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Abstract: Prostate cancer (PCa) is the most frequently occurring type of malignant tumor and a lead-
ing cause of oncological death in men. PCa is very heterogeneous in terms of grade, phenotypes, and
genetics, displaying complex features. This tumor often has indolent growth, not compromising the
patient’s quality of life, while its more aggressive forms can manifest rapid growth with progression
to adjacent organs and spread to lymph nodes and bones. Nevertheless, the overtreatment of PCa
patients leads to important physical, mental, and economic burdens, which can be avoided with
careful monitoring. Early detection, even in the cases of locally advanced and metastatic tumors,
provides a higher chance of cure, and patients can thus go through less aggressive treatments with
fewer side effects. Furthermore, it is important to offer knowledge about how modifiable risk factors
can be an effective method for reducing cancer risk. Innovations in PCa diagnostics and therapy
are still required to overcome some of the limitations of the current screening techniques, in terms
of specificity and sensitivity. In this context, this review provides a brief overview of PCa statistics,
reporting its incidence and mortality rates worldwide, risk factors, and emerging screening strategies.
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1. Introduction

Prostate cancer (PCa) is the second most frequent type of malignancy cancer among
men worldwide [1,2]. PCa burden was very dramatic until the beginning of the 21st century,
due to the increased use of the prostate-specific antigen (PSA) tests for screening. From
this date onwards, different innovations increasing the efficacy of the therapeutic methods,
along with earlier diagnoses, led to a significant reduction in the number of deaths, and a
less pronounced downward trend in the incidence of PCa.

Epidemiological studies have shown that the geographical and racial distribution
differences in PCa incidence and mortality rates reflect differences in the distribution of
populations, with varying degrees of genetic susceptibility [3,4]. Epigenetic factors such as
different lifestyles also contribute to these differences, particularly unbalanced diets, and
tobacco and alcohol consumption [2,3,5]. Another difference is in the availability and use
of, and access to, medical care, especially regional differences in the diagnosis of latent
cancers through PSA screening [5,6]. Generally, most men are reluctant to go through PCa
screening, since it is based on invasive and unpleasant procedures. For cancer control, it is
of the utmost importance to build a sustainable platform for the dissemination of cancer
prevention and the provision of cancer care, specifically in low-income and transitioning
countries. These results highlight the need to increase health literacy and ensure that
opportunistic screening is preceded by a thorough discussion about its potential benefits
and risks [7]. Hence, it is crucial to develop more focused diagnostic tools for the early and
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non-invasive detection of PCa that can classify patients according to the severity of their
cancers, and, as a result, guide their treatment decisions. In this review, PCa statistics are
briefly summarized, reporting its incidence and mortality rates worldwide, and risk factors
and emerging screening strategies are presented and discussed.

2. Incidence and Mortality Rates Worldwide

The prevalence of PCa varies among different racial groups, and the vast disparity has
been associated with socioeconomic conditions, as well as environmental and biological
factors, which play an important role in the etiology of PCa. Variations in the incidence
rates may be due to underdiagnosis, differences in screening methods, and disparities
in healthcare access [2]. Requesting PSA tests directly influences the incidence values
around the world. In more developed countries, the use of the PSA test has resulted in
a reduction in the mortality rates, while in less developed countries, they have shown
an increase, reflecting the access to early detection and available therapies yielded by the
PSA result [1,8]. For instance, PCa incidence in Europe is high when compared with other
geographical areas, such as Africa or Asia, due to the use of PSA for early detection [9].
Regional differences are related to environmental risk factors and differences in healthcare
policies across individual countries, such as the access to and availability of costly targeted
therapies, in addition to heterogeneity in health and socioeconomic status [9,10]. In 2020,
PCa was the most frequently diagnosed cancer among men in 121 of 185 countries around
the world [1,2,5] (Figure 1). The world age-standardized incidence rates (wASR) are three
times higher in areas with high or very high human development index scores [1,5] when
compared with less developed countries (37.5 and 11.3/100,000, respectively), while the
mortality rates are almost constant (8.1 and 5.9/100,000, respectively).
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Figure 1. (A) Most diagnosed types of cancer among men worldwide, 2020. Nonmelanoma skin
cancer was included in calculations of top cancer per country. (B) Leading cause of cancer deaths
among men worldwide, 2020. Source: GLOBOCAN 2020 [1].

Social determinants, such as poverty, lack of education, lack of social support, and
social isolation, play an important role in the PCa stage at diagnosis and survival. A later
stage at diagnosis may be due to lower PCa screening rates or population-specific variations
in environmental exposures, including diet, physical activity, or occupational exposures.
Additionally, men may be persuaded by their partner, other family members, or others
within their social network to undergo PCa screening [11]. Social media can be employed
in research, advocacy, and awareness campaigns in the PCa community. Evidence suggests
that social media initiatives may enhance cancer screening and early detection. Patients
and their caregivers can also take advantage of networking and educational opportunities.
Nevertheless, a few concerns remain regarding inconsistent information quality [12].

Overall, in the last 5 years, the mortality rates have declined, most probably due
to improved access to treatments and dissemination of therapies, such as surgery and
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hormonotherapy. The projections for the next 5 years show an increasing trend in the
estimated number of new cases and deaths (Figure 2), for all continents. Furthermore,
in the upcoming years, the number of PCa cases may increase, because the diversion
of resources to the COVID-19 pandemic has delayed diagnosis, patient management,
treatment, and research. Many cancer patients had their management delayed as PCa
care changed and shifted towards patterns that limited the risk of COVID-19 infection,
including increased use of transperineal biopsy and hypofractionated radiation therapy
regimens, as well as the substitution of docetaxel with enzalutamide [13]. This pandemic
will lead to an increasing number of men diagnosed with more advanced diseases, which
will have a negative impact on their prognosis. Consequently, treating patients with locally
advanced or metastatic diseases is also expected to be more expensive than treating those
with less advanced diseases. Therefore, to control the clinical, economical, and welfare costs
to society, urgently coordinated action is needed to address the diagnostic and treatment
deficiencies in PCa services [13].
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Figure 2. Estimated number of new cases and deaths from prostate cancer from 2020 to 2025. Source:
GLOBOCAN 2020 [1,5].

3. Prostate Cancer Risk Factors

The well-established PCa risk factors are advancing age, ethnicity (Black race), certain
genetic mutations, insulin-like growth factors (IGF), and family history of this malignancy
(Table 1) [5]. Lifestyle, including diet, tobacco and alcohol consumption, obesity and
physical inactivity, and environmental factors, such as exposure to chemicals or ionizing
radiation, may also increase the risk of advanced PCa (Figure 3) [2,5,14].
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Table 1. Prostate cancer risk factors and their roles in the development of this tumor (articles from
the last 5 years).

