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Abstract: Clinical management of prostate cancer is challenging because of its highly variable
natural history and so there is a need for improved predictors of outcome in non-metastatic men
at the time of diagnosis. In this study we calculated the model score from the leading clinical
multivariable model, PREDICT prostate, and the poor prognosis DESNT molecular subtype, in a
combined expression and clinical dataset that were taken from malignant tissue at prostatectomy
(n = 359). Both PREDICT score (p < 0.0001, IQR HR = 1.59) and DESNT score (p < 0.0001, IQR
HR = 2.08) were significant predictors for time to biochemical recurrence. A joint model combining
the continuous PREDICT and DESNT score (p < 0.0001, IQR HR = 1.53 and 1.79, respectively)
produced a significantly improved predictor than either model alone (p < 0.001). An increased prob-
ability of mortality after diagnosis, as estimated by PREDICT, was characterised by upregulation of
cell-cycle related pathways and the downregulation of metabolism and cholesterol biosynthesis.
The DESNT molecular subtype has distinct biological characteristics to those associated with the
PREDICT model. We conclude that the inclusion of biological information alongside current clinical
prognostic tools has the potential to improve the ability to choose the optimal treatment pathway
for a patient.

Keywords: prostate cancer; clinical models; predictive models; molecular subtypes; transcriptome;
expression; statistical model

1. Introduction

Prostate cancer is distressingly common (diagnosed in 48,487 of men in UK per year)
but not frequently fatal (13% of male cancer deaths) [1]. The progression of prostate
cancer is highly heterogeneous [2], and clinical management is challenging [3,4]. It is
also estimated, that as many as 50–80% of PSA-detected prostate cancers are clinically
irrelevant, that is, even without treatment, they would never have caused any symp-
toms [5]. This has confounded attempts to develop a consistent and reliable approach
to identify aggressive disease. Radical treatment of early prostate cancer, with surgery
or radiotherapy, can lead to life changing side-effects of treatment such as impotence or
incontinence [6]. There is a need for improved predictors of outcome in non-metastatic
men at the time of diagnosis.

One approach is to use the information that is already collected at the point of diagnosis
and before treatment, to assess prognosis and the value of treatment. Thurtle et al. (2019)
developed an approach, termed ‘PREDICT Prostate’, that modelled, at the time of diagnosis,
prostate cancer specific mortality (PCSM) and non-prostate cancer mortality (NPCM) using
separate multivariable Cox models within a competing risks framework [7]. The NPCM
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model utilises the variables age and comorbidity, while the PCSM model combines age,
PSA, Gleason grade, clinical T stage, and proportion of positive biopsy cores at the time
of diagnosis. The model shows good discrimination in large validation datasets from the
UK (n = 3000; C-index = 0.84; 95% CI: 0.82–0.86) [7], Singapore (n = 2546; C-index = 0.84;
95% CI: 0.80–0.87) [7], Sweden (n = 69,206; C-index = 0.85; 95% CI 0.85–0.86) [8], and
the United States of America (n = 171,942; C-index = 0.82; 95% CI 0.81–0.83) [9]. It has
been endorsed by the National Institute for Health and Care Excellence (NICE) [10] and is
available in a user-friendly web interface (https://prostate.predict.nhs.uk/ (accessed on 1
May 2022)). Another approach to improve prediction of outcome is to use additional novel
biomarkers [11].

Within any single cancer disease type, sub-classification using molecular markers
can be an important way to accurately determine prognosis, optimise treatment pathways,
and help develop targeted drugs. In previous work, we have successfully identified a
novel aggressive molecular subtype of human prostate cancer, called DESNT, that can pre-
dict outcome after radical surgery (prostatectomy) and is associated with metastasis. This
was discovered by applying the Bayesian clustering method Latent Process Decomposi-
tion to transcriptome data [12–14]—this takes into account the heterogeneous composition
of prostate cancer. Prostatectomy patients with most of their expression assigned to the
DESNT type exhibit poor outcomes relative to other patients (p < 4.28 × 10−5; Log-rank
test) and has been validated in eight independent transcriptome datasets. Cancers as-
signed to the DESNT group have an increased risk of developing metastasis (X2-test,
p = 1.86 × 10−3) [13]. The amount of the DESNT signature is an independent prognostic
predictor of time to biochemical recurrence (HR = 1.52, 95% CI = [1.36, 1.7], p = 9.0 × 10−14,
Cox regression model) [13]. This framework was developed from samples taken at prosta-
tectomy, but we have preliminary data to suggest it’s applicability to biopsies [15]. We
are in the process of developing a diagnostic lab to utilise the DESNT framework as an
accredited clinical test.

