determine the total complementary
index of the considered three energy sources. Equation (3) below provides the formula for
evaluating the best possible solution from the 3D vector space [39,40].

L(c) =
n

∑
k=1

αk |
f best
k − fk(c)

f best
k − f worst

k
| (3)

whereby αk symbolize the weight of each component in Equation (2) while k denotes each
group of complementary energy. fk is the CC term corresponding to the respective paired
energy sources in vector c as captured in Equation (2). f best

k (=−1) is the value of the optimal
function in the 3D vector space, signifying total complementarity while f worst

k (= 1) is the
worst value denoting null complementarity. According to the proposed method each group
of complementary energy is assumed to be of equal weight, thus, αk = 1.

Equation (3) demonstrates that the value of L(c) reaches its theoretical maximum of
1 when the correlation coefficient equals 1. In this scenario, the two energy sources are
perfectly correlated, meaning they have identical output curves. This ideal condition can
potentially be achieved in practice, making the actual maximum value of L(c) also equal
to 1.

The minimum value of L(c) is theoretically 0, when the correlation coefficient equals
−1. This means that the two energy sources are completely complementary, which is not
practical. Hence, the actual minimum value of L(c) needs to be determined.

Minimize L(c) =
n

∑
k=1

αk |
f best
k − fk(c)

f best
k − f worst

k
| (4)

The objective function, Minimize L(c), aims to identify the optimal minimum value of
L(c) within the feasible range. This function can be redefined as the search for the minimum
value of f fk(c), which represents the correlation coefficient between various energy sources.
Consequently, the minimal value of the correlation coefficient is established.

The correlation coefficient, in the realm of mathematical calculations, acts as a nor-
malization of covariance, effectively simplifying the process into a variance calculation.
Suppose we have n variables, denoted as xi, hence the sum of their variances can be
expressed as follows:

var(∑n
i=1 xi) = ∑n

i,j=1 cov(xixj)

= ∑n
i,j=1 cov(xixj) + ∑n

i 6=j cov(xixj)

= n + ∑i,j=1 ρij
= n + 2n!

2(n−2)! ρ̄

= n + n(n− 1)ρ̄

(5)

With var(∑n
i=1 xi) ≥ 0; we have ρ̄ ≥ − 1

n−1 (resulting to −0.5 for the case of n = 3).
From Equation (4), it is clear that L(c) reaches its minimum value of 0, indicating

perfect complementarity. However, when utilizing heuristics and linear programming
with three energy sources, the minimum achievable L(c) is 0.75. This can be exemplified
when each correlation coefficient of each paired combination is −0.5 [37]. Hence, it can
be confidently stated that even with a moderate correlation between two paired VRES, it
is still possible to achieve a 100% renewable energy powered system. The addition of a
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third energy source can compensate for any shortfalls and minimize the reliance on backup
power.

The overall complementarity index, kt(c) of the three sources may be evaluated by
normalizing the value of L(c):

kt(c) =
3− L(c)

2.25
(6)

and κt(c) values varying from 0 denoting perfect similarity up to 1 indicating perfect
complementarity. The appendix in Canales et al. [37] clearly illustrates and derives the
expression for compromise programming as applied in optimising the complementar-
ity between three VRES. Perfect similarity and perfect complementarity is illustrated in
Figure 3.

Figure 3. The relationship between paired energy resources; (a) perfect similarity and (b) perfect
complementarity.

2.3. Load Smoothing through Complementarity

There exist several criteria of integrating diverse RE sources into the power system.
Power output smoothing [41], maintenance of supply–demand balance [42], as well as the
system costs reduction [43,44] are a few examples of how combining diverse RE sources
may be of benefit to power networks. These approaches are often inter-related; for instance,
smoothing out of the generated electric power means reduced variability and shocks, which
reduces the necessity for storage hence lowering system costs [45].

To evaluate the smoothness of hybrid power output, numerous studies employ sta-
tistical measures. These measures include correlation coefficients between power outputs
from different resources, as well as variations in energy balance shapes with an assumption
that annual average energy production equals average demand [46,47]. Such techniques
have been useful in identifying synergy between renewable resources in diverse areas.
However, when implemented across different timescales, they may result in a number of
shortcomings as illustrated in Figure 4, such as:

1. Locations with complementary resources are often scored highly even when the
strength of the actual resource is too weak for practical exploitation.

