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Abstract: Liquid biopsy through the detection of circulating tumor DNA (ctDNA) has potential
advantages in cancer monitoring and prediction. However, most previous studies in this area were
performed with a few hotspot genes, single time point detection, or insufficient sequencing depth. In
this study, we performed targeted next-generation sequencing (NGS) with a customized panel in
metastatic breast cancer (MBC) patients. Fifty-four plasma samples were taken before chemotherapy
and after the third course of treatment for detection and analysis. Paired lymphocytes were also
included to eliminate clonal hematopoiesis (CH)-related alternatives. A total of 1182 nonsynonymous
mutations in 419 genes were identified. More ctDNA mutations were detected in patients with
tumors > 3 cm (p = 0.035) and HER2(−) patients (p = 0.029). For a single gene, the distribution of
ctDNA mutations was also correlated with clinical characteristics. Multivariate regression analysis
revealed that HER2 status was significantly associated with mutation burden (OR 0.02, 95% CI 0–0.62,
p = 0.025). The profiles of ctDNA mutations exhibited marked discrepancies between two time
points, and baseline ctDNA was more sensitive and specific than that after chemotherapy. Finally,
elevated ctDNA mutation level was positively correlated with poor survival (p < 0.001). Mutations in
ctDNA could serve as a potential biomarker for the evaluation, prediction, and clinical management
guidance of MBC patients with chemotherapy.
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1. Introduction

Breast cancer is the most common cancer among women in China as well as world-
wide [1]. With progress in cancer management, most patients diagnosed in early stages
can be treated satisfactorily by surgical resection and adjuvant therapies [2]. However,
metastatic breast cancer (MBC) is still a challenge for clinicians due to the development
of drug resistance, and a decreased overall survival rate is closely linked to the incidence
of distant metastases [3,4]. MBC is a heterogeneous and dynamic disease with a range of
biological characteristics, genomic alterations, and clinical outcomes [5]. It is important
to monitor the clinical progression and therapy responsiveness during personalized treat-
ment [6]. Tumor DNA testing and analysis can provide a current assessment of mutational
profile to guide clinical therapy, although these are limited by geographical and temporal
heterogeneity [7]. Recent studies demonstrated that circulating tumor DNA (ctDNA) re-
leased from tumor cells into blood circulation, which contains a great deal of genetic and
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epigenetic information associated with cancer, is a promising biomarker to estimate cancer
prognosis and the efficacy of treatment [8–11].

Monitoring of ctDNA can be performed more easily, repeatedly, and is noninvasive
compared with that of tissue biopsy [12]. Furthermore, mutation information from all
metastatic sites is included in ctDNA, so it may reflect tumor heterogeneity more com-
pletely [13]. Studies confirmed that ctDNA sequencing could offer accurate, rapid genomic
profile of MBC that enables the selection of mutation-directed therapies for patients [14,15].
However, there are many scientific and logistical challenges for clinical applications of
ctDNA, such as the low level of ctDNA in the “sea” of cell-free DNA (cfDNA) and the
small number of validated ctDNA-based driver genes or mutations specific for MBC other
than ER, HER2, PIK3CA, and AKT1 [16]. In addition, most studies were performed with
detection of single sampling or insufficient sequencing depth due to technical and cost
limitations [17]. More data of high quality and comprehensive monitoring are essential to
support and promote the application of ctDNA for the evaluation of MBC.

In this prospective study, we designed a personalized target-capture region associated
with breast cancer. Plasma samples obtained at two time points were examined by ultrasen-
sitive, high-throughput next-generation sequencing (NGS). Meanwhile, parallel sequencing
from paired lymphocytes was performed to filter out interference by clonal hematopoiesis
(CH) variants. Analyses and comparisons were performed to identify ctDNA mutations
related to MBC progression and clinical outcome. The results will provide evidence re-
garding the clinical utility of ctDNA and potentially explore the molecular mechanism
of MBC.