In this work we modelled whether adding the poor prognosis DESNT signature to
the PREDICT Prostate algorithm has the potential to improve our ability to predict the
overall progress of prostate cancer. Transcriptome data from tumour tissue collected at
an initial treatment of proctectomy were used as a proxy for the information that could
be gathered from cancerous biopsy tissue at the time of diagnosis. Secondary aims are to
determine whether the PREDICT Prostate clinical model can predict disease prognosis
after surgical treatment of prostate cancer; and find the similarities and differences in the
genes and molecular pathways which drive a higher PREDICT score and characterise
the DESNT molecular subtype.

2. Materials and Methods
2.1. Datasets and Filtering

Microarray datasets from prostate tissue were processed and normalised as de-
scribed in Luca et al. (2020) (Table 1). In brief, Affymetrix microarray dataset was
normalised using the RMA algorithm [16] or previous normalised values were used.
Only probes corresponding to genes measured by all platforms were retained. The
CamCap and CancerMap datasets have 40 patients in common and thus 20 of the
common samples were excluded at random from each dataset. The ComBat algo-
rithm [17] from the sva R package and quantile transformation, was used to mitigate
study-specific effects. The ethical approvals obtained for each dataset are listed in the
original publications.

https://prostate.predict.nhs.uk/
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Table 1. Transcriptome datasets used. FF = Fresh Frozen.

Dataset Primary Normal Type Platform Citation

MSKCC [18] 131 29 FF Affymetrix Exon 1.0 ST v2 Taylor et al., 2010
CancerMap [12] 137 17 FF Affymetrix Exon 1.0 ST v2 Luca et al., 2018
Stephenson [19] 78 11 FF Affymetrix U133A Stephenson et al., 2005

CamCap [20] 147 73 FF Illumina HT12 v4.0
BeadChip Ross-Adams et al., 2015

The combined dataset was filtered to remove samples that were missing one or more
of the clinical variables required for the Prostate PREDICT model (patient’s age, T-stage,
PSA and the Gleason histological grade group). Only primary tumour tissue from the
prostate were included. Duplicate samples were also removed. For the Stephenson dataset
only Gleason sum was available, so 44 samples were removed that had a Gleason sum of
seven. The resulting dataset consists of 359 samples.

2.2. R Implementation of the Prostate PREDICT Model

The Prostate PREDICT model was originally implemented in the language STRATA [7].
We have translated this to the freely available open-source R statistical programming
language [21] and made the code available (https://doi.org/10.5281/zenodo.7248417
accessed on 25 October 2022). Our implementation of the Prostate PREDICT model
was extensively verified by comparing the results produced by those of the PREDICT
Prostate webpage tool (https://prostate.predict.nhs.uk/tool accessed on 1 May 2022)
for a wide variety of inputs. The results were identical, for example, when age = 75,
T-stage = 2, PSA = 25 and Gleason score = 4 + 3, the 10-year predicted survival from
initial conservative management was 55% via the webpage tool and 0.549 in R. We also
examined how the R version PREDICT results vary with clinical variables to ensure that
they made logical sense.

As we are interested in reducing radical treatment in prostate cancer the results
from the PREDICT model used initial conservative management as the treatment strategy
rather than radical treatment. For the datasets used here, comorbidity (the patient had
not experienced a hospital admission in the last 2 years for something other than prostate
cancer) and detailed biopsy histopathology results were unavailable and so are set to
zero, as is done in the online implementation when this information is unavailable. For
each sample, the prostate cancer specific mortality probability (PCSM) at ten years after
diagnosis (as a percentage) was calculated using as input the associated clinical variables
age at diagnosis, PSA at diagnosis, T stage, and prostatectomy Gleason grade group (as
a proxy for biopsy Gleason grade group). The non-prostate cancer mortality probability
(NPCM, as a percentage) was calculated using age at diagnosis. The PREDICT score, the
increase in probability of mortality at 10 years from having prostate cancer, was defined as
NPCM-PCSM.