2. Resources which may be less complementary and yet strong enough to be useful are
often undervalued.

This study seeks to address these problems by introducing a new metric, the optimal
share coefficient kstab, as a tool for improving the operation and planning of existing power
grids. The metric measures the decrease in the coefficient of variance of the CF of a hybrid
w-s-h system with hydro as the baseline while solar and wind carry equal weight. The
metric gives the influence of either wind or solar to balance the electric power generation.
Stability coefficient, φs, is mathematically defined as expressed in the Equation below:

φs = 1−

√√√√ 1
n

n−1

∑
k=1

(CFmix(t)− CFs,w(t))
2 (7)
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where, CFmix = {γ · CFh + (1− γ)(CFs + CFw)/2}, the notation CF represents the average
capacity factor during the time step t, which is measured hourly. The subscripts s, w, and
mix, respectively, represent solar, wind, and hybrid mix. From the expression, φs varies
from 0 to 1, with φs = 0, indicating that a unit addition of the considered resource into
the hybrid system does not improve the output supply balancing in respect to meeting
the expected demand. φs = 1 on the other hand means a unit addition of the considered
resource to the w-h-s hybrid system carries a bigger impact towards sustaining a constant
power output over time hence perfecting the synergy.

With solar–wind contributing to the hybrid system at a ratio of n:m, the expression
n + m = 1− γ holds, hence the optimal share coefficient, kstab(s,w)is given as in Equation (8).
This evaluates the optimal ratio that each resource has to optimally carry on the power mix
while maintaining a balance between the power output and demand profile.

kstab(s) =
φs

φs + φw
× 100% and kstab(w) =

φw

φs + φw
× 100% (8)

Figure 4. Schematic representation of the variability of stability coefficient with power output of a
hybrid system.

A measure of regularity and measure of complementarity are inextricably interlinked.
Analysis of a function’s total variation is a typical method of measuring its regularity. One
common approach of quantifying regularity of a function is by using its overall variation,
which accounts for discontinuities. Studies by Cantor and Daina [48,49], on time series
analysis, have explored the concept of total variation. This new metric is anchored on this
concept.

This study calculates the stability factor, kstab, for solar and wind capacity installed
at the same location. Furthermore, it is possible to expand the analysis to encompass the
potential synergies between power stations situated in various regions, taking into account
the transmission factor.The coefficient gives the relative share of solar and wind that yields
improved output taking into account hydropower as the baseline. This ensures that the
installed output exhibits a similar complementarity characteristics as that of the considered
timescales.

2.4. Power Generation Modeling

(i) Hydropower Model

The estimation of hydropower generation is determined using the following equation:

PHP = Q(t)·H· ζ· ρ· g (9)

where Q(t) represents the river flow rate or water release from the reservoir; H denotes
the reservoir elevation. ζ, ρ and g are constants that, respectively, represent the system
efficiency, water density, and gravitational acceleration.

(ii) Solar PV Model
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Equation (8) illustrates the solar power generation [50]:

Ppv = ∑ BI(t, i){1− µ(Ta(t, i)− Tc)− µCL(t, i)} (10)

where I (W/m2) is the effective solar irradiance registered at an optimal tilt and estimated
using the method described in [51]. The air temperature, Ta (◦C), impacts the performance of
the solar panel efficiency. B represents the constant power generation parameter calculated
as the product of the PV array area (in square meters) and the efficiency of the generator
and inverter (expressed as percentages). µ and C are temperature and radiation dependent
efficiency loss factors, respectively, while Tc corresponds to the PV cell temperature under
standard test conditions.

(iii) Wind Power Model

To estimate the wind power generation at a specific hour (t), we rely on the wind
speed as a determining factor. This estimation uses a modified power curve for a typical
wind turbine with the following specifications: a power rating of 1 kW, a cut-in wind
speed of 2.5 m/s and a cut-out wind speed of 25 m/s. This allows estimation of the power
generation based on the hourly average wind speeds [52] as shown in Equation (11) below.

