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Abstract: Ageing represents a main risk factor for several pathologies. Among them, cardiovascular
diseases (CVD) and type 2 diabetes mellitus (T2DM) are predominant in the elderly population and
often require prolonged use of multiple drugs due to their chronic nature and the high proportion of
co-morbidities. Hence, research is constantly looking for novel, effective molecules to treat CVD and
T2DM with minimal side effects. Marine active compounds, holding a great diversity of chemical
structures and biological properties, represent interesting therapeutic candidates to treat these age-
related diseases. This review summarizes the current state of research on marine compounds for the
treatment of CVD and T2DM, from pre-clinical studies to clinical investigations and approved drugs,
highlighting the potential of marine compounds in the development of new therapies, together with
the limitations in translating pre-clinical results into human application.

Keywords: ageing; cardiovascular disease; type 2 diabetes mellitus; marine compounds; in vivo
studies; clinical trials

1. Introduction

The rapid global rise in the elderly population and in life expectancy [1,2] underscores
the necessity to find new strategies to improve the health of older individuals. This includes
a continuous pursuit of new molecules to effectively target the main age-related pathologies
with minimal side effects.

In this context, interesting drug candidates could come from the sea, representing a
large reservoir of structurally different molecules with unique chemical features derived
from the exceptionally high biodiversity of the marine environment. This allows for a
high diversity of mechanisms of action and, consequently, of biological targets. Among
the plethora of marine molecules, different mechanisms of action and pharmacological
properties have been described, which are periodically updated and range from antibacte-
rial, antifungal, antiprotozoal, antituberculosis, antiviral, antidiabetic, anti-inflammatory,
and anticancer activities to those affecting the immune and nervous systems, as well as
numerous miscellaneous mechanisms of action [3].

Since the first marine molecule was commercialised in 1969 for the treatment of
leukaemia (i.e., cytarabine, derived from a marine sponge), a total of thirteen sea-derived
drugs have been approved in the EU and/or USA, most of which target tumour pathologies
(ten), and the remaining ones are used to treat viral infections, chronic pain, and hyper-
triglyceridemia [4]. Moreover, several marine-derived compounds are currently under
clinical trials, namely four in Phase III, eight in Phase II, and twenty in Phase I [4].
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This review summarises the current advancement in the field of marine bioactive com-
pounds for the treatment of two of the main age-related diseases, cardiovascular diseases
(CVD) and Type 2 diabetes mellitus (T2DM). These pathologies are closely related since
they display common risk factors such as obesity, dyslipidemia, inflammation, and ageing.
Moreover, T2DM could predispose to the development of CVD, and patients affected
by T2DM develop cardiovascular problems in a higher proportion than normoglycemic
people [5]. The review will consider the potentiality of marine molecules at various stages
of the research and approval process, from in vivo pre-clinical studies to more advanced
stages, including molecules entered into clinical trials and approved drugs. Finally, com-
mon mechanisms of action will be discussed, as well as the challenges to face in accelerating
the translation process towards clinical application.

2. Marine Compounds and Cardiovascular Disease

Ageing is characterised by a decline in cardiovascular functionality, including al-
tered function of the left ventricle, decreased heart rate, arrhythmias, cardiac hypertro-
phy and fibrosis, increased stiffness and thickening of arterial vessels, and endothelial
dysfunction [6]. The frequency of CVD rises with advanced age, with an incidence of
35–40% in 40–60-year-old people, 77–80% in 60–80-year-old people, and over 85% in people
>80 years old [7]. CVD is still the main cause of death in people over 70 worldwide [8].
Ageing is the primary cause of age-related CVD, serving as an independent risk factor for
the development of atherosclerosis, thrombosis, myocardial infarction, stroke, and coronary
artery disease [9–11]. Hypertension and hyperlipidemia, which are other important risk
factors for CVD, are also strongly associated with ageing [12,13]. Currently, the most
common and effective drugs for the treatment of CVDs are statins (used to lower choles-
terol and prevent atherosclerosis), the anticoagulant heparin, and anti-hypertensives such
as angiotensin-I-converting enzyme (ACE) inhibitors, calcium channel blockers, and β-
adrenergic blocking agents. However, their use is not devoid of adverse effects [14]. Hence,
the discovery of alternative therapies with reduced side effects is desirable, leading to an
increasing interest in the efficacy of marine-derived compounds against CVDs. In vitro
studies demonstrated hypolipidemic, anti-hypertensive, anticoagulant, and antiplatelet
effects for many marine molecules, including organic small molecules, lipids, bioactive
peptides, and sulfated polysaccharides [15–17]. Marine products with anti-atherosclerotic,
anti-thrombotic, and cardiovascular protective effects in vivo, as well as anti-hypertensive
and hypolipidemic activities, will be discussed in this paragraph.

