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Abstract: Solar resource forecasting is an essential step towards smart management of power grids.
This study aims to increase the performance of intra-hour forecasts. For this, a novel ensemble model,
combining statistical extrapolation of time-series measurements with models based on machine
learning and all-sky imagery, is proposed. This study is conducted with high-quality data and high-
resolution sky images recorded on the Solar Platform of the West University of Timisoara, Romania.
Atmospheric factors that contribute to improving or reducing the quality of forecasts are discussed.
Generally, the statistical models gain a small skill score across all forecast horizons (5 to 30 min).
The machine-learning-based methods perform best at smaller forecast horizons (less than 15 min),
while the all-sky-imagery-based model performs best at larger forecast horizons. Overall, for forecast
horizons between 10 and 30 min, the weighted forecast ensemble with frozen coefficients achieves a
skill score between 15 and 20%.
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1. Introduction

With many countries having pledged to reduce carbon emissions, renewable energy
sources are being largely adopted across the globe. Specifically, solar energy was adopted as
a source of electricity from small domestic applications, like net-zero energy buildings [1]
to large power plants feeding the grid. While not producing carbon emissions during
operation, solar energy experiences other drawbacks coming from the variability of the
weather [2]. At the ground level, solar irradiance is constantly changing in time and
space. This variation is the result of the blending of two components: a deterministic one,
generated by the Earth’s movements, and a random one, generated by cloud fields [2]. The
changes in solar irradiance at ground level are further transferred to changes in the output
power of photovoltaic (PV) plants. The random component can cause large fluctuations of
PV power in very short time periods [3].

A key challenge for the power grid operators is to match permanently the electricity
production with the consumption. The grid balance is continually changing with the fluc-
tuation of the demand, but it becomes further vulnerable due to the increasing penetration
of PV power. Thus, the growing share of PV systems (and, similarly, wind) in an electricity
grid generates difficulties in controlling the stability of that grid. Accurate forecasts have
the role to empower the computers to take measures for balancing the grid [4]. Smart
grid management demands intra-hour forecasts of PV power [5]. The forecast horizon is
only conditioned by the start-up times of the conventional balancing plants. Currently, it
is unanimously accepted that accurately forecasting the PV power can contribute to the
intelligent control of electrical grids (see, e.g., the discussion from [6,7]). Because the quality
of PV power forecasts closely follows the accuracy in nowcasting solar irradiance, this
study is focused on intra-hour solar irradiance forecasting.

There is an abundance of studies dedicated to improving solar irradiance forecasts.
We refer the reader to paper [8], where the solar irradiance forecasting models are classified
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according to several criteria (e.g., forecast horizon, nature of the model) and analyzed
in detail. In principle, in compliance with their nature, the forecasting models can be
divided into five large classes: classical statistics, machine learning, cloud-motion tracking,
numerical weather prediction, and hybrid models. Classical statistical models [9], machine
learning [10], and cloud-motion tracking models [11] were applied with success for intra-
hour forecasts. Accordingly, this study deals with models from these three classes. It is
worth noting that on intra-hour timescales, the variability in solar irradiance predominantly
occurs due to passing clouds in proximity to or in front of the Sun.

The performance of statistical models is intrinsically limited by persistence, i.e., the
tendency to extrapolate the current state in the future. Many approaches for reducing
the persistence in solar irradiance forecasting were developed worldwide (e.g., [9]). The
insertion into the forecasting procedures of physical information resulting from the straight-
forward sky observation appears as a natural way to reduce persistence. Sky observations
using an all-sky imager can provide the required information for intra-hour forecast hori-
zons [12]. The sky images can be recorded with enough temporal resolution to capture fast
variation in solar irradiance. For instance, tests of different all-sky imager-based forecasting
methods for global solar irradiance, performed during 28 days with all-sky conditions,
demonstrate a high quality of the forecasts (normalized root mean square errors ranging
from 6.9% to 18.1%) [13].

In the last years, ensemble forecast models have become frequently used tools in
solar energy, both in research and applications. Basically, instead of issuing a single
forecast, different methods are used to issue a set (or ensemble) of forecasts, which are
finally combined to obtain a crisp prediction. Ref. [14] reports a well-documented review
on ensemble forecasting of solar irradiance. The models are divided into two classes:
competitive and cooperative. Aggregation of the forecasts provided by different models
defines the competitive class, while the pre- and post-processing are the main attributes of
the cooperative class. Regarding the accuracy, for instance, an ensemble learning-based
multi-modal model for intra-hour solar irradiance forecasting improves the performance
by 11.6% compared to the traditional approaches [15].