2. Materials and Methods
2.1. Study Subjects and Blood Collection

Patients with pathologically diagnosed MBC between February 2017 and October 2019
were enrolled in the study. The inclusion criteria were Han Chinese women less than
70 years old who agreed to participate in this study and share their clinical information. The
exclusion criteria were a previous cancer diagnosis within the last five years and an inability
to provide adequate blood samples for NGS or undergo medical followup. A total of
27 patients receiving consecutive gemcitabine and capecitabine treatment [18] (trastuzumab
was combined for patients with HER2-positive) were included in the study population.
Followup was performed to estimate the association between ctDNA profile and prognosis.
Clinical data were obtained from the medical records and followup results. Therapeutic
effects and prognosis were evaluated according to Response Evaluation Criteria in Solid
Tumors guidelines after three courses of treatment.

Peripheral blood samples were collected in 10-mL Streck tubes at two time points: be-
fore the initiation of chemotherapy and the end of the third course of treatment (63 ± 6 days).
Samples were shipped at 4–8 ◦C to the laboratory and processed within 3 h. Plasma
(4–5 mL) and lymphocytes (150–200 µL) were isolated by centrifugation (1600× g, 4 ◦C for
10 min, and then 16,000× g, 4 ◦C for 10 min) immediately and stored at −80 ◦C.

2.2. DNA Extraction and Assessment

The cfDNA and genomic DNA (gDNA) were extracted from plasma and lymphocytes,
respectively, using a QIAamp Circulating Nucleic Acid Kit (Qiagen, Valencia, CA, USA)
and QIAamp DNA Blood Mini Kit (Qiagen), according to the manufacturer’s instructions.
The DNA concentration was quantified using a Qubit 2.0 Fluorometer with Qubit dsDNA
High Sensitivity (HS) Assay Kit (Fisher Scientific, Newark, DE, USA). An Agilent 2100 Bio-
analyzer and DNA HS Kit (Agilent Technologies, Santa Clara, CA, USA) were used to
assess the fragment length distribution. Only samples containing > 20 ng of cfDNA and
>500 ng of gDNA were processed for further analysis. All 81 DNA samples (54 cfDNA and
27 gDNA) were prepared and stored at −20 ◦C before library construction.



Curr. Oncol. 2021, 28 2328

2.3. Gene Panel Design and Target-Capture Sequencing

In this study, a personalized target panel was designed according to NCBI Build
37.1/GRCh37. Genomic exons that are frequently mutated in breast cancer or related to
chemotherapy, immunotherapy, and targeted drugs were identified by searching the COS-
MIC database, The Cancer Genome Atlas, and published studies. An iterative algorithm
was applied to maximize the number of mutations per patient while minimizing the region
size. Target panel selection involved tradeoffs between sequencing cost, sensitivity, and
coverage. Target-capture hybrid probes were custom designed through the NimbleGen
Design portal (v1.2.R1, Roche, Basel, Switzerland).

DNA libraries were prepared with a KAPA HyperPrep Kit (Kapa Biosystems,
Woburn, MA, USA), including end repair and A-tailing, adapter ligation, postligation
cleanup, library amplification, and postamplification cleanup. The DNA polymerase
displayed strong 3′→5′ exonuclease activity and a low error rate. Agencourt AMPure XP
beads (Beckman Coulter, Fullerton, CA, USA) were employed for “with-bead” enzymatic
and cleanup steps. Aliquots of 20–30 ng of plasma DNA were used directly for library
construction. For gDNA, 500–1000 ng DNA was sheared with a Covaris S2 instrument
(Boston, MA, USA) set for 200-bp fragments and then used for library construction.

Groups of four libraries were incorporated in a single capture pool. Hybridization
and target capture were performed with custom probes from the SeqCap EZ Choice Li-
brary (Roche). The captured DNA products were amplified and purified with NimbleGen
SeqCap Kits (Roche). After quality control of the DNA concentration and fragment distri-
bution, we applied targeted NGS using 2 × 75 bp or 2 × 150 bp paired-end reads on the
MiSeq Sequencing system (Illumina, San Diego, CA, USA) including a negative control in
accordance with the manufacturer’s recommendations.