Risk Factor Role in PCa Reference

Ethnicity

PCa incidence, morbidity, and mortality rates vary significantly by race and
ethnicity. African-American, Black, and Caribbean men show the highest PCa
rates worldwide. These disparities are mostly related to differences in access to

screening and treatment, exposure to PCa risk factors, and variations in
genomic susceptibility (e.g., risk loci found at chromosome 8q24), among other

biological factors.

[15–20]

Family history and
genetic factors

According to estimates, around 5 to 15% of PCa cases have been related to
hereditary factors. In genome-wide association studies, almost 170 loci of

susceptibility for hereditary PCa (about 33% of familial PCa risks) have been
identified. Many genes show a strong association with hereditary PCa risk,
including BRCA1, BRCA2, ATM, CHEK2, and PALB2, and Lynch syndrome

MLH1, MSH2, MSH6, and PMS2 genes. Other genes, however, have an unclear
cancer risk and unknown clinical importance.

[4,20–26]

Obesity, overweight
and physical inactivity

Obesity is implicated in the dysregulation of various hormonal pathways,
leading to higher levels of insulin and IGF, oxidative stress, and inflammatory

cytokines, and lower levels of adiponectin, testosterone, and sex
hormone-binding globulin. Obesity is associated with an increased risk of PCa

mortality and recurrence, worsened treatment-related adverse effects,
development of obesity-related comorbidities, and the earlier progression and

development of metastatic disease. Nevertheless, the physiological
mechanisms associated between obesity and poor PCa outcomes

remain unknown.

[3,27–33]

Tobacco use

Smoking increases the risk of death from PCa, which increases with obesity,
specifically for advanced PCa. Moreover, tobacco smoking increases the risk of
biochemical recurrence and metastasis. Nevertheless, the association between

tobacco smoking and PCa prognosis needs to be explored.

[3,32,34–38]

Lycopene and
tomato-based products

Epidemiologic studies have focused on tomatoes as a specific source of
lycopene, with more consistent findings supporting the protective effect of a
higher intake of tomatoes on PCa risk. Furthermore, studies have shown a

reduced risk of advanced PCa with the consumption of cooked tomatoes, since
these products have more available lycopene. Current epidemiologic evidence
is not definitive but suggests that a higher intake of tomato-based products is

associated with a reduced risk of PCa and a potentially lower risk of
progression. Further studies are required to determine whether the effect is

because of lycopene or other components of tomatoes.

[3,32,39–44]

Calcium, dairy
products, and

vitamin D

An intake of dairy products above the daily recommended dose has been
positively associated with PCa risk. A potential mechanism underlying the

association with calcium is through suppressing circulating levels of
dihydroxyvitamin D, which seems to have a protective effect against PCa. The

mechanisms behind this association are not yet fully understood, but
researchers suggest reducing dairy intake while increasing the consumption of

fish and tomato products for PCa prevention.

[3,32,45–48]

Cruciferous, soy, and
green tea

Cruciferous, soy, and green tea seem to have a role in decreasing the risk of
PCa due to compounds with anticarcinogenic properties in their composition.

Asian populations consume soy foods as a part of their regular diet, which
might contribute to the lower PCa incidence found in these countries.

However, the preventive action of these compounds needs to be
further explored.

[32,43,49–54]

3.1. Unmodifiable Risk Factors: Ethnicity, Family History, and Genetic Factors

PCa is infamous for its ethnic disparity, which raises the possibility that inheritance
plays an important role in oncogenesis. The highest incidences of this cancer are doc-
umented in descendants of Northern Europeans and African-Americans, while native
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Africans and Asians are much less susceptible to the disease [55]. For instance, African-
American, Caribbean, and Black men in Europe have the highest incidences of PCa and
are more likely to develop the disease earlier in life when compared to other racial and
ethnic groups [17,56,57]. These individuals possess a common genetic background more
prone to the development of cancer, such as specific genes (e.g., chromosome 8q24) that are
more susceptible to mutation (Table 1) [2,16,58]. The migration and colonization history of
Scandinavians is intimately related to the susceptibility to PCa in Europe. Subsequently, the
incidences in other ethnic groups are related to the history of European settlement and the
degree of admixture. Some research has suggested that PCa has been transmitted through a
hereditary predisposition that resides in the Northern European genome [55]. A proportion
of the patients in the European, European American, and African-American populations
share two polymorphisms at chromosome 8q24, transmitted by admixture [59–61]. The
low frequency of these alleles among native Africans and other ethnic groups, however,
suggests transmission by admixture between Europeans and African-Americans. The
Caribbean countries have a history of colonization by Europeans, including the Scandina-
vians. At the same time, the slave trade brought many Africans. Given these reasons, many
of the Caribbean countries now show high PCa incidence [55].

The prevalence of family PCa is estimated to be around 20%, while the rate of inherited
PCa is about 5% to 15% [10,21]. The presence of similar genes, similar lifestyles, and similar
environmental conditions are among the reasons associated with family PCa. Inherited PCa
occurs when a gene mutation is transmitted from one generation to the next, when at least
three of their first-degree relatives are affected by PCa, or when three or two generations
of a family, or more close relatives (such as the father, brother, son, grandfather, uncle, or
nephew), are affected by this cancer [21,22]. Some cancer predisposition genes have been
identified to affect the risk of PCa, including hereditary mutation of HOXB13 as well as
BRCA1, BRCA2, ATM, CHEK2, and PALB2, and Lynch syndrome MLH1, MSH2, MSH6, and
PMS2 genes (Table 1) [21]. Other genes have a poorly defined cancer risk with unknown
clinical significance. Nevertheless, the genetics behind family and hereditary PCa remains
complex [10,21,22].

3.2. Modifiable Risk Factors: Lifestyle, Diet, and Environment

Lifestyle factors are modifiable and may provide an effective method for reducing
cancer risk (Figure 3). According to the World Health Organization (WHO), 30 to 50% of
cancers are preventable by healthy lifestyle choices, such as avoidance of tobacco and alco-
hol consumption, and public health measures, such as immunization against cancer-causing
infections [3,5,14,32]. Men with PCa have been shown to exhibit upregulated oxidative
stress and impaired antioxidant defense systems [62]. Animal studies have reported that
nutrients, such as fat, protein, carbohydrates, vitamins (vitamins A, D and E), and polyphe-
nols, are involved in PCa pathogenesis, and progression through several mechanisms,
including inflammation, antioxidant effects, and the effects of sex hormones [63]. However,
it has been difficult to determine which nutrients have a beneficial or harmful impact on
PCa incidence and progression due to divergent results in clinical studies [3,32,64].