This study aims to improve the accuracy of intra-hour solar irradiance forecasts by
proposing a novel competitive ensemble approach that integrates statistical extrapolation,
machine learning models, and all-sky imagery. Specifically, the ensemble consists of
five models: two classical statistics time series models (autoregressive integrated moving
average and exponential smoothing), two machine learning models (gradient boosted
trees and long short-term memory), and an all-sky-imager-based model. The successful
implementation of the ensemble approach, as presented in Section 4, highlights its potential
for enhancing the accuracy of short-term solar irradiance forecasts. Such improvements are
pivotal for optimizing power grid operations and integrating solar energy efficiently.

The rest of this paper is organized as follows. Section 2 introduces the forecasting
models included in the proposed ensemble. The relevant data and the processing proce-
dures are described in Section 3. The results are presented and discussed in Section 4. The
main conclusions are gathered in Section 5. The statistical indicators used to compare the
accuracy of different models are defined in Appendix A.

2. Forecasting Models

The proposed ensemble forecast model is based on five different models for solar
irradiance forecasting: two purely statistical models, two machine-learning-based models,
and an innovative sky-imagery-based model. In addition, persistence has been considered
as a reference. All the models are briefly introduced next. The equations are written
in terms of solar irradiance: Gt and Ĝt denote the measured and forecasted values at
time t, respectively. All models were implemented using popular open-source libraries in
Python, such as pandas and OpenCV for data and image processing, scikit-learn for the
regression models, Tensorflow for the ANN method, and xgboost for the GBT method. The
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hyperparameters that lead to the best results are provided to facilitate the replication of the
machine learning models.

2.1. Persistence (PE)

PE assumes that the current state of a system is preserved until a new measurement
is performed. PE forecasts that solar irradiance at time t + 1 equals the solar irradiance
measured at time t:

Ĝt = Gt−1 (1)

In this study, PE is used as a reference in evaluating the accuracy of the other models
in terms of skill score (see Appendix A for a definition).

2.2. Exponential Smoothing (ES)

ES forecasts the further value in a data series based on the previously measured and
forecasted values:

Ĝt = λ Gt−1 + (1− λ)Ĝt−1 (2)

where the discount factor λ (0 ≤ λ ≤ 1) handles the error from the last forecast. Choosing
the right value for λ is the critical step in running ES.

2.3. Autoregressive Integrated Moving Average Model (ARIMA)

ARIMA defines a class of time-series models frequently applied in practice. An
ARIMA(p,d,q) model contains three distinct elements: (1) AR(p), the autoregressive term
of order p; (2) MA(q), the moving-average term of order q; and (3) I(d), the non-seasonal
differencing of order d. The equation of an ARIMA(p,d,q) model is provided by the classical
Box–Jenkins theory [16]:(

1− φ1B− φ2B2 − . . .− φpBp
)

︸ ︷︷ ︸
AR(p)

(1− B)d︸ ︷︷ ︸
I(d)

Gt = c +
(

1− θ1B− θ2B2 − . . .− θqBq
)

︸ ︷︷ ︸
MA(q)

εt (3)

where B represents the backshift operator (BGt = Gt−1), εt denotes the estimated shock at
time t, and c is a constant. The procedure of selecting an ARIMA model is based on the
parsimony principle, i.e., the number of coefficients is to be as small as possible. Although
Equation (3) looks quite complicated, it defines a simple linear relationship. For instance,
the ARIMA model picked for this study (namely, ARIMA(1,1,1)), reads:

Ĝt = Gt−1 + φ1(Gt−1 − Gt−2) + θ1
(
Ĝt−1 − Gt−1

)
+ εt (4)

The coefficients φ1 and θ1 are obtained by using the maximum likelihood method [16].

2.4. Gradient Boosted Decision Trees (GBT)

GBT is an easy-to-train model that requires few preprocessing steps, with very short
training time. GBT is itself an ensemble of decision tree regression models. Each base
model from the GBT ensemble aims to optimize the objective function where the previous
base models failed [17]. Therefore, it can achieve better performances than any single
decision tree regression model. Previous studies have shown that GBT performs well in
solar resource and PV power forecasting [18], being employed in both deterministic and
probabilistic forecasts [19].

