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Abstract: Superconducting wires are widely used for fabricating magnetic coils in fusion reactors.
Superconducting magnet system represents a key determinant of the thermal efficiency and the
construction/operating costs of such a reactor. In consideration of the stability of 11B against fast
neutron irradiation and its lower induced radioactivation properties, MgB2 superconductor with
11B serving as the boron source is an alternative candidate for use in fusion reactors with a severe
high neutron flux environment. In the present work, the glycine-doped Mg11B2 bulk superconductor
was synthesized from isotopic 11B powder to enhance the high field properties. The critical current
density was enhanced (103 A·cm−2 at 20 K and 5 T) over the entire field in contrast with the sample
prepared from natural boron.
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1. Introduction

Fusion power is one of the most promising energy source candidates to solve global energy
problems, considering its safety and green merits compared with conventional mineral energy sources.
In the world-class International Thermonuclear Experimental Reactor (ITER) fusion energy project,
the superconducting magnet system serves as a key determinant (Figure 1). A high and steady
magnetic field needs to be produced to confine the deuterium (D)–tritium (T) burning plasma inside
the ITER Tokamak nuclear fusion reactor. According to the previous ITER plan, hundreds of tons
of superconducting cables made from NbTi and Nb3Sn strands have been fabricated to assemble
18 Nb3Sn toroidal field (TF) coils, a 6-module Nb3Sn central solenoid (CS) coil, six Nb-Ti poloidal
field (PF) coils, and nine pairs of Nb-Ti correction coils (CC) [1–3]. ITER is aimed at demonstrating
the feasibility of fusion energy, but for the next step, the development of a commercial fusion
reactior there is a concern that, after irradiation, 93Nb be transformed into the long-lived nuclide
94Nb with a half-life of about 20,000 years [4,5]. Hence, coil maintenance and repairs may become
more cumbersome and the recycling of irradiated Nb-based alloys may call for tens of thousands
of years of waiting for them to “cool down”. Meanwhile, thicker shielding will be necessary for
long-term operation. For the convenience of radioactive waste treatment and environmental protection,
the radioactivation properties of superconducting components within the fusion reactor should be
taken into account. The superconductivity of MgB2 was discovered in 2001 [6]. It is well-known
for its simple binary chemical composition and much higher critical transition temperature (Tc) of
39 K than that of NbTi at 9.3 K. In order to operate Nb-based low-temperature superconductors,
the core of the magnet needs to be cooled down to 4 K. The only eligible cryogen is liquid helium,
which is extremely expensive, not always available, and very difficult to handle. In the case of
MgB2, a working temperature as high as 20 K is low enough to achieve acceptable performance.
Remarkably, the operating cost is expected to be cut by over 50% by substituting cryocooler-cooled
MgB2 materials at 20 K for liquid-helium-cooled Nb-based superconductors. Therefore, due to the
advantages of cost-effectiveness, lower radioactivation, and the shorter decay time of isotopic Mg11B2,
fundamental research on Mg11B2 superconducting wires will be valuable for improving the efficiency
of practical application in high-irradiation environments such as fusion reactors. Nevertheless,
the application of the un-doped MgB2 remains limited by the sensitivity of the critical current density
(Jc) to the increasing applied magnetic field [7]. By yielding an enhancement of Jc especially at high field,
chemical doping enabled MgB2 to meet higher demand in practical application, and carbon-containing
compounds definitely attracted the most attention within the dopant’s family.
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MgB2 bulks and wires with carbon addition, for instance, malic acid [8], graphene, coronene,
or glucose [9–11], have been under investigation, motivated by the potential response of carbon
atoms (compared to boron) to donate their additional valence electrons to the σ conduction band.
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Glycine (C2H5NO2, Glycine) was doped into MgB2 bulks by a series of techniques in our previous
study [12,13]. The dominating mechanism for the enhancement of the Jc lied in the MgO formation
in advance of the Mg-B solid-solid reaction, and the simultaneously released carbon atoms provided
a certain contribution as well, by substitution the B sites in the MgB2 lattice. Apart from the carbon
doping method, a new trial related to the state of the boron precursor has been carried out as well.
The MgB2 wires prepared from laboratory made nano-sized boron achieved the Jc of 105 A·cm−2 at 5 K
and 4 T [14]. Bovone et al. [15] produced boron powder by magnesiothermic reduction of boron oxide
in the lab, which proved to be an excellent precursor for MgB2 wire manufacture independent of the
applied technique. Furthermore, commercial carbon-coated amorphous boron powder brought along
carbon doping and benefited the Jc of the synthesized MgB2 bulks with or without Cu doping [16,17].