Pw(v, t) = p1 +
v− v1

v2 − v1
(p1 − p2) (11)

with Pw the hourly wind power generation.

(iv) Normalized generation configuration

Power generation from wind, solar and hydro is normalized using the following
approach:

P∗(t) =
P(t)

P̄
(12)

where, P∗ is the normalized power at time t, P is amount of power produced at time t,
estimated using the relevant model according to Equations (9)–(11) while P is the nominal
generating capacity of the plant under consideration.

At any given electricity demand case, the total output power generation from the
system is captured as:

P∗tot = ChpPhp + CwPw + CpvPpv + ∆R (13)

Here, Php, Pw and Ppv denotes power generation from hydro, wind and solar energy
sources, while Chp , Cpv and Cw are the weights corresponding to the contribution of each
energy source. 4R is the residual power not met by the considered sources.

3. Case Study and Datasets

3.1. Kenyan Electricity Sector

Kenya is a country in eastern Africa, bisected by the equator, with a 470 km-long
coastline and a diversified topography that rises to 5199 m above sea level. As of 2015, it
had a population of about 46 million people up from 31 million back in 2000. With a GDP
increase from USD 12.7 billion in 2000 to USD 63.4 billion in 2015, the economy has been
growing steadily. In 2017, only 60% of Kenya’s population had access to electricity, with
only about 20 percent in the rural areas, although this situation is swiftly changing. This
increase necessitates diversification of electrical energy options.

The trend in electricity generation has steadily been rising over the years to meet
demand. Wind electricity generation rose sixteen-fold over the five-year period with more
injection into the grid of Kipeto Wind Power plant in 2021. Similarly, solar electricity
generation increased significantly with the addition of Selenkei, Cedate and Malindi power
plants to the grid in the same period. On the other hand, both geothermal and hydro
electricity generation have taken a downward trajectory in 2021. Just like other sub-Saharan
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countries, the trend indicates the concerted effort of harnessing VRE into the existing energy
mix.

3.2. The Turkwel River Basin

Figures 5 and 6 depicts the characteristics of the study area. The Turkwel River
basin, situated in north-western Kenya, serves as the chosen case study area. The river
springs on Mount Elgon on the Ugandan side and flows into Lake Turkana, world biggest
desert lake [53,54], spanning an extensive catchment area of approximately 24,000 sq.
km. The basin exhibits a distinctive south-west to north-east rainfall gradient with an
intertwined hydroclimate amid an extremely diversified terrain. The northern lowland
plains of the basin experience a dry climate, with annual rainfall of 99 to 400 mm/year.
In contrast, the southern highlands receive higher precipitation levels, ranging between
900 and 1749 mm/year. The basin has two main rainy seasons: a prolonged period from
March to June and a sporadic rainy period from October to December.

Figure 5. Installed capacity.

Figure 6. The Turkwel River Basin with four sub-basins based on climatic condition, topography and
land cover. Lodwar town is located at the lower end of the basin.

The produced energy output is essentially dependent on stream discharge and is
considered to be proportionate to river flow, making it vulnerable to its variability.
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As discussed, the proposed method explores flexibility in power generation to realize
the benefits of system-wide complementarity. A series of compromises have been applied
to profoundly demonstrate this in depth.

3.3. Wind and Solar Time Series

Data sets from Renewables.ninja, an open data source published by ETH Zürich and
Imperial College London [55,56] are utilised. It can be accessed either as pre-computed data
sets or via an API for particular locations with the option of specifying energy production
technology details.

We utilize aggregate capacity factors modeled using the Renewables.ninja model to
measure the power generation capability. CF is generation normalized by installed capacity
and can be exemplified as the potential for generation with equal installed capacities.
Beyond technology and site-specific limits, CF for wind and solar PV is quite sensitive to
weather conditions [57].

In this case, the capacity factor of the solar cells is estimated by modeling the efficiency
of monocrystalline silicon cells as a function of global horizontal irradiation (GHI) G and
air temperature T, following the approach described [51]. On the same note, the capacity
factor of wind turbines is modeled based on the method presented in [52]. This model
considers the hub-height wind speed and is specifically anchored on Vestas V126-3.3 with
80 m hub height and 3.3 MW rated power, similar to those employed at the Lake Turkana
Wind Power project (LTWP), a major wind power project in Africa located in northern
Kenya [58].