In this study, for all time horizons, the GBT model was implemented with the following
parameters: 100 estimators, a maximum tree depth of 6, and a gamma value of 0.8.

2.5. Long Short-Term Memory (LSTM)

LSTM networks constitute a subset of deep recurrent neural networks [20]. These
networks are renowned for their advanced capacity in addressing predictive models and
are widely utilized in various domains, such as image recognition, automatic speech
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recognition, and natural language processing [21,22]. LSTMs are regarded as effective in
overcoming the inherent limitation of standard data-driven models. Specifically, LSTMs
can capture both short-term and long-term dependencies between the intended outcome
(for instance, future solar irradiance) and corresponding historical variables. LSTMs’ ability
to eliminate extraneous information to mitigate common issues makes them well suited for
assimilating and learning data across various time scales. Recent studies have shown good
results, with LSTMs outperforming most other classical or machine learning models when
applied to solar resource forecasts. However, these networks can suffer long training times,
needing more computational power compared to other methods [23].

In this study, the following architecture was considered: three LSTM layers of sizes
equal to the lead time and three dropout layers (with a dropout value of 0.2) for faster
converging. The final layer consists of a single neuron with linear activation. We chose to
optimize the mean squared error with the ADAM optimizer. The number of epochs was
100, and the batch size of 64 performed best.

2.6. Sky Imagery (SI)

Various methods of solar forecasting have been proposed based on sky images taken
from the ground. Some methods used in computer vision, such as optical flow, and, more
recently, deep-learning-based methods, have been applied successfully in solar irradiance
forecasting [23].

In this study, of particular interest is a machine learning method that does not utilize
deep learning. As described in Ref. [24], in the preprocessing stage, the images are trans-
formed into a unidimensional vector. Then, appropriate dimensionality reduction methods
are applied to this vector. Finally, the forecast is made employing either k-nearest neighbor
regression or random forest [24].

We propose a similar method but using principal component analysis (PCA) [25] for
the dimensionality reduction step and extremely randomized trees (ExtraTrees) for the
forecast model [26]. This model trains faster than the original random forest model, and it
can achieve lower variance [26].

2.7. Ensemble Models (ENm and ENw)

As already stated, the five forecasting models, introduced above, were used to build
the ensemble model. A characteristic of the ensemble model is the diversity of the com-
ponents: ARIMA and ES belong to the classical statistical extrapolation class, GBT and
LSTM are popular machine learning models used in time series analysis, and SI blends
data from sky imagery with decision tree regression ensembles. Therefore, the errors of
the models are not correlated, and an ensemble approach is worth studying. The ensemble
was developed by using the forecasts of each model as input. Then, these independent
forecasts were aggregated. Based on our previous findings, it is expected that: (1) ARIMA
and ES increase the performance at a short forecast horizon, (2) SI reduces persistence and
increases accuracy at longer forecast horizons, and (3) GBT and LSTM carry on exoge-
nous information (meteorological parameters). Therefore, two new ensemble models are
proposed. The first ensemble, denoted as ENm, forecasts the solar irradiance as a simple
arithmetical mean of the forecasts issued by the five independent models (ES, ARIMA, GBT,
LSTM, and SI). The second ensemble forecasts the solar irradiance as a weighted mean of
the individual forecasts. The weights are obtained through ridge linear regression, with the
forecasted values of each model as input. A regularization value of 5 was found to perform
best. The ensemble models, along with the data used for their construction and testing, are
described in detail in Section 3.

3. Data

This study was conducted with data recorded on the Solar Platform [27] of the West
University of Timisoara, Romania. Data from May 2023, measured after a technical mainte-
nance, were processed. The radiometric (global and diffuse horizontal solar irradiance) and



Energies 2023, 16, 6608 5 of 12

meteorological (atmospheric pressure, relative humidity, air temperature, and wind speed)
data were recorded simultaneously every four seconds. Time series of data measured every
5, 10, 15, and 30 min were subtracted for the training and validation of the models.