Considering the type of the original boron powder, isotopic boron has been adopted to
determine the effect on the superconductivity and physical properties of MgB2. The studies of
both Bud’ko et al. [18] and Hinks et al. [19] indicated a difference of 1 K in transition temperature
(Tc) for the un-doped MgB2 made of 10B and 11B. Simonelli et al. [20] investigated the isotope effect
on phonon spectra of MgB2 with Al doping and suggested a difference in Raman shift for the two
isotopic forms of MgB2. Recently, Alarco et al. [21] extended the study to the effect of 10B, 11B and
natural B (mixture of 10B and 11B) on the phonon frequencies, which exhibited a pronounced isotopic
effect for the phonon modes. Compared with conventional Nb-based superconductors, MgB2 features
“low activation” and a much shorter decay time. Within 1 year, the dose rate of MgB2 materials
will be reduced to the hands-on maintenance level, which is desirable for a fusion reactor magnet
system [4]. Additionally, because of the reaction 10B + n→ 7Li + He (gas) under the heavy irradiation
condition, 10B can no longer guarantee the stability of the MgB2 superconducting magnet. 10B isotope
is transformed to 7Li and He by the neutron irradiation, while 11B isotope is stable against the
neutron irradiation without nuclear transformation and can reduce nuclear heating from 2.58 to
0.13 W/cm3 [22].

By replacing 10B with the isotope 11B, Mg11B2 superconducting wires will be much more stable
in a neutron irradiation environment due to the smaller neutron capture cross-section of 11B [23].
Considering the abundant reserves of 11B on Earth (20 wt % for 10B, 80 wt % for 11B), the anticipated cost
for extracting the isotope from natural boron is expected to be reduced during the chemical synthesis.
Mg 11B2 would be a promising candidate material as a lower field poloidal field and correction coil
superconducting magnets in a fusion reactor (Figure 1). In view of this, glycine-doped MgB2 bulks are
prepared from natural B (written as 10.8B) and 11B in this study to improve the critical current density
at high field region.

2. Experimental Details

Amorphous 10.8B (93%–94% purity, 0.6–0.7 µm in size) or 11B powder (amorphous, 99.2% in purity,
about 5 µm in size, from Pavezyum Kimya, Istanbul, Turkey), Mg powder (99.5% purity, 100 µm
in size), and glycine powder (99% purity) were mixed in the ratio of MgB2 + 3 wt % Gly. After ground
thoroughly in an agate mortar, the mixture was pressed into cylindrical pellets (5 mm diameter and
1.5 mm thickness) under a pressure of 5 MPa. The obtained pellets were then sintered in the differential
thermal analysis apparatus (DSC 404C, Netzsch, Boston, MA, USA) at 800 ◦C for 0.5 h with a heating
rate of 10 ◦C·min−1 and a cooling rate of 40 ◦C·min−1. The whole process was accomplished under
the protection of flowing high-purity Ar gas. The superconducting properties were measured on
a superconducting quantum interference device (SQUID–VSM, Quantum Design, San Diego, CA, USA)
after the sample was cut into a slab (4× 2× 1 mm3). The corresponding Jc values were calculated from
the width of magnetization hysteresis loops based on the Bean model Jc = 20∆M/[a/(1 − a/3b)] [24],
where M is the volume magnetization, ∆M is the difference in volume magnetization between the
arms of the M–H loop, and a and b are the sample dimensions (a < b).
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3. Results and Discussion

Analogous to the un-doped and the Gly-doped Mg10.8B2, the Gly-doped Mg11B2 is composed of
MgB2 as the main phase and MgO as the only impurity phase (Figure 2).Energies 2017, 10, 409 4 of 7 
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Generally, doping from carbon sources results in the substitution of carbon for boron in the
MgB2 lattice. Substituted carbon atoms normally donate their additional valence electrons (compared
to boron) to the σ conduction band, resulting in decreased carrier concentration by filling the holes
and decreasing the superconducting gaps. This will reduce the number of holes at the top of the σ

bands together with a reduction of the electronic density of states [25], and consequently the transition
temperature Tc was supposed to decrease. Previous studies have stated that the MgB2 samples showed
a strong boron isotope effect, as the Tc for Mg11B2 decreased almost 1 K in contrast with the Mg10B2

sample [18,19]. However, the Tc for the Gly-doped Mg11B2 sample remained at the same level as the
doped Mg10.8B2 sample shown in Figure 3.