2.3. DESNT Score and Assignment

Latent Process Decomposition (LPD) was applied to the MSKCC dataset [18] to pro-
duce the DESNT framework model, exactly as described in Luca et al. (2020) [13]. This
model was then applied to the other datasets using the OAS-LPD algorithm, a modified
version of the LPD algorithm in which new sample(s) are decomposed into LPD signatures,
without retraining the model. Again, as described in Luca et al. (2020). LPD is an unsu-
pervised Bayesian approach which decomposes each sample’s expression into signature
expression profiles of each molecular subtype. For each sample a score between 0 and 1
is given for each subtype which represents the proportion of a sample’s expression that
is explained by the signature expression profile for that subtype. Here, the proportion of
expression assigned to the DESNT subtype is termed the DESNT score and are the exact

https://doi.org/10.5281/zenodo.7248417
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scores produced in previous work [13]. If the DESNT score is the largest score across the
subtypes, the sample is considered a member of the DESNT subtype.

2.4. Differential Gene Expression Analysis

Differentially expressed genes were identified for each comparison using a moderated
t-test implemented in the limma (v 3.52.0) R package [22] with a threshold of Benjamin-
Hochberg false discovery rate < 0.05.

2.5. Functional Enrichment Analysis

Functional enrichment analysis was performed using the gProfiler2 (v0.2.1) [23] R
package utilising the KEGG, RECTOME, and Gene Ontology database for biological pro-
cess terms. The gSCS (Set Counts and Sizes) correction method was used to determine
significantly enriched pathways and ontology terms with significance p < 0.05.

2.6. Statistical Tests

All analyses were performed in R (version 4.1.2) using default parameters unless
otherwise stated. Survival analyses were performed using Cox proportional hazards
regression models, the log-rank test, and Kaplan–Meier estimator, as implemented in the
survival R package with biochemical recurrence after prostatectomy as the end point.
Pairwise comparisons of Kaplan–Meier curves using Log-Rank test were performed using
the SurvMiner (v 0.4.9), with p-values adjusted using the Benjamini-Hochberg multiple
testing correction. All plots were created using ggplot2 (v 3.3.6). All statistical tests
performed were two-sided non-parametric tests unless otherwise stated.

3. Results
3.1. Data Overview

We combined transcriptome data from malignant samples taken at an initial treat-
ment of prostatectomy from four studies: the MSKCC [18], CancerMap [12], Stephen-
son [19] and CamCap [20] studies (Table 1). These were filtered to have results from
one primary sample per patient with the required clinical information required for the
Prostate PREDICT model (n = 359; Table 2). The proportion of expression assigned to the
DESNT poor prognosis molecular subtype (DESNT score) were gathered from previous
results [13]. For each sample, the prostate cancer specific mortality probability (PCSM)
at ten years after diagnosis (as a percentage) was calculated using an implementation of
the Prostate PREDICT model in R (see methods), under the assumption of initial conser-
vative management, using as input the associated clinical variables: age at diagnosis,
PSA at diagnosis, clinical T stage, and prostatectomy Gleason grade group (as a proxy
for biopsy Gleason grade group). The equivalent expected non-prostate cancer mortality
(NPCM) was calculated using age at diagnosis. The PREDICT score, the increase in
probability of mortality at 10 years caused from having prostate cancer, was defined as
NPCM-PCSM.

DESNT scores from our combined dataset had a median value of 0.09 and an
interquartile range of 0.32. PREDICT scores had a median value of 5.84 and an in-
terquartile range of 3.24. There was a weak correlation between DESNT score and
PREDICT score (Figure 1A; rho = 0.21; p < 0.05; Spearmen’s correlation). The DESNT
score is very variable with respect to the PREDICT score (Figure 1B). The PREDICT
score showed a statistically significant increase in samples that were DESNT cancers,
i.e., where the proportion assigned to the DESNT subtype was higher than all other
subtypes in the framework (Figure 2; p < 0.001; Mann–Whitney U test; difference in
medians = 1.93).
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Table 2. Summary of clinical variables of cohorts. BCR = Biochemical recurrence after prostatectomy as
defined by two PSA measurements at values greater than or equal to 0.2 ng/mL. BCR/Follow up is time
to biochemical recurrence or last clinical update. T-stage = clinical tumour stage. The PREDICT score,
the percentage increase in probability of mortality at 10 years from having prostate cancer, is defined as
the non-prostate cancer mortality minus prostate cancer specific mortality at 10 years. DESNT score is
the proportion of expression assigned to the DESNT poor prognosis molecular subtype.