Due to the cyclicity of the solar irradiance with respect to time, the clearness index
time series was directly modeled. The clearness index kt is defined as the ratio between the
measured solar irradiance G and the corresponding deterministic quantity computed at the
top of the atmosphere (Gext) [28]:

kt =
G

Gext
(5)

This strategy ensures the time series stationarity.
The machine learning methods can handle multiple variables as input. In this study,

the models were built considering the following quantities measured or computed at the
previous time step: wind speed, air temperature, global horizontal irradiance, diffuse
irradiance, extraterrestrial horizontal irradiance, solar elevation angle, the clearness index,
and the sunshine number.

The sunshine number SSN is defined as a binary variable showing whether the Sun is
shining or not [29]:

SSN =

{
0 if the Sun is covered by clouds at time t
1 otherwise

(6)

Series of SSN values have been derived from radiometric measurements using the
World Meteorological Organization sunshine criterion [30]: the Sun is shining at time t if
the direct-normal solar irradiance at time t exceeds 120 W/m2.

Sky images were taken with an all-sky imager ASI-16 from EKO Instruments installed
also on the Solar Platform of the West University of Timisoara, Romania. ASI-16 takes
images with a fish-eye camera every minute daily. As a pre-processing step, each image
was resized from the original 1080× 1080 pixels to 128× 128 pixels. This step ensures faster
training of the model. Next, each pixel value was normalized between 0 and 1 by use of the
min–max scaling function from the OpenCV library. For each forecast instant, a set of two
consecutive images was considered: the current image, corresponding to the moment when
the forecast is issued, and the previous image. For example, for the 15-min forecast horizon
dataset, each instant contains two images: the current one and the image taken 15 min
before. The forecast model that we propose is an adaptation from [24]. This model changes
the dimensions of the image arrays, turning them into unidimensional vectors that can be
used as input in various decision tree ensemble methods, such as random forests or GBT.
The process runs as follows. First, we turn the image array into a unidimensional vector,
with each image array having the dimensions of n × 128 × 128 × 3, where n corresponds
to the number of images used for each instant (in this case, n = 2), 128 × 128 represents the
image size, and 3 represents each RGB channel of the imager. This conversion produces
a large number of parameters (of an order of 100,000) as input for the prediction model.
Therefore, a reduction in dimensionality is necessary. We use the widely popular principal
component analysis algorithm [19] to reduce the dimensionality of the input vectors to
50. The new, transformed set of vectors, corresponding to each training instant, is then
transferred as input to the forecasting model. After testing different ensembles of decision
tree models, the extremely randomized trees model, or ExtraTrees model [26], was selected.
The hyperparameters that gave the best results are a number of 1000 estimators, with no
limits on the maximum number of features or the maximum depth of each decision tree.

4. Results and Discussion

The models were tested against data recorded on six days of May 2023 with different
variability in the state of the sky: 21–23 and 25–27.

Figure 1 compares the estimates of the five models on a typical day, on 27 May 2023.
For this day, the statistical models present a small lag, as expected from their intrinsic
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nature. The machine learning models, which are based on optimizing the mean squared
error, do not follow the trend of the measured data as closely as the statistical methods. GBT
and LSTM methods seem to attenuate the variations. The models overestimate the solar
irradiance and do not anticipate sudden drops in solar radiation. The models underestimate
in the case of a sudden increases of solar irradiance. The SI model follows the behavior
of the machine learning methods. However, the forecasts differ due to using images
of the sky as input parameters, rather than measured radiometric and meteorological
variables. The different patterns of the global solar irradiance series forecasted by the
five models, as Figure 1 illustrates, consistently motivate the construction of the proposed
forecast ensemble.
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Figure 1. Illustration of models’ forecasts on 27 May 2023. Measured global solar irradiance is
depicted on the background in blue.

Figures 2–4 compare the forecasts of the weighted ensemble ENw with measured data
at various forecast horizons: 5 min (Figure 2), 15 min (Figure 3), and 30 min (Figure 4). For
mostly clear sky periods, as showcased in Figures 2b, 3b and 4b, the ensemble performs
very accurately. The forecasts almost perfectly overlap the measurements. During the
same periods, ENw fails to forecast the magnitude of the sudden drops in measured solar
irradiance caused by transient clouds. For the other days showcased, days with moderate
to high variability in the state of the sky, ENw performs better at the shorter than the
larger forecast horizons. Considering the 5-min forecast horizon, the curve given by the
ensemble forecast follows the measurements with reasonable accuracy. ENw presents a low
ability in capturing cloud enhancement phenomena in the high variable sky. At a 30 min
forecast horizon (Figure 4), an adjustment of ENw to better capture the ramp in data is
clearly necessary.
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Tables 1–4 present the performances of each individual model, as well as the ENm
and ENw ensembles, compared to the baseline given by persistence. All models show an
improvement in terms of skill score and nRMSE. There is only a small improvement in
terms of MAPE. The statistical models (ARIMA and ES) achieve similar skill scores for all
forecast horizons, with values between 3.8% and 5.8%. They do not introduce significant
bias, with values of the nMBE close to zero.