Diets involving plant-based foods, such as tomatoes, cruciferous, and soybeans, have
been associated with a lower risk of developing PCa [32,43,49]. Cruciferous or Brassica
vegetables are known to possess anticancer properties mediated by phenylethyl isothio-
cyanate, sulforaphane, phytochemicals, and indole-3-carbinol [54]. Similarly, lycopene, a
carotenoid mostly found in tomatoes and other red fruits and vegetables, has been shown
to have powerful antioxidant properties and cancer-preventive effects by reducing lipid
peroxidation and inhibiting cell growth [39–41,65], and is associated with a decreased risk
of PCa [41,42,44]. Such effects are certainly correlated with the observation that lycopene
acts on the androgen receptors and reverses the effects of dihydrotestosterone [66]. Soy
and green tea have also been investigated for their chemo-preventive capacity in relation
to PCa (Table 1). Soy isoflavones and their derivatives, genistein and daidzein, reportedly
show efficacy in preventing PCa [63]. Genistein acts as a chemotherapeutic agent in various
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cancer cells, modulating cell angiogenesis, apoptosis, and metastasis [62]. Moreover, soy
isoflavones are similar in structure to 17β-estradiol, and thus can bind to the estrogen
receptor and act as phytoestrogens. In addition to estrogenic effects, isoflavones reportedly
exert antioxidant and inhibitory effects on tyrosine kinase activity [63]. However, the
inadequate intake of isoflavones may lead to PCa progression [63]. The catechins found in
green tea exhibit anticarcinogenic effects that may prevent various stages of carcinogenesis
and metastasis [50–53]. Vitamin D and its analogues seem to protect from PCa, through
the inhibition of cell proliferation and invasion, and inflammatory signaling (Table 1). For
instance, several epidemiological studies suggest that PCa occurs more frequently in older
men with vitamin D deficiency [2,47,67]. Moreover, a high dietary intake of dairy products
rich in calcium, higher than the daily recommendation, also increases PCa risk, due to
decreased serum levels of vitamin D [45,46,48,68]. Nevertheless, the research about nutrient
intake and PCa needs to be further elucidated and extended.

Several epidemiological studies have shown a positive correlation between PCa mortal-
ity and per capita consumption of meat, fat, and dairy products [3,32,33,65]. The promotion
of prostate carcinogenesis through androgen signaling, increased levels of reactive oxygen
species (ROS), leukotrienes, and prostaglandins from lipid metabolism, as well as increased
basal metabolism, IGFs levels, and tumor proliferation, are a few biological mechanisms
that are thought to connect trans and saturated animal fat and PCa risk. Additionally,
aromatic hydrocarbons and mutagenic heterocyclic amines, which are formed while cook-
ing all of the components in meat at high temperatures—including creatine, amino acids,
and sugar—can result in lipid peroxidation and DNA damage through the production
of free radicals [2,69]. Unsaturated fatty acids such as Omega-3 fats, abundant in fish
and vegetable oils, have been reported to reduce the risk of PCa. However, Omega-6 fats
seem to have a pro-inflammatory effect through linoleic acid [2,70]. Arachidonic acid, a
metabolite of linoleic acid, leads to the formation of pro-inflammatory prostaglandins (PG),
such as PGE2, involved in cell proliferation, and 5-hydroxyeicosatetraenoic acid, which is
found to be increasingly expressed in malignant PCa [3,32,33].

Changes in the metabolic profile caused by metabolic disorders such as obesity, insulin
resistance, and changes in the hormonal profile are often associated with PCa, and some
conditions can lead to more aggressive tumors [3,32–34]. Obese men show alterations
in circulating levels of metabolic and sex steroid hormones, both known to be involved
in prostate development and oncogenesis. Clinical studies have demonstrated that obe-
sity might have clinical implications for disease detection and management [27,28,71].
Additionally, insulin is a risk factor of promoting PCa initiation and/or progression. In
aggressive PCa tumors, for instance, elevated circulating insulin concentrations were found,
supporting the role of insulin in PCa growth [72]. Tobacco consumption is another PCa
risk factor (Table 1) [34,36,37]. The incidence and mortality rates of PCa have increased
significantly with the increase in tobacco use, due to exposure to carcinogens and alterations
in circulating levels of hormones [73]. Functional polymorphisms in genes involved in the
polycyclic aromatic hydrocarbons (PAHs) metabolism, one of the carcinogenic chemicals
of cigarette smoke, may affect cancer onset and progression [2]. Researchers found that
smoking increases the metabolism of serum estrogen, which is involved in a more aggres-
sive tumor phenotype, resulting in increased PCa-related deaths [74]. Moreover, cigarette
smoking has been associated with adverse pathological features and worse oncological
control [10].

4. Prostate Cancer Screening

Screening for PCa is based on the PSA biomarker values in blood serum (>4.0 ng/mL)
and DRE. After suspicion, a magnetic resonance imaging (MRI) scan is usually performed,
which indicates whether a prostate biopsy should be performed, considering the prostate
imaging–reporting and data system (PI-RADS) value (PI-RADS > 3). Following the histo-
logical confirmation (biopsy) of malignant neoplasia, staging tests are performed, through
imaging techniques such as computed tomography (CT) or positron emission tomography
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(PET). In turn, the results of these tests dictate the patient’s therapy based on a combination
of surgical strategies, hormone therapy, radiotherapy, and chemotherapy (Figure 4) [75].
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PSA is a glycoprotein normally expressed by the prostate tissue with a cut-off of
4.0 ng/mL [5]. However, this test shows low selectivity to detect PCa and monitor the
disease’s progression [76], due to its limited sensitivity (20.5%) [77], accuracy (62–75%) [78],
and specificity (51–91%) [79]. PSA screening cannot differentiate patients in terms of
the aggressiveness of the tumor [80], and cannot distinguish between benign prostatic
hyperplasia and prostatitis [81]. Furthermore, PSA levels may be affected by several other
factors, such as age, body mass index (BMI), and urinary tract infection, leading to false-
positive results [77,82]. Due to concerns about overdiagnosis and overtreatment, along
with the high rate of false-positive results, the United States Preventive Services Task Force
made recommendations against PSA testing among men over 70 years old [7,76]. This
decision resulted in a decline in the incidence of PCa from 2007 to 2014. Between 2013 and
2017, the mortality rates flattened, most likely because of a decline in the use of PSA, which
consequently resulted in the diagnosis of more men with metastatic PCa [76]. Therefore, it
has become very important that men are fully informed of the potential benefits and harms
of PSA screening [83].