Characteristic CamCap, n = 89 1 CancerMap, n = 108 1 Stephenson, n = 33 1 MSKCC, n = 129 1

Age at diagnosis 61 (56, 65) 62 (56, 65) 61 (55, 65) 58 (54, 62)
PSA at diagnosis (ng/mL) 7.9 (6.1, 9.8) 7.9 (5.8, 11.4) 9.8 (6.0, 18.4) 5.9 (4.5, 9.3)

Gleason grade group
1 12 (13%) 29 (27%) 15 (45%) 40 (31%)
2 52 (58%) 59 (55%) 0 (0%) 53 (41%)
3 16 (18%) 16 (15%) 0 (0%) 21 (16%)
4 8 (9.0%) 1 (0.9%) 10 (30%) 8 (6.2%)
5 1 (1.1%) 3 (2.8%) 8 (24%) 7 (5.4%)

T Stage
1 48 (54%) 1 (0.9%) 19 (58%) 0 (0%)
2 28 (31%) 58 (54%) 13 (39%) 84 (65%)
3 13 (15%) 49 (45%) 1 (3.0%) 39 (30%)
4 0 (0%) 0 (0%) 0 (0%) 6 (4.7%)

BCR/Follow up (in months) 23 (15, 41) 55 (32, 64) 56 (12, 70) 47 (28, 62)
BCR event

FALSE 74 (83%) 77 (71%) 16 (48%) 102 (79%)
TRUE 15 (17%) 31 (29%) 17 (52%) 27 (21%)

DESNT Score 0.22 (0.10, 0.37) 0.09 (0.00, 0.31) 0.10 (0.02, 0.34) 0.00 (0.00, 0.18)
PREDICT Score 5.5 (4.7, 7.0) 6.4 (5.0, 8.1) 7.7 (3.6, 10.4) 5.6 (4.2, 7.2)

1 Median (IQR); n (%)

Figure 1. The relationship between Prostate PREDICT score and DESNT score. (A) Scatter plot and
distribution. (B) A waterfall plot showing how the DESNT score varies with PREDICT score. The
horizontal line at 5.8 represents the median PREDICT score. The PREDICT score is the percentage
increase in probability of mortality at 10 years from having prostate cancer defined as the non-prostate
cancer mortality minus prostate cancer specific mortality at 10 years. DESNT score is the proportion
of expression that is explained by the signature expression profile of the DESNT molecular subtype.

3.2. Predictive Ability of PREDICT and DESNT Score to Predict Time to Biochemical Recurrence

Both PREDICT score and DESNT score, when applied in separate models, have a
significant association with time to biochemical recurrence (PREDICT: p < 0.0001, IQR
HR = 1.59 [95% CI 1.43–1.76]; DESNT: p < 0.0001, IQR HR = 2.08 [95% CI 1.58–2.76]; Cox
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proportional hazards regression). A joint Cox proportional hazards model built with
the two continuous independent variables PREDICT and DESNT score (p < 0.0001, IQR
HR = 1.53 and 1.79, respectively; Table 3) was significantly better at predicting biochemical
recurrence outcome than PREDICT score (p < 0.001; likelihood ratio test) or DESNT score
(p < 0.001) alone. To illustrate this, samples were categorised into DESNT cancers or non-
DESNT cancers, and upper PREDICT score or lower PREDICT score (split around the
median; Table 4). A Kaplan-Meir plot shows clear delineation between each combination
of groups (Figure 3; Log-rank p-value < 0.001). At five years, the estimated proportion
that are biochemical recurrence free are 92% (Lower PREDICT score & Not DESNT), 65%
(Upper PREDICT score & Not DESNT), 56% (Lower PREDICT score & DESNT), and 38%
(Upper PREDICT score & DESNT). Pair-wise, all Kaplan–Meier curves are significantly
different (p < 0.001; log-rank test; Benjamini-Hochberg adjusted p-values) apart from
“Lower PREDICT score & DESNT” vs. “Upper PREDICT score & DESNT” (p = 0.18) and
“Lower PREDICT score & DESNT” vs. “Upper PREDICT score & Not DESNT” (p = 0.53).
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Figure 2. Differences in PREDICT score between prostate cancer samples assigned to DESNT and
those not. Samples assigned to DESNT are those where the largest proportion of expression is
explained by the expression signature of the DESNT subtype. The PREDICT score is the increase
in probability of mortality at 10 years caused by having prostate cancer defined as the non-prostate
cancer mortality minus prostate cancer specific mortality at 10 years.

Table 3. Summary of Cox proportional hazard model combining PREDICT score and DESNT score.
Endpoint is time to biochemical recurrence.