Figure 7 shows the CF for solar and wind across the region with 0.15 as the lowest
registered value. On average, the wind potential is considerable, with CF increasing north-
wards, reaching 0.40–0.50 over most of the case area. This observation that is supported by
the findings of a study of four sites within the study area by [59,60], demonstrates that they
are quite feasible for exploitation. Solar energy potential is lower and more concentrated
towards the north, with significant region exhibiting CF of 0.15 or higher.

Figure 7. The average annual capacity factors of solar photovoltaic (PV) and wind power, calculated
over a five-year time scale (2015–2019). (a) for solar photovoltaic and (b) for wind power.
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3.4. Power System Flexibility

To effectively manage the growing integration of variable renewable energy sources, it
is crucial to harness flexibility across all sectors of the energy system [32,61,62]. Figure 8
depicts how the entire network, encompassing power generation, transmission, distribution
systems, storage (both electrical and thermal), and flexible demand, works together as a
unified system.

In conventional power systems, generation has traditionally been the primary source
of flexibility, with dispatchable generators altering their output to follow demand and,
if available, pumped hydro servicing inflexible baseload and lowering the requirement
for power plants to meet peak demand. In recent years, significant effort has been made
in increasing the flexibility of conventional power plants, whereas the demand side has
generally been unresponsive, offering very little flexibility [63,64]. Emerging technologies
are not only boosting supply side flexibility, but they are also broadening space throughout
every facet of the power system, such as the grids and the demand side. This initiative offers
a broader portfolio of solutions that can be combined and optimized to cut on operational
costs alongside other benefits.

Figure 8. Key drivers for enhancing power system flexibility in the energy sector.

As observed in many regions, there are several efficient ways to incorporate renewables
at minimal cost by developing operational procedures as well as a responsive electrical
energy market. At some stage during the transition, more capital-intensive measures will
be needed. These experiences have also shown that if the appropriate measures are put
in place, difficulties associated with VRE integration such as rising curtailment levels and
reserve requirements can be managed.

This study aims to reinforce the need for synergistic operation of hydropower and
VRE with the aim of taking advantage of natural seasonal variations in the outflows of the
multi-year water reservoirs with the aim of dispatching hydropower during periods of
low VRE generation hence harnessing the attributes complementarity from the harvested
energy sources.

4. Results and Discussion

This section adopts normalised sets of installed capacity for wind, solar and hy-
dropower. The considered power stations are located in the north-west part of Kenya to
evaluate the spatial-temporal impact on their complementarity based on yearly, monthly,
and daily time scales for the analysis. The wind, solar PV and hydropower generation
data in the three time scales is substituted into Equation (2) to generate a 3D vector for-
mulary. Using Equations (3) and (4), the optimal solution, kt(c), of the 3D space vector is
determined. This characterizes the optimal complementary index under each timescale as
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captured in the proposed approach. As indicated earlier, w (wind), h (hydro) and s (solar)
is used as an index to identify each resource.

For this region under study, the data sets for solar irradiation and wind speed cor-
respond to satellite measurements [65]. From past studies, it is worth noting that these
datasets have exhibited a solid match [66]. Figure 7 displays the data maps depicting the
trends of the two resources throughout the year on an hourly average schedule based on
the capacity factor.

4.1. Early Evidence of Complementarity

Figure 9 illustrates a matrix for 8760 h at a 24-h 365-day resolution that reflects daily
variation in the efficacy of wind and solar output generation while Figure 10 presents the
average daily and seasonal trends in wind and solar power generation. The graph shows
that wind power generation tends to be slightly higher in the evening and throughout the
night than in the morning. In comparison, solar power exhibits less sub-daily variability.
However, the seasonality of wind power generation is significantly more pronounced as
compared to solar power. Throughout the year, solar power output is generally constant,
with slightly lower values during the rainy season that can be attributed to an increase in
fogginess [67,68].