Energies 2017, 10, 409 4 of 7 

 

 
Figure 2. X–ray diffraction patterns for the un-doped Mg10.8B2, the Gly-doped Mg10.8B2, and the 
Gly-doped Mg11B2 samples. 

Generally, doping from carbon sources results in the substitution of carbon for boron in the 
MgB2 lattice. Substituted carbon atoms normally donate their additional valence electrons 
(compared to boron) to the σ conduction band, resulting in decreased carrier concentration by filling 
the holes and decreasing the superconducting gaps. This will reduce the number of holes at the top 
of the σ bands together with a reduction of the electronic density of states [25], and consequently the 
transition temperature Tc was supposed to decrease. Previous studies have stated that the MgB2 
samples showed a strong boron isotope effect, as the Tc for Mg11B2 decreased almost 1 K in contrast 
with the Mg10B2 sample [18,19]. However, the Tc for the Gly-doped Mg11B2 sample remained at the 
same level as the doped Mg10.8B2 sample shown in Figure 3. 

 

Figure 3. Temperature dependence of normalized magnetization for the Gly-doped Mg10.8B2 and the 
Gly-doped Mg11B2 samples. 

From the viewpoint of the isotope effect, the increase of the phonon frequency is conductive to 
improve Tc, and the approach of the phonon and coulomb energies will lead to a decrease of Tc. As 
summarized by Knigavko [26], the Tc would remain stable when the two effects reached a balance in 
the Gly-doped Mg11B2 sample. The replaced carbon atoms likely originated from the reaction of Mg 
and the decomposition product of glycine, 2Mg + CO2 → C + 2MgO, with the impurity phase MgO 
generated. Contrary to the common position that the dielectric MgO occupied in most doping 
systems, i.e., at the grain boundary [27], the MgO particles in the Gly-doped Mg11B2 sample might be 
embedded within the MgB2 grains in the nano-scale dimension. Besides, element mappings for Mg 
and O on an area with holes are shown in Figure 4a–c. Combined with the distribution of Mg 
element, the MgO phase was believed to be dispersed homogeneously on the matrix rather than 
gathered in the hole, which implied good MgB2 grain connectivity. A thermodynamic calculation 
has demonstrated that the MgO phase was formed prior to MgB2, and the study on undoped Mg11B2 

Figure 3. Temperature dependence of normalized magnetization for the Gly-doped Mg10.8B2 and the
Gly-doped Mg11B2 samples.

From the viewpoint of the isotope effect, the increase of the phonon frequency is conductive
to improve Tc, and the approach of the phonon and coulomb energies will lead to a decrease of Tc.
As summarized by Knigavko [26], the Tc would remain stable when the two effects reached a balance
in the Gly-doped Mg11B2 sample. The replaced carbon atoms likely originated from the reaction of
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Mg and the decomposition product of glycine, 2Mg + CO2 → C + 2MgO, with the impurity phase
MgO generated. Contrary to the common position that the dielectric MgO occupied in most doping
systems, i.e., at the grain boundary [27], the MgO particles in the Gly-doped Mg11B2 sample might be
embedded within the MgB2 grains in the nano-scale dimension. Besides, element mappings for Mg
and O on an area with holes are shown in Figure 4a–c. Combined with the distribution of Mg element,
the MgO phase was believed to be dispersed homogeneously on the matrix rather than gathered in the
hole, which implied good MgB2 grain connectivity. A thermodynamic calculation has demonstrated
that the MgO phase was formed prior to MgB2, and the study on undoped Mg11B2 suggested that the
11B accelerated the Mg-B solid-solid reaction below 650 ◦C [28]. Hence, the MgO particles were mostly
included in the growing MgB2 grains instead of aggregating at the boundary. The size and distribution
of MgO allowed them to become effective pinning centers, and as a result, the Gly-doped sample had
a significantly improved Jc performance at least twice larger than those of pure MgB2 over the entire
field at 20 K. The measured Jc-H characteristics of the un-doped and the Gly-doped samples at 20 K are
illustrated in Figure 4d. A further improvement in Jc was observed in the Gly-doped Mg11B2 sample,
even at the low field. The enhanced Jc should be attributed to the use of high-purity 11B powder as
well, in view that Gly-doped sample prepared from high-purity boron shows two times higher Jc than
that from low-purity boron powder [29].
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4. Conclusions

A glycine-doped Mg11B2 sample with layered grains was synthesized from isotopic 11B powder.
The glycine-doped Mg11B2 gives comparable critical current density and could be used for fusion
reactors because of endurance against neutron irradiation. The results obtained in this work could
guide the fabrication of Mg11B2 wires to be used as magnet coils in fusion reactor systems such as
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