A decisive diagnosis of PCa is based on a prostate biopsy when PSA and DRE show ab-
normal results [84,85]. Besides being an invasive, unpleasant, and potentially harmful pro-
cedure [86], prostate biopsies also show the risk of severe infection, due to the introduction
of rectal commensal or other bacteria through a needle into the sterile prostate [87]. More-
over, this procedure can still lead to both false-positive and false-negative results [2,88,89].
False-negative results may occur when the tumor is small, when the cancer cells are dis-
tributed heterogeneously, and in early PCa stages when, histologically, the tumor appears
benign. Accordingly, the samples obtained during the biopsy may not be representative of
cancer. Another issue is the overdiagnosis and overtreatment of relatively indolent tumors
with low potential for morbidity or death if left untreated [90,91]. Hence, serum PSA
levels and prostate biopsy histology have very limited accuracy in predicting the clinical
behavior of individual tumors, especially the ones prone to becoming aggressive at a later
stage. Several studies have focused on the development of new methods to overcome these
limitations and provide more accurate tools for PCa detection and management (Table 2).
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Table 2. Emerging diagnostic methods for prostate cancer detection and management (articles from
the last 5 years).

Method Evidence/Aim Reference

PSMA radioligand
targeted therapy and
molecular imaging

Evidence: Molecular imaging techniques detect PCa lesions that are occult on
anatomic imaging. PSMA radioligand therapy shows promising response rates

with low toxicity in extensively pre-treated patients with PCa.
Aim: Theragnostic applications—diagnosis, management, and treatment of

metastatic PCa.

[92–100]

EVs

Evidence: EVs can mediate PCa progression and metastasis. EVs have great
potential to be used as liquid biopsy biomarkers in the diagnosis of PCa. EVs

can be used in risk stratification and to predict the response to hormonal,
chemo-, immune- and targeted therapy.

Aim: Diagnosis and treatment. Can be used to personalize and guide
treatment decisions.

[76,87,89,101–105]

lncRNAs
(PCA3, MALAT1,

SChLAP1, BDNF-AS,
FALEC)

Evidence: lncRNAs provide new insights into cancer signaling networks,
along with novel strategies and methods for PCa diagnosis and treatment.

lncRNAs analysis has the potential to improve the specificity and sensitivity of
existing biomarkers.

Aim: Novel biomarkers (predictive, diagnostic, prognostic) and
therapeutic targets.

[106–112]

Legend: EVs: extracellular vesicles; lncRNAs: long non-coding RNAs; PSMA: molecular targeting of prostate-
specific membrane antigen.

4.1. Prostate-Specific Membrane Antigen: A Theranostic Approach

Imaging methods are used to define the stage of PCa and so guide its manage-
ment. However, PCa’s more aggressive forms can manifest rapid growth with pro-
gression to adjacent organs and spread to lymph nodes and bones [2,113,114], and CT,
bone scan, and MRI have limited performance abilities in the detection of lymph node
metastasis [92]. Patients with castration-resistant PCa (CRPCa) have a 90 to 95% probability
of developing bone metastases, which leads to severe morbidity, including bone pain,
pathological fractures, spinal cord compression, and hematological consequences of bone
marrow infiltration [115–117]. Due to the importance of bone metastases in the overall
disease progression, bone-targeted therapy constitutes an essential part of the treatment
of CRPCa [118]. A possible therapy may be based on the use of radiopharmaceuticals
systemically administered to slow or reverse the bone metastatic progression [117].

Current research is focused on the molecular targeting of prostate-specific membrane
antigen (PSMA) as a theragnostic approach, to diagnose, monitor, and treat PCa [92].
PMSA is a transmembrane enzymatic protein found on most PCa cells, and its overex-
pression correlates to adverse factors, such as androgen independence, metastasis, and
progression, making PSMA an antigenic marker for PCa progression [92,93,117,118]. Hence,
PMSA can be used for diagnostic and therapeutic purposes, and several clinical trials have
been investigating its effectiveness as a diagnostic tool and for direct radioligand therapy
(Table 2) [92].

4.1.1. Molecular Imaging

PSMA scans can detect metastatic lesions that are missed by conventional imaging
techniques [92], so small molecules, antibodies, and antibody fragments that target PSMA
have been created, radiolabeled, and used for molecular imaging [98].

PET is emerging as a highly sensitive molecular imaging technique in the detection
and localization of primary PCa. PET uses a positron emitter to label key molecules that
are intravenously injected, and their distribution and uptake images provide insights into
metabolic changes associated with cancer [119]. This technique has been reported as a valu-
able tool in the diagnosis of PCa patients with negative MRI and systematic biopsies [98].
Recently, ligands of PSMA were introduced in PET to diagnose and manage PCa (reviewed
by Mena et al., 2020 [99]). This approach can improve PCa detection by identifying lesions
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that are not visible on MRI, providing better estimates of tumor volume [98]. PSMA-PET
can be used in the diagnosis, staging, and management of PCa patients [99]. PSMA-PET has
an important role in the initial staging of PCa, superior diagnostic performance to anatom-
ical imaging, and enhanced sensitivity to detect node metastasis (reaching 99% [119]),
outperforming other molecule imaging techniques, including PET-CT [98,99]. Further-
more, PSMA-PET can be combined with anatomical CT (PET/CT) and MRI (PET/MRI)
images for the detection of bone metastases [99,100] (Table 2). PSMA-PET/MRI consis-
tently outperforms multiparametric MRI (mpMRI) in the detection or localization of PCa
in intermediate- or high-risk PCa patients (reviewed by Moradi et al., 2021 [98] and Mena
et al., 2020 [99]). PSMA-PET/CT has greater sensitivity in the detection of bone metastasis
when compared to whole-body bone scans [100], and has shown the most utility in bio-
chemical recurrence [119]. PSMA-PET/CT was first coupled with gallium-68 (68Ga) and is
considered the most sensitive and specific method for staging high-risk PCa and imaging
recurrent PCa [92,98]. Moreover, 68Ga-labeled ligands have shown higher sensitivity and
specificity in the diagnosis of primary and recurrent PCa [100]. In a retrospective analysis,
Maurer et al. [120] investigated the diagnostic efficacy of 68Ga-PSMA-PET for lymph node
staging in patients with PCa and compared it to CT and MRI imaging. In their analyses,
68Ga-PSMA-11 showed sensitivity, specificity, and accuracy levels of 65.9%, 98.9%, and
88.5%, respectively, in the detection of nodal metastases, compared with the values of 43.9%,
85.4%, and 72.3% achieved by morphological imaging [120]. In another study, Thomas
et al. [100] investigated the difference between technetium-99m (99mTc)-methyl diphosphate
(MDP) bone scans and 68Ga-PSMA-PET/CT for the detection of bone metastases in PCa.
The authors compared the number of identified lesions and found that the PSMA-PET/CT
method detected twice the number of lesions, especially in the thorax and pelvis. Their
results suggest that when patients go through 68Ga-PSMA-PET/CT, the bone scan is not
mandatory [100].