Wind power demonstrates a bi-modal seasonality, characterized by two distinct peaks.
The first peak occurs in January, while the second peak is observed between September
and November. On the other hand, when considering inter-annual variability, Figure 10
indicates that wind energy exhibits significantly higher variability compared to solar PV.
This suggests that wind power generation is subject to greater year-to-year fluctuations
than solar power generation in the studied region.

Figure 9. Normalised performance of wind (bottom) and solar PV diurnal power generation capability.
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Figure 10. Normalised time series for hourly resource.

4.2. Analysis of W-H-S Complementary Characteristics on Annual Scale

Complementarity assessments between the three energy sources were based on ca-
pacity factors on an hourly time-step. To calculate wind and solar PV capacity factors,
hourly climatology data are first obtained from the Modern-Era Retrospective Analysis
for Research and Application Version 2 (MERRA-2) that has a horizontal resolution of 0.5°
(latitude) and 0.625° (longitude) with 2019 as the base year [56].

Table 2 and Figure 11 details the results for energetic complementarity, computed on
an annual time scale. These results indicate that among the three paired combinations, the
annual complementarity of wind and hydro resources is highest, indicating that months
with lower average wind speeds typically have higher average precipitation and vice versa.
This is consistent with the findings of Funk et al. [69]. Generally, the onset of Kenya’s two
wet seasons is often signaled by the winds. The first season, known as the hot northeast
monsoon (kaskazi), brings dry air from the Persian Gulf, and lasts from November to
March/April. The humid and warm kusi monsoon in the second spell blows from the
southeast between May and October.

Similarly, the paired combination of solar and hydro presents a strong complementarity
(τsh = −0.123) while solar and wind exhibits moderate complementarity (τws = −0.065),
suggesting that the paired resources follow dissimilar patterns in terms of their relative
variability across the year.

Table 2. The complementary characteristics of the reference case based on yearly data.

Kendell Tau Correlation Coefficient—(τxy)

Complementarity vector −0.065ws − 0.198wh − 0.123sh
Compromise programming 1.307

Total temporal complementarity index—κt 75.24%

As per the attained complementary index, W-H-S exhibit significant complementary
attributes. This means correlation between the three sources has a big impact on the overall
complementary index at an annual scale. Based on these results, a month-ahead or season-
long scheduling system operation would in all likelihood achieve improved performance
by utilizing a compromised mix of all three sources.

4.3. Complementary Characteristics of W-H-S on Monthly Timescale

The wind, solar, and hydropower output data over 12 months with 2019 as the base
year are used for complementarity computation and analysis. The findings are summarized
in Table 3 and Figures 12–15, showing the contribution of each pair of resources to the
overall complementarity index.

Observations point to an outrageous contrast on the complementary attributes during
certain months of the year. There is strong complementarity between June and September,
medium complementarity in March, April, May, October through to December and finally
weak complementarity in January and February.
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Figure 11. Scatterplot showing annual hourly variation for the paired power resources.

From the results on a monthly timescale, complementarity index kt ranges from 60.74
in January up to 81.33% in June. In the context of Table 3, it can be argued that there is
a moderate-to-strong bundle complementarity based on the joint behavior of the three
energy sources on a monthly period. The graph in Figure 12 shows the contribution of
each pairwise combination on kt, based on the normalised individual distances computed
using the adopted algorithm. From the results shown, it is observed that solar–hydro pair
of resources offers a substantial contribution to the overall complementarity across the year
on a monthly time scale. Wind–solar too has a great match from May to October while
wind-hydro in January to April and in December.

Table 3. Complementarity results on a monthly scale for the reference case.

Month Complementary Vector c Spatial Optimal Solution, L(c) Total Complementary Index, kt(c)

1 0.261ws − 0.009wh − 0.029sh 1.611 61.74
2 0.233ws − 0.142wh − 0.020sh 1.536 65.08
3 0.244ws − 0.343wh − 0.106sh 1.398 71.20
4 0.027ws − 0.249wh − 0.212sh 1.283 76.31
5 −0.357ws + 0.021wh − 0.061sh 1.302 75.47
6 −0.481ws + 0.030wh − 0.209sh 1.170 81.33
7 −0.400ws + 0.080wh − 0.182sh 1.249 77.84
8 −0.381ws + 0.016wh − 0.210sh 1.213 79.44
9 −0.441ws − 0.151wh − 0.057sh 1.175 81.10

10 −0.151ws + 0.135wh − 0.097sh 1.443 69.19
11 0.011ws + 0.084wh − 0.278sh 1.408 70.76
12 0.087ws − 0.166wh − 0.155sh 1.383 71.87

Figure 12. Monthly variation of the complementary index.
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Figure 13. Scatterplot showing the monthly correlation of the wind and solar PV power resource for
(a) January, (b) April, (c) July and (d) October.