Table 1. Statistical indicators of accuracy for all models at a forecast horizon of 5 min.

Model nMBE nRMSE MAPE [%] SS [%]

PE 0.000 0.29 18.5 -
ES 0.000 0.279 20.6 3.8
ARIMA 0.000 0.277 20.0 4.4
GBT 0.002 0.265 26.4 8.5
LSTM 0.027 0.257 24.3 11.4
SI 0.045 0.287 35.2 1.1
ENm 0.015 0.255 24.1 12.1
ENw 0.023 0.255 26.6 11.9

Table 2. Statistical indicators of accuracy for all models at a forecast horizon of 10 min.

Model nMBE nRMSE MAPE [%] SS [%]

PE 0.000 0.35 26.2 -
ES 0.002 0.333 28.8 4.9
ARIMA 0.001 0.331 28.2 5.4
GBT −0.007 0.308 34.8 11.9
LSTM 0.032 0.297 33.1 15
SI 0.059 0.305 37.3 12.9
ENm 0.017 0.294 30.6 15.9
ENw 0.047 0.292 35.0 16.4

Table 3. Statistical indicators of accuracy for all models at a forecast horizon of 15 min.

Model nMBE nRMSE MAPE [%] SS [%]

PE 0.001 0.371 31.8 -
ES 0.003 0.352 34.9 5.3
ARIMA 0.003 0.35 33.7 5.8
GBT −0.003 0.319 37.4 13.9
LSTM −0.015 0.317 35.0 14.5
SI 0.055 0.307 40.6 17.2
ENm 0.008 0.306 33.8 17.8
ENw 0.032 0.298 38.1 19.8

Table 4. Statistical indicators of accuracy for all models at a forecast horizon of 30 min.

Model nMBE nRMSE MAPE [%] SS [%]

PE 0.003 0.389 37.5 -
ES 0.007 0.369 40.8 5.4
ARIMA 0.007 0.368 40.3 5.1
GBT −0.018 0.337 42.1 13.5
LSTM −0.067 0.387 40.9 0.6
SI 0.060 0.353 49.7 9.2
ENm −0.002 0.326 40.1 16.3
ENw 0.017 0.324 44.4 16.8

The GBT model shows a significant improvement over the statistical models, with
negligible differences in terms of bias or MAPE. GBT also shows consistent performance
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across all forecast horizons, with skill scores ranging from 8.5% to 13.9%, depending on
the time horizon. The LSTM model outperforms each individual model by skill score
for the shorter time horizons of 5 and 10 min; however, at larger time horizons, such
as 30 min, it performs the worst out of all models. In our implementation, we have
used higher granularity with data measured each minute one step ahead as input to the
machine learning models. Future studies could research the impact of granularity on the
performance of LSTM models for longer time horizons. LSTM models seem to introduce
some positive bias, as showcased in Figure 1, as well.

The SI model performs remarkably well for forecast horizons longer than 10 min,
especially for the 15-min forecast horizon, where a 17.2% skill score is achieved. However,
for short forecast horizons, such as 5 min, its performance is lower than the performance of
the statistical models. Because few changes in the state of the sky occur at such short time
horizons, a larger lead time of 10 min was considered, only in this situation. For example,
the inputs for the forecast given at moment t for the moment t + 1 are the sky images
taken at moments t − 2, t − 1, and t. This applies only to the short time horizon of 5 min.
The results presented in Tables 1–4 show that, on this implementation, SI performs best
at forecast horizons between 10 and 30 min. This confirms previous results with different
implementations for the sky-imagery-based model.