4.1.2. Radioligand Targeted Therapy

Recent studies suggest that newer molecular theragnostic approaches, based on PSMA
radioligands, have the potential to provide even more effective and personalized treatment
options for diagnostic, prognostic, and therapeutic applications in patients with CRPCa,
with fewer toxicities and adverse effects [92–94]. This approach has been developed to
select patients, and delivers irradiation to all tumor sites, including osseous, nodal, and vis-
ceral metastases [92]. PSMA radioligand therapy uses small-molecule inhibitors of PSMA,
usually labeled with beta and alpha-emitting radionuclides that emit cytotoxic radioactive
decay [92,93]. Alpha and beta radionuclides differ in energy, tissue range, linear energy
transfer, and the number of DNA hits needed for cell destruction [117]. These radiophar-
maceuticals deliver targeted irradiation to the active bone turnover sites, where metastatic
infiltration and destruction are happening. This approach can simultaneously treat multiple
sites of disease, ease administration, and be integrated or combined with other treatments.
Alpha-emitters include actinium-225 (225Ac), thorium-227 (227Th), radium-223 (223Ra), and
astatine-211 (211At). Recently, 223Ra was approved to treat bone metastases from PCa. This
authorization follows the symptomatic relief and significant improvement in the overall
survival of CRPCa with predominant bone metastases that 223Ra was shown to elicit [121].
Beta-emitting radiopharmaceuticals, including lutetium-117 (177Lu), strontium-89 (89Sr),
samarium-153 (153Sm), and rhenium-186 (186Re), have been used for bone palliation. 177Lu
is the most used beta-emitter, due to its favorable safety profile, short range of emissions,
and relatively long half-life, allowing the delivery of a high degree of radiation to specific
lesions [92]. For instance, [177Lu] Lu-PSMA-617 shows a favorable safety profile due to
reduced kidney uptake, and has demonstrated promising results in prospective trials with
high response rates, low toxic effects, and the reduction of pain in men with metastatic
CRPCa who progressed after standard treatments [95–97]. In general, radioligand therapy
shows promising response rates with low toxicity in extensively pretreated patients with
PCa [92]. While most of these studies remain experimental and the effects of this therapy
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on overall survival and safety are yet to be determined, their clinical observations are very
promising [95,118,122–124].

PSMA-targeted imaging and therapy have proven to be excellent diagnostic and
therapeutic options for metastatic PCa, but further studies are still required to determine
the effect of this approach on overall survival and safety. Moreover, current research is still
ongoing regarding the exact role of PSMA in various stages of PCa care [92].

4.2. Tumor Biomarkers

In recent years, new potential biomarkers for PCa screening and management have
been developed through advances in molecular medicine, particularly OMICs genomics,
proteomics, transcriptomics, and lipidomics. In addition to molecular biomarkers for urine,
serum, and tissue samples, extracellular vesicles (EVs), circulating tumor cells (CTCs) and
DNA (ctDNA), and cell-free DNA (cfDNA), common liquid biopsy biomarkers [125] and
long noncoding ribonucleic acids (lncRNAs) have emerged as promising PCa biomarkers.

4.2.1. Molecular Biomarkers

Based on the combination of imaging techniques with other methodologies such as
gene or protein profiling, several molecular biomarkers have been developed for urine,
serum, and tissue samples to improve cancer detection, pre-biopsy decision-making, cancer
risk assessment, and the therapeutic management of PCa [126]. Additionally, risk calcu-
lators (RCs) are used in combination with these tests to help identify each individual’s
specific cancer risk, hence reducing the number of unnecessary biopsies. The guidelines on
PCa treatment are therefore recommending the use of these tests in addition to the current
PCa screening methods [77]. These biomarkers include several derivatives of PSA, such as
the Prostate Health Index (PHI), approved by the US Food and Drug Administration (FDA),
which combines total PSA, free PSA, and [−2] proPSA, and the Four-Kallikrein (4KScore)
blood tests, which consist of kallikrein-related peptidase 2 (hK2), intact PSA, free PSA,
and total PSA [104]. Transcriptomic methodologies also contributed to the discovery of
biomarkers, and Progensa Prostate Cancer Antigen 3 (PCA3) is the first and only urine test
approved by the FDA, which detects the PCa gene 3 transcript levels. The MyProstateScore
(MPS) assay requires the collection of urine post-DRE and is based on combinations of
multiple gene analyses, including total serum PSA, the PCA3 assay, and the expression of
the TMPRSS2: ERG fusion gene [127,128]. These biomarkers can be used in liquid biopsies
and involve a combination of clinical information, including age, family history, DRE result,
PSA levels, and prostate biopsy history, with genetic and epigenetic changes. Nevertheless,
the technologies associated with these approaches are expensive and unavailable in many
medical facilities. Other factors such as tumor heterogeneity, tumor–host interplay, com-
plexity, multiplicity, and redundancy of tumor–cell signaling networks must be overcome
to develop effective biomarkers [81].