2.1. Pre-Clinical In Vivo Studies on Marine Compounds for CVDs Treatment

Increasing pre-clinical studies have demonstrated the efficacy of a considerable num-
ber of marine compounds in the treatment of atherosclerosis, being able to significantly
reduce atherosclerotic plaque size and/or progression in mouse, rat, or rabbit models [18,19]
(Table 1). Such an anti-atherosclerotic effect was often associated with a reduction in plas-
matic levels of lipids and/or pro-inflammatory molecules, but the upstream mechanism
of action is likely different for each of these compounds. Among them, the most widely
studied are undoubtedly the polysaccharides fucoidan, derived from brown algae, and
the xanthophyll carotenoid astaxanthin, mostly derived from microalgae, krill, and crus-
taceans. The fucoidan effect against atherosclerosis was extensively proved in mice by
distinct studies, where attenuation of atherosclerosis was paralleled by reduced serum
lipid levels, inflammation, and oxidative stress [20–23]. The proposed mechanism of ac-
tion of fucoidans includes anticoagulant, antithrombotic, antioxidant, anti-inflammatory,
cholesterol-lowering, and endothelial protection activities [24]. However, when orally ad-
ministered, most of these effects can be mediated by their capacity to modulate the intestinal
microbiota composition and nutrient absorption [25]. Fucoidan can also induce autophagy
in foam cells, which are implicated in the development of atherosclerotic plaques, conse-
quently decreasing their buildup of pro-atherogenic lipids [26]. The anti-atherosclerotic
effect of the carotenoid astaxanthin was demonstrated in different animal models, showing
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a reduction in the area of aortic atherosclerotic plaques in rats and mice [27,28], as well as
plaque stabilisation in rabbits [29], with improvements in lipid metabolism, inflammation,
and oxidative stress. Astaxanthin can integrate into cell membranes, offering stability and
direct protection against oxidative damage [30]. Astaxanthin not only exerts its influence
on multiple biological defence mechanisms through its potent antioxidant activity but also
plays a role in maintaining and augmenting mitochondrial function. This is achieved by
directly modulating the AMPK/sirtuins/PGC-1α pathway, among others [31,32].

More recently, the sea cucumber saponins have received considerable attention as anti-
atherogenic marine compounds, promoting plaque regression and exerting a lipid-lowering
effect in mice [33,34]. The amphipathic nature of saponins enables them to directly interfere
with the uptake and processing of lipids and to interact with cell membranes, disrupting
their structure and altering their permeability [35]. Likely, sea cucumber saponins may be
able to target cells involved in inflammation and the formation of atherosclerotic plaque;
indeed, some saponins were observed to reduce cholesterol esters content in macrophage
foam cells [36].

Marine-derived molecules capable of reducing atherosclerotic lesions in vivo include
a diverse array of chemical structures and mechanisms of action. Manzamine A, an alka-
loid sourced from marine sponges, showed acyl-coenzyme A:cholesterol acyl-transferase
(ACAT) inhibitory activity and reduced cholesterol ester accumulation in macrophages,
attenuating the formation of foam cells [37]. Further, it displays root mechanisms such as
antiproliferative and cytotoxic effects [38]. Manzamine A has been shown to decrease the
level of Bcl-2, causing mitochondrial membrane potential (∆ψm) loss and enhancing the
activity of caspase-3 and caspase-7, inducing the release of CytC in HCT116 cells [39,40].
Note that manzamine A also presents anti-viral effects [36], which is particularly interesting
considering that age-related cardiovascular diseases are frequently reported to be associ-
ated with certain bacterial and viral infections [41]. Conversely, saringosterol, a phytosterol
derived from the marine algae Sargassum fusiforme, acts as a potent activator of the liver X
receptor β, involved in cholesterol absorption, transport, and elimination [42]. Thus, it may
impact the metabolism of lipids with a distinctive cellular target and specific metabolic
transformation, inducing further pharmacological effects.