Despite the contribution brought by the dynamics of the clouds in the sky, sometimes
SI issues forecasts of poor quality. Figure 5 compares a good forecast (Figure 5a) with a poor
one (Figure 5b). Forecasts are made at a 15-min forecast horizon based on two previous
sky images taken 15 min apart. Both forecasts start from the same initial state of the sky,
which is almost perfectly clear. On 26 May 2023 at 10:45 (Figure 5a), SI forecasts global
solar irradiance of 755 W/m2, which is very close to the measured value of 745 W/m2.
Differently, on 23 May 2023 at 12:45 (Figure 5b), SI forecasts global solar irradiance of
876 W/m2, while the measured value, 239 W/m2, is almost four times smaller. Visual
inspection of Figure 5 shows that in both cases, the two sky photos, on which the forecasts
are based, look very similar. The enormous difference between the accuracy of the forecasts
is given by the local formation of clouds. The local formation and morphology of clouds is
difficult to model even using information from the sky imager. Probably, in such a situation,
an increase in data granularity may reduce the SI forecasts’ uncertainty.
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Overall, when comparing the two proposed ensemble models (Tables 1–4), a tradeoff
is observed. Both show significantly increased performance in terms of nRMSE and skill
score, with ENw being the best model. However, the tradeoff is observed in terms of
nMBE and MAPE: the ENm ensemble performs better when considering these statistical
indicators, at the cost of slightly lower skill scores.

5. Conclusions

The aim of this study was to increase the accuracy of intra-hour solar irradiance
forecasts. A new ensemble approach, combining statistical extrapolation of time-series
measurements with models based on machine learning and all-sky imagery, was proposed.
The ensemble comprises five models: two classical statistics time series models (autoregres-
sive integrated moving average (ARIMA) and exponential smoothing (ES)) two machine
learning models (gradient boosted trees (GBT) and long short-term memory (LSTM)) and
an all-sky imager-based method (SI).

The proposed ensemble approach demonstrated its effectiveness in intra-hour so-
lar irradiance forecasting. The weighted average ensemble (ENw) exhibited the highest
performance, yielding a skill score ranging from 15 to 20% for forecast horizons of 10 to
30 min. While the ensemble approach shows promising results, there is room for further
enhancement. Future research will focus on increasing data granularity, particularly for
LSTM and SI models, with the expectation of improved accuracy.

In conclusion, this study introduces a novel ensemble approach for intra-hour solar
resource forecasting. The integration of statistical extrapolation, machine learning models,
and all-sky imagery has demonstrated its potential in achieving accurate forecasts, with
the ensemble ENw model showing the best performance.
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Abbreviations

ANN Artificial Neural Network
ARIMA Autoregressive integrated moving average
ES Exponential smoothing
GBT Gradient boosted decision trees
LSTM Long short-term memory
MSE Mean squared error
MAE Mean absolute error
PCA Principal component analysis
ET Extremely randomized trees
RF Random forest
nRMSE Normalized root mean squared error
nMBE Normalized mean bias error
MAPE Mean absolute percentage error
SS Skill score
PE Persistence
Kt Clearness index
SSN Sunshine number
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SI Sky imagery
ENm Ensemble based on the average of all models
ENw Ensemble based on the weighted mean of all models
h Solar elevation angle

Appendix A. Statistical Measures of Accuracy

Let us consider n forecasted values, denoted pi, i = 1 . . . n, of the measured quantity
mi. The following two statistical indicators (RMSE—root mean squared error, MAE—mean
absolute error, and MBE—mean bias error) are commonly used to measure the forecasts
accuracy:

RMSE =

√
1
n

n

∑
i=1

(pi −mi)
2 (A1)

MAE =
1
n

n

∑
i=1
|pi −mi| (A2)

MBE =
1
n

n

∑
i=1

(pi −mi) (A3)

To assess the performance of forecasting models operating on data with various
magnitudes, normalized statistical indicators are employed (nRMSE—normalized root
mean-squared error, nMBE—normalized mean bias error, and MAPE—mean absolute
percentage error):

nRMSE = RMSE/µ (A4)

nMBE = MBE/µ (A5)

MAPE = 100
1
n

n

∑
i=1

erri (A6)

where µ = 1
n

n
∑

i=1
mi represents the average of the measured values and erri =

|pi−mi |
mi

defines

the relative error for individual forecasts.
The skill score measures the relative improvement of a given model over a benchmark:

SS = 1− RMSE(t)
RMSE(r)

(A7)

RMSE(t) and RMSE(r) are calculated with Equation (A1) and denote RMSE achieved
by the tested and reference model, respectively. SS is often expressed as a percentage.
Persistence is recommended as a reference in solar energy forecasting.
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