2.4. Data Processing and Statistical Analysis

Software fastQC (version 0.11.9, Babraham Institute, Cambridge, UK) was used for
sequencing data quality control. Low-quality data, including N bases ≥ 50%, propor-
tion of bases with a Phred quality score ≤ 15 above 80%, or read length ≤ 30 bp, were
excluded. The terminal adaptor sequences were removed with cutadapt (version 3.0,
National Bioinformatics Infrastructure Sweden, Uppsala, Sweden). The reads were then
mapped to the hg19 reference human genome using Burrows–Wheeler Aligner (BWA,
version 0.7.17, Wellcome Trust Sanger Institute, Cambridge, UK). Genome Analysis Toolkit
(GATK, version 4.1.6, Broad Institute, Cambridge, MA, USA), Picard (version 2.22.3, Broad
Institute), and SAMtools (version 1.10, Wellcome Trust Sanger Institute) were used to call
small insertions/deletions (indels) and mutations according to the COSMIC and dbSNP
databases. Annovar (2020Apr01, University of Pennsylvania, Philadelphia, PA, USA) was
used for annotation with multiple databases.

Variations were filtered out if they had low depth < 2000× in cfDNA or <1000× in
gDNA, they were supported by less than five high-quality sequencing reads for cfDNA and
two high-quality reads for gDNA, or if they were synonymous variants, including single-
nucleotide variants (SNVs) and indels. Variants detected in the plasma DNA that were wild
type in the gDNA were considered ctDNA mutations and included for statistical analysis.

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrich-
ment analyses of the mutated genes were performed using topGO (version 2.40.0, Max
Planck Institute for Informatics, Saarbrücken, Germany), clusterProfiler (version 3.16.1,
Jinan University, Guangzhou, China) and ggplot2 (version 3.3.3, Auckland University,
Auckland, New Zealand). The associations between ctDNA mutations and clinical char-
acteristics were analyzed using SPSS 22.0 (SPSS Inc., Chicago, IL, USA) and R language
(version 4.0.3, R Foundation for Statistical Computing, Vienna, Austria). The endpoint
of clinical observation for the survival analysis was the last followup (31 October 2019)
or death. A progression-free survival (PFS) analysis was estimated by the Kaplan–Meier
method using survival (version 3.2-7, Mayo Clinic, Rochester, MN, USA) and survminer
(version 0.4.9, University of Montpellier, Montpellier, France). Survival curves with a
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hazard ratio (HR) and 95% confidence interval (CI) were plotted. The tests were two-sided,
and p < 0.05 was taken to indicate statistical significance.

3. Results
3.1. Clinical Characteristics of the Patients and Target-Capture Sequencing

The main clinical characteristics of the 27 MBC patients included in the study are
shown in Table 1. The mean age at diagnosis was 51.30 years (range, 33–68 years). Most
patients had infiltrating ductal carcinoma with lymph node, bone, or hepatic metastasis. In
total, 14 (51.8%) patients had a maximal tumor diameter > 3 cm, and 11 (40.74%) patients
gave birth three or more times. The proportions of ER(+), PR(+), and HER2(+) cases were
62.96%, 59.26%, and 62.96%, respectively.

Table 1. Clinical characteristics of MBC patients.

Characteristics N (%)

Diagnostic age (years) Mean (rang) 51.30 (33–68)
Menarche age (years) Mean (rang) 14.33 (11–19)

ER status ER(+) 17 (62.96%)
PR a status PR a (+) 16 (59.26%)

HER2 status HER2(+) 17 (62.96%)
* HER2(+) only 7 (25.93%)

Menopause YES 11 (44.44%)
Size of tumor >3cm 14 (51.85%)

≤3cm 13 (48.15%)
T stage T3 4 (14.81%)

T4 23 (85.19%)
N stage N2 6 (22.22%)

N3 21 (77.78%)
M stage M1 27 (100.00%)

Metastatic sites Lymph nodes 24 (88.89%)
Pulmonary 9 (33.33%)

Hepatic 14 (51.85%)
Bone 15 (55.56%)
Brain 1 (3.70%)

Parturitions ≥3 11 (40.74%)
<3 16 (59.26%)

Therapeutic effect PR b/SD 16 (59.26%)
PD 11 (40.74%)

ER: estrogen receptor; a PR: progesterone receptor; HER2: human epidermal growth factor receptor 2; b PR:
partial remission; SD: stable disease; PD: progressive disease; * ER(−), PR(−), and HER2(−).