Asperlin, mycoepoxyedien, and xyloketal B, representing polyketide secondary metabo-
lites and a polyphenolic compound, are all derived from marine fungi. The first two
compounds, known for their antiviral and cytotoxic activities, exert an anti-inflammatory
effect that inhibits the formation of macrophage foam cells [43,44]. Xyloketal B, known
for its antioxidant and anti-inflammatory properties, showed endothelial-protecting ac-
tivity through the regulation of the Akt/eNOS pathway [45]. In an in vitro model using
human umbilical vein endothelial cells (HUVECs) to mimic oxidised low-density lipopro-
tein (oxLDL)-induced endothelial injury, pre-treatment with xyloketal B greatly reduced
the formation of superoxide anion generated by oxLDL as well as the mRNA expression
of the NADPH oxidase subunits gp91phox and p47phox [36,46]. These results suggest
that xyloketal B reduces the generation of reactive oxygen species (ROS) by blocking the
action of NADPH oxidase and reducing the expression of its subunits on mRNA. Similarly,
xyloketal B stimulated the release of NO by re-establishing the equilibrium between ROS
and NO, which in turn prevented the formation of peroxynitrite after oxLDL damage.

Caulerpin, a secondary metabolite isolated from the invasive algae Caulerpa cylindracea,
has been suggested as a possible hypolipidemic and anti-atherogenic compound. An in
silico analysis demonstrated that caulerpin is an agonist of the peroxisome proliferator
activated receptor alpha (PPARα), which is a key regulator of lipid metabolism, and
caulerpin was able to upregulate PPARα target genes in vitro and in vivo [47].

Also, peptides from salmon protein hydrolysate (SPH) contribute to this varied arsenal
of bioactive anti-atherosclerotic compounds [48]. Parolini and coworkers demonstrated
that SPH supplementation is able to reduce atherosclerotic plaque area in apo E−/− mice
fed with a high fat diet, reducing the plasma concentrations of IL-1β, IL-6, TNF-α, and
GM-CSF, whereas plasmatic triacylglycerols and cholesterol remained unaltered, as well as
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mitochondrial fatty acid oxidation or ACAT activity. This study demonstrated that the SPH
diet, which acts at both the vascular and systemic levels, decreases atherosclerosis without
a direct correlation with changes in plasma lipids or fatty acids, but is able to influence the
inflammatory responses [48].

The marine environment offers a plethora of molecules that are interesting for the
development of novel antithrombotic drugs (Table 1). Antithrombotics include anticoagu-
lants (that prevent fibrin strand formation), anti-platelets (that inhibit platelet aggregation),
and fibrinolytic/thrombolytic (that dissolve the thrombus once formed) drugs; their ma-
jor side effect still remains the augmented risk of bleeding. Intravenous administration
of fucoidan as well as oral administration of its low-weight modified form were shown
to have anticoagulative and antithrombotic effects, preventing microvascular thrombus
formation and delaying complete vascular occlusion in mice, with no obvious side effects
as well [23,49]. This is not surprising, since fucoidan shows a high affinity for fibroblast
growth factor-2 (FGF-2, a potent atherogenic factor) like heparin and thus can protect
FGF-2 from inactivation [50]. Some sulfated glycans from algae or sea urchin species (in
particular 2-sulfated galactan) demonstrated an antithrombotic effect in rats by promoting
the reduction of thrombus weight, together with anticoagulant and anti-platelet properties
in vitro, without side effects such as hypotension and bleeding [51]. Several studies sug-
gest that their main mechanism of action may involve the direct inhibition of coagulation
factors [51,52].