Variable IQR Hazard
Ratio (HR) HR Lower 95% CI HR Upper 95% CI p-Value

PREDICT Score 1.53 1.37 1.70 <0.0001
DESNT score 1.79 1.34 2.40 <0.0001
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Table 4. Discretisation of samples into DESNT vs. non-DESNT (based on the dominant subtype
expression signature) and upper and lower PREDICT score (split around the median PREDICT score).

DESNT Non-DESNT

Upper PREDICT 53 126
Lower PREDICT 20 160

3.3. Characterisation of the Genes and Biological Processes behind PREDICT and DESNT Scores

To biologically characterise the PREDICT score we compared the expression profiles
from samples with the top 25% PREDICT score versus the bottom 25%. We found 451 genes
to be significantly differentially expressed (287 downregulated; 164 upregulated; adjusted
p-values < 0.05; adapted t-test; Table 5; Table S1). 162 pathways or ontological terms
were found to be significantly enriched in upregulated genes and 74 with downregulated
genes (p < 0.05; Table S2). This corresponded to 63 GO biological process terms, six KEGG
pathways, and five Reactome pathways for downregulated genes, and 143 GO biological
process terms, four KEGG pathways, and 15 Reactome pathways for downregulated genes
(see Table 6 for enriched Reactome pathways).

Curr. Oncol. 2022, 29, FOR PEER REVIEW  7 
 

 

Table 4. Discretisation of samples into DESNT vs. non-DESNT (based on the dominant subtype 
expression signature) and upper and lower PREDICT score (split around the median PREDICT 
score). 

 DESNT Non-DESNT 
Upper PREDICT 53 126 
Lower PREDICT 20 160 

 
Figure 3. Kaplan–Meier plot showing the survival curves for samples grouped by DESNT and Pros-
tate PREDICT model status. Endpoint is time to biochemical recurrence (BCR). Samples are divided 
into DESNT vs. non-DESNT and upper PREDICT vs. lower PREDICT (split around the median 
PREDICT score). The “At Risk” table below the plot shows the number of patients in each group, at 
the corresponding time point, that have not had a biochemical recurrence event and have longer 
follow up than that time. The “Events” table shows the cumulative number of biochemical recur-
rence events observed in a group at that time point. 

3.3. Characterisation of the Genes and Biological Processes behind PREDICT and DESNT Scores 
To biologically characterise the PREDICT score we compared the expression profiles 

from samples with the top 25% PREDICT score versus the bottom 25%. We found 451 
genes to be significantly differentially expressed (287 downregulated; 164 upregulated; 
adjusted p-values < 0.05; adapted t-test; Table 5; Table S1). 162 pathways or ontological 
terms were found to be significantly enriched in upregulated genes and 74 with downreg-
ulated genes (p < 0.05; Table S2). This corresponded to 63 GO biological process terms, six 
KEGG pathways, and five Reactome pathways for downregulated genes, and 143 GO bi-
ological process terms, four KEGG pathways, and 15 Reactome pathways for downregu-
lated genes (see Table 6 for enriched Reactome pathways). 

Figure 3. Kaplan–Meier plot showing the survival curves for samples grouped by DESNT and
Prostate PREDICT model status. Endpoint is time to biochemical recurrence (BCR). Samples are
divided into DESNT vs. non-DESNT and upper PREDICT vs. lower PREDICT (split around the
median PREDICT score). The “At Risk” table below the plot shows the number of patients in each
group, at the corresponding time point, that have not had a biochemical recurrence event and have
longer follow up than that time. The “Events” table shows the cumulative number of biochemical
recurrence events observed in a group at that time point.
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Table 5. The top ten differentially expressed genes between the samples with the 25% highest
PREDICT scores versus the lowest 25% PREDICT scores, ranked by log2 fold change. p values
adjusted for multiple testing correction using the Benjamini-Hochberg algorithm. Whether these
genes overlap with the 51 significant differential expressed genes Luca et al. (2020) observed as
characteristic of the DESNT subtype and the differentially expressed genes for DESNT found in this
study are also shown. Full results in Table S1.