After running an iterative algorithm with multiple databases and optimization by the
NimbleGen Design portal (Roche), we selected a custom panel covering 119.20 kb of the
genome. The panel included 961 exons of 835 common driver genes distributed over all
chromosomes. Details of the target-capture panel are presented in Table S1. DNA was
successfully extracted from all 81 samples and qualified for target-capture sequencing.
We obtained an average of 810.45 Mb (range 303.08–1424.64 Mb) and 403.28 Mb (range
183.51–789.27 Mb) of high-quality data for the cfDNA and gDNA samples, respectively.
The average sequencing depths for cfDNA and gDNA were 6799× (range 2543–11,952×)
and 3383× (range 1540–6621×), respectively.

3.2. Identification of ctDNA Mutations and Related Genes

Some mutations originating from CH-related variants in lymphocytes can also be
traced in cfDNA, which may interfere with the analysis of ctDNA. After the comparison
and elimination of CH variants, we identified 1182 nonsynonymous mutations from all
samples, including frameshift indels, stopgains, and SNVs. They were distributed in
419 genes on all chromosomes (as illustrated in Figure 1a). All patients had mutations in
FRG1, AQP7, and DNAJC11. Mutations were detected most frequently in FRG1, and the
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highest mutation burden was seen in MUC16 with 58 mutations. The top 20 genes most
frequently mutated in the ctDNA are shown in Figure 1b. Some typical cancer-related
genes such as TP53, PIK3CA, MAPK3K1, KRAS, and PTEN were also included. The number
of ctDNA mutations varied markedly between patients (range 38–171, mean 79.96).
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Figure 1. Profiles of ctDNA mutations identified. (a) Distribution of ctDNA mutations on all
chromosomes. Height of each column represents number of mutations. (b) Mutation burden of
ctDNA in top 20 genes for 27 MBC patients. Number of mutations in each gene and patients are
listed right and top, respectively.

To evaluate the influence of biological features by ctDNA mutations, GO and KEGG
enrichment analyses were conducted for the mutated genes from three subsets (overall,
baseline, and after chemotherapy). The results of GO analysis revealed that 124, 107, and
91 genetic functions were affected in three subsets, respectively (as illustrated in Table S3).
For baseline mutations, 42, 33, and 32 subjects were significantly related to biological
process (BP), cellular component (CC), and molecular function (MF), respectively. The
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numbers were 33, 38, and 20 for mutations after chemotherapy. The top ten subjects of each
part were selected for further comparison and analysis according to statistical significance.
It revealed that 2, 7, and 6 subjects were coaltered in all three subsets and correlated with BP,
CC, and MF, respectively, including regulation of cellular component size, cation channel
complex, and calmodulin binding. There were more discrepancies among the three subsets
according to BP enrichment than that of CC and MF (as illustrated in Figure S1).

On KEGG analysis, 96, 97, and 108 pathways were enriched in the baseline, after
chemotherapy, and overall subsets, respectively (as illustrated in Table S4). Among the
top ten pathways, six were included in all three subsets (i.e., small cell lung cancer, EGFR
tyrosine kinase inhibitor resistance, endometrial cancer, PI3K-Akt signaling pathway,
endocrine resistance, and cholinergic synapse; as illustrated in Figure 2). Most pathways
were typical and indeed meaningful for cancer development, progression, or therapeutic
response. The results revealed no significant discrepancies in overall enriched pathways
among the three subsets.
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Growth hormone synthesis, secretion and action
Endometrial cancer
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Small cell lung cancer
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Figure 2. KEGG analyses for mutated genes from three subsets. (a) Enriched pathways for overall mutated genes.
(b) Enriched pathways for baseline mutated genes. (c) Enriched pathways for mutated genes after chemotherapy. Top
10 pathways were shown. Length of each column indicates number of enriched genes, and color of bars represents
statistical significance.
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3.3. Distribution of Gene Mutations and Clinical Characteristics

The patients were divided into different groups according to their clinical character-
istics for further analysis. The results show that the ctDNA mutations were significantly
associated with tumor size and HER2 status. Patients with tumors > 3 cm carried more
mutations than those with tumors ≤ 3 cm (92.29 vs. 66.69, respectively, p = 0.035), while
HER2(+) patients carried fewer mutations than HER2(−) patients (68.65 vs. 99.20, re-
spectively, p = 0.029). For single genes, the mutation profiles of ctDNA also exhibited
discrepancies. We selected the top 20 genes for further analysis. The results show that mu-
tations in AQP7 and PTEN were significantly increased in patients with a poor therapeutic
effect showing PD (p < 0.05). PIK3CA mutations occurred more frequently in patients
with tumors > 3 cm (p = 0.039). The same was also observed for DNAJC11, MAP3K1, and
PGAP1 in patients with late menarche (≥14 years) and KRAS in older patients (age at
diagnosis > 51 years, p < 0.05) (as illustrated in Table S2).