4.2.2. Long Non-Coding RNAs

LncRNAs are RNA transcripts that are longer than 200 nucleotides and do not encode
proteins. LncRNAs have been found to exhibit abnormal expression in various types of
cancer, including PCa. Most lncRNAs linked to PCa are overexpressed in tumor tissues
and cancer cells, contributing to tumor proliferation, invasion, and metastasis. In turn, only
a small number of lncRNAs are downregulated and may function as tumor suppressors in
addition to their roles as transcriptional regulators and oncogenes [106]. All these unique
features make lncRNAs promising prognostic biomarkers and therapeutic targets for the
diagnosis, screening, prognosis, and progression of PCa [106] (Table 2). Recent research
has demonstrated that lncRNAs such as PCA3, GAS5, and HOTAIR are associated with
the development and progression of PCa [106]. Given its higher specificity and sensitivity
than the PSA blood test, PCA3 is one of the most well-studied lncRNAs. Additionally, its
combination with PSA testing or other biomarkers will significantly improve the sensitivity,
specificity, and accuracy of PCa screening and diagnosis. For instance, the use of PCA3 in
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conjunction with TMPRSS2-ERG tests can reduce the number of unnecessary biopsies and
increase diagnostic accuracy [106]. Another putative PCa diagnostic marker is MALAT1,
whose increased expression has been linked to high PSA levels and Gleason scores, as
well as with tumor stage and CRPCa [106]. Single-nucleotide polymorphisms of MALAT1
were investigated by Hu et al. [109], who found that rs619586 and rs1194338 were signif-
icantly associated with PCa’s susceptibility to both advanced Gleason grade and nodal
metastasis. A noninvasive post-DRE urine assay based on the combination of the lncRNAs
PCA3 and MALAT1 for the early diagnosis of PCa and high-grade tumors was developed
and validated by Li and collaborators [110]. However, according to some researchers, the
PCA3 test is affected by intra-individual variability, being unable to differentiate between
high-grade and low-grade tumors. Hence, more data are necessary to determine PCA3’s
application in PCa diagnosis [106]. The lncRNAs TMPO-AS1 and FALEC have shown their
potential utility as biomarkers for PCa diagnosis and progression [106,112]. Zhao et al. [108]
examined the biological role of FALEC in PCa cell lines as well as its expression profile, and
paired histologically normal tissues. In 85 patients, clinical PCa tissues showed significantly
higher FALEC expressions when compared to adjacent normal tissues. Moreover, in vitro
cell proliferation, migration, and invasion could be inhibited by the downregulation of
FALEC. According to these findings, FALEC may be a useful diagnostic and therapeutic
target in PCa patients [108]. Li et al. [107] investigated the expression, prognostic value,
and functional role of lncRNA BDNF-AS in PCa. The authors also correlated the expression
of BDNF-AS with the clinicopathological factors of patients. The results of this study
demonstrate the potential use of BDNF-AS as a prognostic biomarker for PCa patients with
poor prognoses and shorter overall survival, as it was downregulated in these cases. Fur-
thermore, lncRNAs can be used to predict the recurrence of biochemical events. SChLAP1
was highly expressed in PCa tissue, which was substantially correlated with biochemical
recurrence, clinical progression, and PCa-specific mortality [111]. Additionally, SChLAP1
can be easily detected in urine, an important feature for the development of an SChLAP1
assay for guided therapy (as reviewed by Xu et al. [106]). Given the roles of lncRNAs in
PCa, it will be important to create specific drugs that interfere with malignant signaling
networks in which lncRNAs are engaged, particularly in PCa cells. However, it is still
unclear how exactly lncRNAs work at the molecular level, it being essential to further
investigate the role of lncRNAs in prostate carcinogenesis [106].

4.2.3. Liquid Biopsy Biomarkers

Liquid biopsy has emerged as a complement to invasive tissue biopsy to guide cancer
diagnosis and treatment [76]. Liquid biopsies rely on the detection of specific biomark-
ers in readily accessible body fluids, such as blood, serum, or urine [89]. The common
liquid biopsy biomarkers are EVs, CTCs, ctDNA, and cfDNA, which provide specific in-
formation based on their intrinsic characteristics. CTCs are cancer cells from primary and
metastatic tumors that are released into the vasculature and circulate through the body to
form metastatic niches in other tissues, being detectable in cancer patients only [125]. Simi-
larly, ctDNA is a tumor-derived short, fragmented DNA found in the bloodstream, which
reflects cancer-related genetic changes. cfDNA or RNA (cfRNA) are cell-free circulating
small nucleic acid fragments that are released after the lysis of apoptotic or necrotic cells.
cfDNA is detectable in blood and urine samples from patients with cancer, and their analy-
ses improve the evaluation of mutations, polymorphism, methylation, and loss of DNA
integrity [76,89,129]. Numerous studies have shown the relevance of liquid biopsies in PCa
screening. cfDNA and EVs seem to have a better application in the diagnosis and prognosis
of PCa than CTCs [76,87,89,101] (Table 2). This occurs because early-stage or localized
PCa patients have very few CTCs and their use is more effective in the later stages of this
cancer [89]. The only FDA-approved liquid biopsy test for PCa, CellSearch, is based on
the detection of CTCs, and there is no evidence of the wide clinical implementation of this
technology in medical practice. EVs are nano-sized, double-lipid membrane vesicles, such
as exosomes and microvesicles, that are secreted from cells and shed into biofluids, includ-
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ing blood and urine [104]. EVs are involved in intercellular communication and immune
function, through proteins, lipids, mRNA, microRNAs (miRNAs), and DNA, and have been
correlated to the presence of cancer for diagnostic purposes (Table 2) [76,101,130,131]. Cells
exchange proteins, nucleic acids, sugars, and lipids through EVs to induce changes in the
recipient cells, which makes EVs potential carriers of cancer biomarkers from tumor cells to
other tumor or non-tumor cells [89]. EVs can also be used as a vehicle for drugs or nucleic
acids with antineoplastic effects [87,102]. The EVs approach may improve the sensitivity
of PCa biomarkers, given the protective role of the EVs’ lipid layer over biomolecules,
meaning that the concentration of PCa biomarkers will be higher in EVs [89]. Urine is
the most used body fluid for the detection of biomarkers in EVs from liquid biopsies of
PCa. Moreover, exosomal miRNAs are emerging as promising prognostic biomarkers for
metastatic CRPCa patients [89]. The concentration of RNA-based biomarkers, particularly
miRNA, is higher in EVs than in CTCs from urine samples. Nevertheless, the application
of miRNA as a diagnostic marker has been limited due to a lack of specificity, and in
turn, many studies have emerged to investigate EV-mRNA as a diagnostic and prognostic
biomarker for PCa management [76]. McKiernan et al. [104] developed an exosome-derived
gene expression signature from normalized PCA3 and ERG RNA from urine predictive
of initial biopsy results. Exosomes in post-DRE urine of PCa patients contain both PCA3
and TMPRSS2: ERG mRNA. In their study, the authors were able to develop a molecular
signature predictive of PCa combined with serum PSA in a diagnostic test, which was able
to discriminate between benign disease and high- and low-grade tumors, reducing the
total number of unnecessary biopsies [104]. Ji et al. [105] developed a strategy for exosomal
mRNA detection based on features of mRNA of circulating exosomes and identified a
PCa exosomal mRNA signature for PCa screening and diagnosis. With this strategy, the
authors were able to distinguish PCa patients from healthy controls [105]. Despite the
beneficial properties of EVs for the diagnosis of PCa, their clinical application still presents
a few challenging issues [76]. EVs are released from all cells in the body, which makes it
difficult to determine which EVs are tumor-derived, meaning that new technologies for the
specific detection and isolation of tumor-derived EVs need to be developed [76]. Recent
EVs isolation technologies have been developed to improve isolation performance, yield,
purity, usability, hands-on procedures, and processing time [76]. However, EVs isolation
is still difficult, especially in EVs from blood plasma, due to the purity and efficiency
achieved by laboratory procedures. Moreover, there is no wide clinical application of liquid
biopsies of PCa with EVs [89], and automated analysis platforms are yet to be developed
for large-scale clinical studies [76]. Overall, the use of CTCs and EVs as biomarkers of
PCa in liquid biopsies is being hindered by some issues, such as the inexistence of specific
guidelines for the biomarker’s isolation and detection. Additionally, the validation and
standardization of the microfluidic devices used in liquid biopsies has not been achieved
yet [129].