Gene Symbol log2 Fold Change p Value Adjusted p Value Overlap with Luca et al.
DESNT Genes

Overlap with
DESNT DEGs

ANPEP −1.31 1.54 × 10−8 1.33 × 10−5 TRUE TRUE
CD38 −1.02 1.25 × 10−9 2.17 × 10−6 FALSE TRUE

SLC22A3 −0.95 7.94 × 10−12 8.28 × 10−8 FALSE TRUE
NPY −0.91 2.84 × 10−4 1.32 × 10−2 FALSE FALSE

MSMB −0.89 1.22 × 10−5 1.84 × 10−3 FALSE TRUE
MT1G −0.86 4.51 × 10−7 1.54 × 10−4 FALSE TRUE
MT1M −0.85 8.34 × 10−6 1.32 × 10−3 TRUE TRUE
COMP 0.84 8.81 × 10−9 1.02 × 10−5 FALSE TRUE
KRT15 −0.77 1.66 × 10−5 2.25 × 10−3 FALSE TRUE
SFRP4 0.76 2.39 × 10−8 1.66 × 10−5 FALSE TRUE

Table 6. Reactome pathways found to be significantly enriched for significantly upregulated or
downregulated genes for PREDICT high score samples versus low score samples. Direction = whether
pathway is enriched for downregulated or upregulated genes. Full results including KEGG pathway
and GO BP terms in Table S2.

Term Name Direction p Value Term Size Intersection Size Overlap with DESNT
Enriched Terms

Cell Cycle, Mitotic Up 4.08 × 10−9 548 28 TRUE
Cell Cycle Up 2.37 × 10−8 678 30 TRUE

Mitotic G1 phase and
G1/S transition Up 3.79 × 10−5 147 12 TRUE

Integrin cell surface
interactions Up 0.002 84 8 FALSE

G1/S-Specific
Transcription Up 0.005 27 5 TRUE

Mitotic Prometaphase Up 0.006 199 11 TRUE
G1/S Transition Up 0.006 130 9 TRUE

ECM proteoglycans Up 0.008 75 7 FALSE
Cell Cycle Checkpoints Up 0.009 290 13 TRUE

Mitotic Spindle
Checkpoint Up 0.012 109 8 TRUE

M Phase Up 0.021 407 15 TRUE
Kinesins Up 0.023 60 6 FALSE

Resolution of Sister
Chromatid Cohesion Up 0.030 123 8 TRUE

Amplification of signal
from unattached

kinetochores via a MAD2
inhibitory signal

Up 0.032 92 7 TRUE

Amplification of signal
from the kinetochores Up 0.032 92 7 TRUE

Metabolism Down 0.000 2075 63 FALSE
Cholesterol biosynthesis Down 0.001 24 6 FALSE
Glutathione conjugation Down 0.009 34 6 FALSE
Response to metal ions Down 0.031 14 4 FALSE

Metabolism of lipids Down 0.046 728 27 FALSE
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4507 genes were found to be differentially expressed between DESNT vs. non-
DESNT samples (1973 downregulated; 2534 upregulated; adjusted p-values < 0.05;
adapted t-test; Table 7; Table S3). Of the 51 differential expressed genes Luca et al.
(2020) observed as characteristic of the DESNT subtype across multiple datasets (49
down-regulated, two up-regulated), all of them were differentially expressed in this
analysis and were altered in the same direction (Table S3). A much larger number of
genes were identified here as the DESNT characteristic genes reported in Luca et al. are
the overlap of differentially expressed genes from multiple different comparisons in
independent cohorts. 449 pathways or ontological terms were found to be significantly
enriched in upregulated genes and 1391 with downregulated genes (p < 0.05; Table
S4). This corresponded to 1288 GO biological process terms, 58 KEGG pathways, and
45 Reactome pathways for downregulated genes, and 373 GO biological process terms,
nine KEGG pathways, and 67 Reactome pathways for upregulated genes (see Table 8 for
the top 10 enriched Reactome pathways).

Of the 451 genes found to be characteristic of PREDICT, the majority (78%) were
also found to be differentially expressed in the same direction between DESNT vs. non-
DESNT samples (Table S1), but only 8% of DESNT differentially expressed genes were
found to be differentially expressed in the same direction between PREDICT score high
vs. PREDICT score low samples. Only 24 out of 51 characteristic DESNT genes from
Luca et al. (2020) were found to characterise PREDICT. 93 out of 236 (40%) enriched path-
ways/ontology terms were unique to the PREDICT Score (Table S2; 37% GO biological
process terms, 80% KEGG pathways and 40% Reactome pathways). Similarly, 1697 out
of 1840 (92%) enriched pathways/ontology terms were unique to DESNT (Table S4; 92%
GO biological process terms, 97% KEGG pathways and 89% Reactome pathways). Taken
together these results are suggestive that DESNT provides additional information to
PREDICT based on the underlying biological processes.