A multivariate regression analysis was conducted to examine the relations between
mutation burden and clinical parameters (as illustrated in Table 2). The results showed that
ctDNA mutations were significantly associated with HER2 status. Patients with HER2(+)
carried fewer mutations than HER2(−) patients (OR 0.02, 95% CI 0–0.62, p = 0.025). No
significant associations were found for other characteristics.

Table 2. Multivariate regression analysis of relationship between ctDNA mutations and clinical
parameters.

Factors Coefficient (SE) Adjusted OR 95% CI p Value

Diagnostic age 0.12 0.92 0.73–1.16 0.475
Menarche age 0.41 1.57 0.70–3.55 0.274

ER status, ER(+) vs. ER(−) 2.29 2.51 0.03–222.34 0.687
PR a status, PR a (+) vs. PR a (−) 2.07 0.07 0–4.30 0.210

HER2 status, HER2(+) vs. HER2(−) 1.70 0.02 0–0.62 0.025
Menopause, YES vs. NO 2.02 1.48 0.03–77.85 0.847

Size of tumor, >3 cm vs. ≤3 cm 1.55 10.28 0.50–213.38 0.132
Parturitions NO. ≥3 vs. <3 0.50 1.02 0.38–2.72 0.965

Therapeutic effect, PR b/SD vs. PD 1.33 4.26 0.31–58.24 0.277

ER: estrogen receptor; a PR: progesterone receptor; HER2: human epidermal growth factor receptor 2; b PR:
partial remission; SD: stable disease; PD: progressive disease.

3.4. Dynamics of ctDNA Mutations during Chemotherapy

A total of 768 ctDNA mutations were detected in 302 genes at baseline, which de-
creased to 633 in 291 genes after three courses of treatment. The mean number of mutations
for each patient also decreased after chemotherapy (50.93 vs. 46.59, respectively). To
examine the dynamic changes, we compared the distribution of ctDNA mutations in
genes before and after chemotherapy (as illustrated in Figure 3). The mutations reduced
sharply after chemotherapy for MUC16, NCOR1, TTN, PIK3R1, and TP53. In contrast, more
mutations were detected after chemotherapy for MYO6, FLNC, FMN2, CDH1, and RHO.

An analysis based on clinical information showed different mutation patterns in
plasma DNA between baseline and after chemotherapy (as illustrated in Table S2). For
baseline ctDNA, mutations in PTEN increased significantly in patients with PD compared
to that of patients with PR/SD (p = 0.028). More mutations were detected in gene PIK3CA
in patients with tumors > 3 cm (p = 0.039), in MAP3K1 and PGAP1 in patients with late
menarche (≥14 years, p = 0.006 and 0.008, respectively), and in KRAS in older patients
(age > 51 years, p = 0.018). These associations were consistent in all samples, but not in
samples obtained after treatment. In addition, fewer ctDNA mutations were found in
AQP7 in PR(+) patients (p = 0.023), and in KRAS and PIK3CA in HER2(+) patients (p = 0.041
and 0.030, respectively). In ctDNA after chemotherapy, the number of mutations decreased
significantly in TP53 in both HER2(+) and PR(−) patients (p = 0.011 and 0.024, respectively).
Mutations in LUC7L2 were also strongly associated with HER2(−) status (p = 0.020).
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3.5. ctDNA Mutations and Clinical Outcomes

A Kaplan–Meier analysis was performed to explore risk factors correlated with PFS,
defined as the duration from first sampling to first disease progression. The mean PFS was
537 days (range, 324 to 823 days). All patients were stratified with the mean number of
ctDNA mutations at the threshold. The results indicated that HER2 status, therapeutic
effect, and number of ctDNA mutations exhibited significant associations with PFS (as
illustrated in Figure 4). HER2(+) patients had significantly longer PFS compared with that
of HER2(−) patients (adjusted HR 0.26, p = 0.038), but PD was related to shorter PFS than
PR/SD (adjusted HR 6.54, p = 0.001). Patients carrying more ctDNA mutations overall and
in baseline plasma both had poor PFS rates (p < 0.001). No associations were found for
other clinical characteristics and mutations in ctDNA after chemotherapy.
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4. Discussion