4.3. Active Surveillance and Risk-Stratification Algorithms

PCa is very heterogeneous in terms of grade, phenotypes, and genetics, displaying
complex features [2]. This tumor often has indolent growth, which does not compromise
the patient’s quality of life, but its diagnosis and subsequent treatments have a high
impact on the physical and mental status of patients, significantly affecting their quality of
life [81]. The main goal of early detection is to identify PCa in a phase whereat it needs less
aggressive treatments with fewer side effects and has a higher chance of cure, even in the
cases of locally advanced and metastatic PCa. Many early diagnoses can be safely managed
by active surveillance, preventing overtreatment, thereby improving or maintaining the
patient’s quality of life and avoiding adverse outcomes [132].

Active surveillance consists of the serial monitoring of disease progression, through
PSA tests, DRE, and biopsies, to track cancer growth. This has become the preferred
approach for men with low-grade PCa [2,133], as men can avoid immediate treatment
and prospective side effects [2]. When discussing therapy choices and in the selection
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criteria for active surveillance programs [134], external factors, such as obesity, BMI, and
the hormonal profile (e.g., testosterone levels), should be considered by the clinical practice,
since all these factors influence the PSA levels [135,136]. Recent studies suggest that the
conjugation of PSA screening with other methodologies, such as risk RCs, biomarkers,
and imaging techniques such as MRI, can attenuate overdiagnosis and underdetection
issues [137]. Van Poppel et al. [137] proposed a risk-stratified algorithm, combining MRI,
RC, and PSA tests, that improves the efficiency of “PSA-only” screening and reduces
unnecessary biopsies and overdiagnosis. The combination of these tools improves the
individual balance between the harms and benefits of early detection in well-informed men
who are at risk of having PCa [137]. Based on the initial PSA test result and age, different
time intervals for repeated PSA testing are proposed, reflecting the likelihood of a future
diagnosis of clinically significant cancer. This strategy helps to avoid false-positive biopsies,
as low-risk men can go through individualized PSA tests and, if necessary, repeated MRIs
to track cancer growth. Then, RCs seem to be the most appropriate approach to assessing
the risk of developing PCa after PSA testing. RCs are accessible to every clinician, easy to
use, inexpensive, and non-invasive. Moreover, MRI results can be integrated into an RC
that includes PSA density as a continuous variable, to determine the need for a prostate
biopsy in men with intermediate- and high-risk [137,138]. PSA density has been described
to improve the specificity of the PSA test [138,139]. It is defined as the level of serum
PSA divided by the prostate volume and presents a cut-off of 0.15 ng/mL2 [139]. PSA
density can be used as a prognostic biomarker to determine which patients need to undergo
definitive therapy from those who may be managed by active surveillance, as well as
patients with a previously negative MRI who should proceed to a prostate biopsy [139].
This allows the more accurate evaluation of individual risk, which is essential for properly
interpreting the MRI results. Consequently, only men who present a high risk of clinically
significant PCa, according to an RC, will be proposed for a systemic biopsy after MRI [137].

Evidence shows that performing an MRI before a biopsy allows one-third of men to
avoid an immediate biopsy and reduces overdiagnosis, with 40% fewer clinically unimpor-
tant cancers and approximately 15% more clinically significant cancers detected [137,140].
However, the implementation of MRI in the risk assessment of PCa is not yet fully realized
in the whole of Europe [137], which in turn reflects the geographical differences in the inci-
dence rates between European countries. To further reduce unnecessary biopsy procedures,
the decision process of a biopsy in men with a PI-RADS of 3 should be carefully examined.
The PI-RADS classification is based on a scale of values from 1 to 5, and determines the
likelihood of clinically significant PCa. While PI-RADS values of 4 and 5 indicate that a
biopsy is required, it is challenging to establish whether a biopsy should be performed or
not in patients with a score of 3 [141]. Additionally, the PI-RADS score does not measure
PCa aggressiveness, meaning that a biopsy is still needed. Research has found that exclud-
ing men with PI-RADS 1–2 or PI-RADS 3 lesions based on a low PSA density only increases
the likelihood that clinically significant tumors will be undiagnosed due to nonvisual
PCa or misinterpretation of the reader [137]. The European Association of Urology (EAU)
guidelines strongly recommend performing an mpMRI before a biopsy to modify the
management approach accordingly. This imaging approach presents preferable detection
rates and reduces the number of biopsy procedures, particularly when MRI-negative men
are excluded from prostate biopsy, due to its capacity to differentiate between significant
and insignificant tumors [132]. Furthermore, the PI-RADS guidelines have recommended
systematized mpMRI acquisition and the global standardization of reporting. Nevertheless,
there is a lack of consensus on detailed aspects of mpMRI acquisition protocols [141].

Artificial intelligence (AI) methods have been proposed for a wide range of applica-
tions in the PCa diagnostic pathway [137,141–143]. AI can be used to improve the initial
evaluation of prostate mpMRI cases and the image quality, as well as the detection and
differentiation of clinically significant from insignificant cancers on a voxel level, and
the classification of entire lesions into PI-RADS categories (reviewed by Belue and Turk-
bey [142] and Sunoqrot et al. [143]). Studies on MRI AI have revealed the role of AI in
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improving the clinical management of localized PCa, the interpretation of MRI and the data
processing for biopsies, by reducing inter-reader variation and supporting the radiological
workflow [142]. Nevertheless, AI requires caution in its use, as the proficiency of this
method is still below that of an expert [141]. Moreover, more prospective studies with
multicenter designs are required to understand the impact of AI on improving radiologists’
performance and the clinical management of PCa [137,142].