Table 7. The top ten differentially expressed genes between the samples classified as DESNT samples
versus non-DESNT samples, ranked by log2 fold change. p values adjusted for multiple testing cor-
rection using the Benjamini-Hochberg algorithm. Whether these genes overlap with the 51 significant
differential expressed genes Luca et al. (2020) observed as characteristic of the DESNT subtype and
the differentially expressed genes for PREDICT score found in this study are also shown. Full results
in Table S3.

Gene Symbol log2 Fold
Change p Value Adjusted p

Value
Overlap with Luca

et al. DESNT Genes
Overlap with

PREDICT DEGs

ANPEP −2.27 4.18 × 10−31 2.18 × 10−27 TRUE TRUE
RLN1 −1.80 4.50 × 10−14 3.19 × 10−12 FALSE FALSE
MT1M −1.62 1.45 × 10−25 3.79 × 10−22 TRUE TRUE

ALOX15B −1.44 2.85 × 10−17 4.95 × 10−15 FALSE TRUE
CD38 −1.43 1.99 × 10−23 1.59 × 10−20 FALSE TRUE

MSMB −1.42 5.48 × 10−14 3.69 × 10−12 FALSE TRUE
MT1G −1.41 3.30 × 10−19 1.04 × 10−16 FALSE TRUE

F5 1.35 1.06 × 10−19 3.56 × 10−17 TRUE TRUE
LEPREL1 −1.33 1.85 × 10−23 1.59 × 10−20 FALSE TRUE
ACTG2 −1.33 9.88 × 10−23 6.87 × 10−20 TRUE TRUE

ERG 1.31 2.26 × 10−12 9.90 × 10−11 FALSE FALSE
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Table 8. The top 10 Reactome pathways found to be uniquely significantly enriched for signif-
icantly upregulated or downregulated genes for DESNT sample status, ranked by significance.
Direction = whether pathway is enriched for downregulated or upregulated genes. Full results
in Table S4.

Term Name Direction p Value Term Size Intersection Size

Signal Transduction Down 3.94 × 10−15 2523 437
Platelet activation, signaling and aggregation Down 3.91 × 10−11 258 76

Metabolism of RNA Up 6.61 × 10−11 661 173
Translation Up 1.68 × 10−10 292 94

Response to elevated platelet cytosolic Ca2+ Down 3.61 × 10−9 130 46
Signaling by Receptor Tyrosine Kinases Down 3.99 × 10−9 502 115

Platelet degranulation Down 1.27 × 10−8 125 44
Hemostasis Down 3.12 × 10−8 672 140

DNA Replication Up 3.40 × 10−8 128 50
Extracellular matrix organization Down 3.81 × 10−8 298 77

4. Discussion

In this study we examined four large expression data sets that were taken from primary
prostate cancer samples at prostatectomy for men with prostate cancer that had not received
any other treatment. This data, along with relevant clinical data, was used as a proxy of
the biological information that could be gathered from biopsies at the time of diagnosis.
We calculated the model score from the leading clinical multivariable model, PREDICT
prostate, and the poor prognosis DESNT molecular subtype. We showed the potential for
the PREDICT Prostate clinical model to predict disease prognosis after surgical treatment of
prostate cancer. We also found that by combining the DESNT score with the PREDICT score
produced a significantly better predictor of outcome following prostatectomy. The return
of prostate cancer after prostatectomy is an indication that micrometastases were present
at the time of surgery [24]—it is estimated that up to 70% of patients have disseminated
tumour cells after prostatectomy [25]. Therefore, poor treatment response at prostatectomy
may give an indication of overall disease state. Our findings are important because it
suggests that we can make a better-informed decision at the time of diagnosis of whether
to perform radical treatment or not if molecular information is included.

For the first time the biological mechanisms behind an increased probability of mor-
tality at ten years after diagnosis caused by prostate cancer (i.e., a higher PREDICT score)
has been examined. The top 10 differentially expressed genes are the downregulation of
ANPEP, CD38, SLC22A3, NPY, MSMB, MT1G, MT1M, KRT15, & SFRP4 and upregulation
of COMP.

ANPEP was the top-ranked downregulated gene in both PREDICT and DESNT analy-
ses. Aminopeptidase N (APN) is the enzyme encoded by ANPEP that belongs to a group
of widely expressed ectopeptidases [26]. APN is multifunctional for the post-secretory
processing of neuropeptides and regulating the access of these molecules to cellular re-
ceptors. The role of APN positively associated with intracellular signalling and has been
shown to play an important role in metastasis of several malignancies, including prostate
cancer through neoangiogenesis [27–29]. Sorenson et al. (2013) observed a significant
(p < 0.001) downregulation of ANPEP expression in prostate cancer in comparison with
non- malignant prostate tissue samples [30]. The authors concluded that negative APN
immunoreactivity is a prognostic factor for patients harbouring clinically localised prostate
cancer for both recurrence-free and cancer-specific survival endpoints.