Figure 14. Scatterplot showing the monthly correlation of the solar PV and hydropower resource for:
(a) January, (b) April, (c) July and (d) October.

Figure 15. Scatterplot showing the monthly correlation of the wind and hydropower resource for:
(a) January, (b) April, (c) July and (d) October.
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4.4. Complementary Characteristics of W-H-S on Daily Scale

By examining the normalized time series of the average hourly resources depicted
in Figure 10, it becomes evident that there is a noticeable synergy between wind and
solar output power generation. Additionally, the wind and hydro resources exhibit some
similarities on a diurnal scale. This is further supported by the results presented in Table 4,
which indicate that the individual correlations lie within weak-to-moderate complemen-
tary range, which indicate that the individual correlations range from weak-to-moderate
complementarity. These findings highlight the potential stability strengths of employing
W-H-S resources in the region.

Table 4. Complementarity results on a daily scale for the reference case.

Day of Month Complementary Vector c Spatial Optimal Solution, L(c) Total Complementary Index, kt(c)

1/1 0.519ws + 0.369wh + 0.758sh 2.323 30.08%
2/1 0.190ws + 0.500wh 0.800sh 2.245 33.55%
3/1 0.304ws + 0.319wh + 0.115sh 1.869 50.27%
4/1 0.053ws − 0.128wh − 0.563sh 1.181 80.85%
5/1 −0.023ws + 0.394wh − 0.239sh 1.567 63.71%
6/1 −0.407ws + 0.581wh − 0.385sh 1.395 71.34%
7/1 −0.781ws + 0.083wh − 0.081sh 1.110 83.98%
8/1 −0.320ws + 0.252wh − 0.247sh 1.342 73.67%
9/1 0.123ws + 0.303wh − 0.538sh 1.444 69.17%

10/1 0.146ws + 0.412wh + 0.093sh 1.826 52.20%
11/1 −0.814ws + 0.507wh − 0.481sh 1.106 84.19%
12/1 0.566ws − 0.567wh − 0.753sh 1.124 83.40%

However, a proper combination of the three resources in a hybrid power setup may
result in better performance for this timescale, as connoted by the results for kt. A combi-
nation of any of the two, would possibly necessitate a significant incorporation of energy
storage or backup power. The scatter plots in Figure 16 shows the contribution of each
paired set of resources to the overall complementarity, kt. It is worth noting that wind–
hydro and wind–solar resources offer comparably fair share towards the kt value, implying
that any meaningful planning and day-to-day operation of hybrid system should utilize
wind power as the primary energy source, complemented by other two sources.

The diurnal cycle as expected has a significant impact on wind–solar complementarity
as noted by Jurasz et al. [70] This yields almost zero linear relationship between these two
resources especially between January and April resulting in very weak complementarity.
The other paired combinations also envisage varying complementarity across the year.

However, considering a trio bundle of the resources together, the overall temporal
complementarity on a diurnal scale yields different kt values, ranging from 30.08% to
84.19% as the feasible maximum. A combination of these three resources in a hybrid
power setup may lead to better results for this timescale, as connoted by the results for
kt except for the first three months. A combination of wind and solar resources would
likely require a substantial amount of energy storage or backup power to ensure reliable
electricity supply. The scatter plot depicted in Figure 16 illustrates the contribution of each
pair combination to the complementarity index kt. It is noteworthy that the combination of
solar and hydro resources, as well as wind and solar resources positively affects the value
of kt. This suggests that in the case of daily-scale system planning and operation, solar
power should be considered as the primary energy source, complemented by the other two
sources. This finding emphasizes the importance of incorporating solar power into the
energy mix to enhance complementarity and optimize system performance.
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Figure 16. Scatterplot showing the diurnal variation of each paired source.