4.4. Volatilomics

Emerging studies demonstrate that combining PSA screening with other method-
ologies, such as RCs, biomarkers, and imaging tests, e.g., MRI or fusion biopsies, might
attenuate overdiagnosis and underdetection, eventually reducing the number of unnec-
essary biopsies [137]. Volatilomics, a subset of metabolomics, has recently emerged as
a simple, effective, and non-invasive method with great potential for cancer screening.
Volatilomics focuses on volatile organic metabolites (VOMs), which are low-molecular
weight metabolites (<500 Da) with high volatility and a carbon-based chemical group [144].
VOMs are present in readily accessible biofluids, including saliva, urine, and exhaled breath,
as they are produced by the metabolism of cells, reflecting their biological activity [145].
The progressive accumulation of genetic, epigenetic, and post-translational changes that
support cancer growth can lead to changes in VOMs levels and, as a result, affect an individ-
ual’s volatilomic profile (Figure 5). Hence, VOMs are a rich source of data on health, since
they can reflect the metabolic and biochemical alterations triggered by cancer progression.
From this perspective, a volatilomic biosignature for diagnostic purposes can be defined
using these changes [77,86].
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ologies, such as RCs, biomarkers, and imaging tests, e.g., MRI or fusion biopsies, might 

attenuate overdiagnosis and underdetection, eventually reducing the number of unnec-

essary biopsies [137]. Volatilomics, a subset of metabolomics, has recently emerged as a 

simple, effective, and non-invasive method with great potential for cancer screening. 

Volatilomics focuses on volatile organic metabolites (VOMs), which are low-molecular 

weight metabolites (<500 Da) with high volatility and a carbon-based chemical group 

[144]. VOMs are present in readily accessible biofluids, including saliva, urine, and ex-

haled breath, as they are produced by the metabolism of cells, reflecting their biological 

activity [145]. The progressive accumulation of genetic, epigenetic, and post-translational 

changes that support cancer growth can lead to changes in VOMs levels and, as a result, 

affect an individual’s volatilomic profile (Figure 5). Hence, VOMs are a rich source of 

data on health, since they can reflect the metabolic and biochemical alterations triggered 

by cancer progression. From this perspective, a volatilomic biosignature for diagnostic 

purposes can be defined using these changes [77,86]. 

 

Figure 5. Cancer development and progression can lead to changes in the levels of volatile organic
metabolites, which can be used to define a volatilomic biosignature for diagnostic purposes.

Even though the volatilomics approach is relatively recent in PCa compared to other
cancers [77,88,146,147], empirical data have confirmed its potential use in cancer screening,
the monitoring of disease progression and effectiveness of treatment, as well as for the
discrimination between different cancer types [86,148–150]. Different approaches involving
volatilomic studies have been proposed to establish connections between cancer and the
body’s VOMs signature using highly sensitive analytical techniques. In these studies,
biofluids are chemically characterized to identify cancer-specific biomarkers using mass
spectrometry-based techniques combined with multivariate statistical analysis. Another
approach includes the identification of cancer-characteristic odor fingerprints through
electronic noses (e-noses) [151]. However, since several VOMs have been suggested as PCa
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biomarkers and contradictory results on the same metabolites have emerged from different
reports, it is difficult to establish reliable biomarkers, and no exhaustive studies have yet
been published [151,152]. Additionally, a few restrictions hinder the implementation of
these approaches in real-time diagnostic applications, and consequently, in clinical practice
(reviewed by Berenguer et al. [144]). For instance, the ability to compare the outcomes
of various studies between different laboratories is hampered by variations in sample
preparation, analytical procedures, and statistical platforms [88]. Hence, methods must
be standardized from sample collection to data processing, as well as assess the impact of
confounding factors, such as epigenetics, diet, medication, genetics, and environmental
exposure. Epigenetic factors play an important role in determining the clinical phenotypes
of PCa. Therefore, due to genetic, environmental, and toxicological factors, as well as the
different dietary habits around the world and their influence on the development of cancer,
the volatilomic biosignatures and potential biomarkers will differ according to the region
of the world [77,88,144,146,147].

Despite these limitations, volatilomics offers a wealth of informational potential that
will allow a thorough understanding of the metabolic pathways, and a clarification of
the mechanisms of cancers and how they impact the generation of VOMs [153]. Further
analysis of the VOMs’ origin and a more accurate assessment of the impact of confound-
ing factors on the volatilomic profile will be possible as a result of these findings [147].
Additionally, the definition of cancer biomarkers will be made possible through the detec-
tion and quantification of specific metabolites due to the standardization of procedures
and the creation of highly focused sensors. These findings will foster the development
of highly specific, fast, inexpensive, easy-to-use, and portable sensors that can be imple-
mented in clinical practice [145,154], demonstrating the importance of the volatilomics
approach [151,155]. Hopefully, the progress in volatilomics studies will unveil biomarkers
suitable for the diagnosis of PCa, to be used as a supplement to the current approaches
for the classification and screening of cancer [129], with possible applications in the active
surveillance of patients and individualized care [81,144].

5. Conclusions

PCa is the second leading cause of oncological death worldwide. Changes in the
metabolic profile caused by metabolic disorders such as obesity are often associated with
PCa, and some conditions can lead to more aggressive tumors. Lifestyle factors are modifi-
able and may provide an effective method for reducing PCa risk. Nevertheless, the research
into nutrient intake and PCa needs to be further elucidated to understand how men can
change their dietary habits to prevent cancer growth. The current screening methods are
invasive and have a low sensitivity to detect PCa, leading to overdiagnosis and overtreat-
ment. Several studies have focused on the development of new methods to overcome these
limitations and provide more accurate tools for PCa detection and management. Moreover,
the development of testing strategies to maintain most of the benefits of screening, while
reducing the harms, has become an important need. These strategies focus on the diagnosis
of potentially fatal cancers at a point where treatment is still effective, while not involving
the treatment of indolent cancers, saving patients and healthcare systems from the burden
of unnecessary, invasive, and costly medical procedures [83]. Furthermore, the combination
of the PSA test with different techniques for the diagnosis of PCa, such as MRI, RCs, and
biomarkers, has been proposed to obtain a more effective stratification of the patients and
provide more personalized treatment.
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