CD38 has previously been reported as a marker of the luminal cells in human
prostate [31]. Using CD38 as a marker, Liu et al. (2016) identified low expression of
the gene in a progenitor-like subset of luminal cells within the human prostate that
are capable of initiation of human prostate cancer in an in vivo tissue-regeneration
assay [32]. They also demonstrated that luminal cells with low CD38 expression are
associated with disease progression and poor survival outcome in prostate cancers.
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Neuropeptide Y (NPY) is a gene involved in various physiological and homeostatic
processes such as stress response. Liu et al. (2007) observed lower expression levels of
NPY that were associated with more aggressive clinical behaviour in prostate cancer [33].
MT1G [34], MSMB [35], SLC22A3 [36], COMP [37] and KRT15 [38] have also been associated
with aggressive and/or poor clinical outcome in prostate cancer.

Functional enrichment analysis identified many molecular pathways that were upreg-
ulated or downregulated in high PREDICT score samples. This included the upregulation
of many cell cycle related pathways, a well-known hallmark of cancer [39] and the down-
regulation of metabolism and cholesterol biosynthesis. Consistent with this result, Rye et al.
found robust and consistent downregulation of nearly all genes in the cholesterol synthesis
pathway in prostate cancer [40].

In this study we have also shown that the DESNT molecular subtype has shared and
distinct biological characteristics to the general aggressive phenotype picked up by the
PREDICT prognosis model. A much larger number of differentially expressed genes and
enriched pathways were detected. This suggests that samples assigned as DESNT have
expression profiles that are more like each other than samples with similar PREDICT scores,
and so there is greater statistically power to detect differences. Only 8% of DESNT differen-
tially expressed genes were found to be differentially expressed in the same direction in
PREDICT score high samples. There were also many distinct enriched pathways includ-
ing the downregulation of signalling pathways and extracellular matrix organisation and
upregulation of DNA replication and translation. The DESNT signature has a distinctive
biological profile, which is further evidence that it is a valid molecular subtype.

This study has several limitations. Firstly, data comes from prostatectomy samples
rather than biopsy samples at diagnosis. This confines the characteristics of the cohort and
often Gleason score is upgraded at prostatectomy [41], although prostatectomy was the
primary treatment closest to diagnosis for these patients and so is a reasonable proxy to
use. Secondly, the full power of the PREDICT model could not be utilised as full diagnostic
biopsy information was unavailable for these datasets. Thirdly, biochemical recurrence was
used as the clinical endpoint whereas metastatic disease or cancer-specific death would be
more informative—PREDICT was not developed or calibrated for biochemical relapse as
an outcome hence its performance in this setting has not previously been assessed. Finally,
compared to the tens of thousands that the PREDICT model has been validated in, the
numbers are relatively low, however we have used robust methods to compensate for
this and reported confidence intervals throughout. Despite these limitations, the results
support the notion of the potential value of including biological measurements along with
the clinical variables collected as part of the standard clinical pathway. Future studies
where transcriptome data is generated from a large series of biopsies with good quality
clinical data with long follow up would be welcomed.

There is a need for improved predictors of outcome in non-metastatic men at the
time of diagnosis to allow the optimal treatment pathway to be chosen. The inclusion
of biological information, in particular the DESNT poor prognosis molecular subtype,
alongside the best-of-breed clinical prognostic tool, PREDICT prostate, has the potential
to make this improvement. This combination has the potential to help avoid unnecessary
treatments and life-altering side-effects and improve survival in prostate cancer patients.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/curroncol30010013/s1, Table S1: Significantly differentially ex-
pressed genes between the samples with the 25% highest PREDICT scores versus the lowest 25%
PREDICT scores; Table S2: KEGG pathways, Reactome pathways, and Gene Ontology biological
processes terms found to be significantly enriched for significantly upregulated or downregulated
genes for PREDICT high score samples versus low score samples; Table S3: Significantly differentially
expressed genes between the samples classified as DESNT samples versus non-DESNT samples;
Table S4: KEGG pathways, Reactome pathways, and Gene Ontology biological processes terms
found to be significantly enriched for significantly upregulated or downregulated genes for DESNT
sample status.
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