4.5. Temporo-Spatial Congruity between Wind/Solar and Hydropower Resources

Technically, grid integration of VRE resources requires a significant level of flexible
and controllable power supply, especially to balance and avoid outages during daily
peak hours. However, the variability of wind and solar output power can effectively be
mitigated via complementarity and appropriate capacity mix. Therefore, when regulated
well, integrating hydro, wind and solar energy into a hybrid energy system is an effective
way to increase grid penetration of VRE sources [45].

Hydropower as the baseline is utilized to regulate the intermittency of wind and solar
photovoltaic power in the w-h-s hybrid energy system, which effectively boosts energy
utilization. The study provides a framework to determine the optimal installed capacity
configuration by considering power supply characteristics besides the uptake. The kstab
encompasses a two-stage adaptive complementary metric which demonstrates the ability
of the wind–solar to augment hydropower in meeting the projected power balance with
each VRE source contributing a fair share.

Figure 17 shows the share apportioned to either wind or solar as the VRE is increased
from 5% to 50%. As observed, wind power carries sightly more weight, 8 points more than
solar to attain a better output configurations that enjoys more output absorption as well as
levelise output fluctuations. With 5% VRE share contribution, wind produces 54.03% while
solar accounts for the difference. As the contribution of the VRE increase to 50%, the share
of wind portion in the VRE slightly increases to 47.41%.
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Figure 17. Annual wind and solar power generation pattern.

Histogram plots in Figure 18 shows the distribution of solar, wind power and com-
bined output from the two sources on hourly basis across the year. Based on extensive
resource assessments, it is evident that the region possesses a consistently high wind poten-
tial throughout the year, ensuring reliable generation capabilities [71]. Figure 18 presents a
weighted average of the capacity factors for both wind and solar PV in Kenya, showcasing
the remarkable synergy between these two renewable energy sources. This shows that a
higher proportion of wind energy in the power mix yields better feasibility [59].

Figure 18. Histogram plots showing the distribution of solar power wind power and combined
production on hourly basis across the year.

As can be noted, Kenya has abundant solar and wind resources, with fairly strong
complementarity. Furthermore, the availability of hydro resources and the region’s splendid
geographical conditions provide requisite essentials for large-scale integration of wind and
solar energy. In addition, configuring the right power profile can further improve system
flexibility to better adapt to wind and solar energy. This is of great importance to system
planners.

5. Conclusions

The challenges of accommodating renewables into the existing energy mix tend to
increase as the share of VRE increases. And yet, regions are quite diverse, hence challenges
and related measures are dependent on many other characteristics. This means that power
sector transition should be approached in a multi-dimensional manner.

Planning for VRE sources with a “smoother” power output generation is indeed a
worthwhile course of harnessing and maximizing the integration of renewable energy into
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existing energy systems. The proposed metric allows assessing complementarity between
existing hydro-dominant systems and other available variable renewable energy sources
such as wind and solar. It also suggests potential modifications to the system’s operation
that leverage the temporal complementarity of these energy sources smoothing its load
following capability through optimal power mixes. Therefore, this study puts forward the
following suggestions for power system planners and policy makers in this region:

1. As the local electricity load demand continues to grow steadily, it is imperative to
explore additional renewable energy options to meet this demand.

2. The complementarity of VRE sources in the region is comparatively good, therefore,
on appraising the power system flexibility in the region, it should be given utmost
consideration when planning new power plants.

The extent of complementarity, its features, and the room for its enhancement are
predominantly influenced by local conditions. In order to gain deeper insights, the authors
of this study plan to conduct further investigations that consider the spatial aspects. Future
analyses will explore potential strategies for reducing intermittency by exploring adjust-
ments in the placement of the wind and PV systems. This exploration aims to identify
optimal locations that can enhance complementarity within hydro-dominated systems.

However, the incorporation of storage facilities and other system restrictions (such
as the capacity of backup sources) in our modeling framework would be an important
extension of our work. Nevertheless, this analysis offers a critical evaluation of the potential
contribution that VRES complementarity brings towards a smooth transition to renewable
energy.
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