In clinical practice, the diagnosis and evaluation for breast cancer are based on tissue
biopsy with immunohistochemical and cytogenetic tests, but it is invasive and difficult
to perform multiple sampling [19,20]. Carcinoembryonic antigen (CEA) and cancer anti-
gen 15-3 (CA15-3) are also used extensively as predictive marker [21]. However, it was
demonstrated that only 7.2% and 12.3% of patients exhibited significantly elevated serum
CEA and CA15-3 levels, respectively, among Chinese women [22]. Therefore, there is
a need for more convenient and specific genetic markers of breast cancer. As ctDNA is
double-stranded nucleic acid shed by tumor cells into the circulating blood, it should
contain all of the genetic information present in tumor tissue and could capture both spatial
and temporal heterogeneity of tumors [23,24]. The application of ctDNA-based real-time
liquid biopsy represents a noninvasive and highly sensitive biomarker for cancer diagnosis,
early prediction, and therapeutic response assessment [8,25–27]. Although there were
many studies regarding ctDNA and breast cancer, some challenges and limitations remain
for its clinical implementation, including the identification of specific driver mutations for
the multiple demands of breast cancer management, the high costs of detecting the low
proportion of ctDNA in the “sea” of normal DNA, and the development of standardized
methods for data processing [16,28,29]. The development of NGS and bioinformatics pro-
vided new opportunities for the establishment and validation of specific panels of mutation
biomarkers for routine clinical use in breast cancer management [30,31].

The prevalence of mutations in ctDNA was strikingly similar to that of matched
tumor DNA, and they were more often detected in patients with advanced or metastatic
cancer [32]. However, most studies to date focused only on a limited repertoire of genes,
and they also varied in the quality of samples and sequencing data [33]. In this study,
we performed target-capture NGS, which is more sensitive and specific than traditional
sequencing, to detect and evaluate the ctDNA in MBC patients. In our cohort, 1182 non-
synonymous mutations in 419 genes were identified. More attention should be paid to
some frequently mutated genes, including FRG1, AQP7, DNAJC11, and MUC16, in future
studies. Mutations were detected in genes closely associated with cancer development,
progression, or therapeutic response.

Mutations in ctDNA could reflect intratumoral heterogeneity and disease processes [34,35].
The mutation burden was therefore associated with clinical parameters, representing the
phenotype of cancer development [32,36]. We hypothesized that patients with “risk” clini-
cal factors for breast cancer should harbor more mutations [37]. As predicted, our statistical
analysis showed that an elevated ctDNA mutation burden was positively correlated with
large primary tumor size, HER2(−) status, and poor survival outcome. These were all
detrimental to cancer management. In addition, this study suggests that ctDNA muta-
tions could be used as potential biomarkers for the evaluation and prediction of MBC to
guide clinical management. Mutations in baseline ctDNA were more effective than those
after chemotherapy.

The remarkable advantages of this study are the use of a custom-designed panel
with broad coverage, standardized sequencing with high depth, sampling at two time
points, and parallel sequencing to eliminate the interference of CH variants. However,
this study also has some limitations. First, the sample size was small due to the lack of
willingness among MBC patients to supply adequate amounts of blood. Some patients
did not agree to participate in genomic testing even though it was provided without cost.
Another limitation was the lack of paired tumor tissue samples, which are helpful for
verifying the mutations in ctDNA. These limitations restricted further analysis. Despite
these limitations, our study contributes to the identification of MBC-related mutations
and strengthens the evidence for the clinical applicability of ctDNA detection. Subsequent
studies with larger numbers of participants and more complete information are already in
progress in our laboratory.



Curr. Oncol. 2021, 28 2335

5. Conclusions

Mutations in ctDNA were successfully detected in MBC patients by targeted NGS.
The mutation burden was significantly associated with clinical factors such as age at
diagnosis, tumor size, hormone receptor status, therapeutic effect, and survival. The results
suggested that ctDNA could be used as a potential biomarker to evaluate and predict the
progression and treatment outcomes of MBC, though more data were needed to optimize
the evaluation system.
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