Inhibition of thrombosis and antiplatelet properties were also demonstrated in mice for
the alkaloid fascaplysin (derived from a marine sponge), the triterpenoid frondoside A (a
saponin from sea cucumbers), and the crab peptide tachyplesin I, the latter with no observed
toxicity [53–55]. Fascaplysin and frondoside A reduce platelet activation by inhibiting the
PI3K/Akt pathway and glycoprotein (GP)IIb/IIIa [53,54], and frondoside A is also known
to stimulate the lysosomal activity of macrophages [56]. Tachyplesin I, in addition to
inhibiting platelet aggregation and thrombosis by interfering with the PI3K/AKT pathway,
is also widely studied for its antiviral and antimicrobial effects, which may be relevant
considering that thrombosis is also a common consequence of infections [55,57].

The marine yeast-derived R-/S-2-(2-Hydroxypropanamido) benzoic acid (R-/S-HPABA)
and the extracts of the alga Eisenia bicyclis were shown to reduce thrombus weight in rats
and/or mice and exert a strong inhibition of platelet aggregation in vitro [58,59]. These
effects appear to be mediated through distinct mechanisms: R-/S-HPABA likely inhibits
cyclooxygenase-1 (COX-1) activity and thromboxane B2 (TXB2) formation, while Eisenia
extracts reduce P2Y12 downstream signalling, a process crucial in platelet activation and
aggregation [58,59].

Recently, a novel marine protease called SK was isolated from the marine worm
Sipunculus nudus. SK, which belongs to the serine protease family, reduced thrombus
weight in rats by exerting fibrinolytic and fibrinogenolytic activities and inhibiting platelet
aggregation [60].

Marine compounds may also have a role in the treatment of myocardial infarction
(Table 1). Omega-3 polyunsaturated fatty acids (PUFA) from fish oil (eicosapentaenoic, EPA,
and/or docosahexaenoic acid, DHA) were shown to reduce the infarct size in rats, rabbits,
and pig models [61], while a pre-treatment with omega-3 from krill oil reduced left ventricle
dilatation and remodelling after induction of myocardial infarction in rats [62]. These long-
chain polyunsaturated fatty acids can stabilise the cell membrane and neutralise extracellu-
lar ROS through their conjugated double bonds [63]. These properties also underlie their po-
tential for providing endothelial protection and manifesting anti-inflammatory properties.

Echinochrome A, a pigment found in sea urchin needles (registered in the Russian phar-
macopoeia as Histochrome®), prevented chronic heart failure (left ventricle dysfunction)
after myocardial infarction in mice [64] and attenuated myocardial ischemia/reperfusion
injury and cerebral ischemic injury in rats [65,66]. This effect has been partly attributed to
the prevention of sulphide catabolism-mediated oxidative stress [64] and to the reduction
of fibrosis area [67]. Further, it was reported that echinochrome A effectively boosted
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mitochondrial mass and oxidative phosphorylation in rat cardiomyoblast H9c2 cells, lead-
ing to a notable enhancement in mitochondrial energy efficiency. This improvement was
attributed to the modulation of key regulatory genes involved in mitochondrial biogenesis,
such as PGC-1α and NRF-1 [68]. Moreover, echinochrome A possesses therapeutic poten-
tial to mitigate the adverse cardiotoxic effects induced by clinically utilised drugs such as
SNP and Dox. It was reported that echinochrome A effectively prevented mitochondrial
dysfunction and the activation of MAPK cell death signalling pathways triggered by the
administration of cardio/mitotoxic drugs in rat cardiac myoblast H9c2 cells and isolated
rat cardiomyocytes [69].

As regards hypertension, many marine peptides have shown ACE-inhibitory activity
in vivo without evident side effects [70] (Table 1). Peptides from hydrolysates of tuna
muscle or frame, sea bream scales, Styela clava tunicate, Acaudina molpadioidea sea cucumber,
and from the algae Gracilariopsis lemaneiformis and Undaria pinnatifida were all able to
decrease blood pressure in a spontaneously hypertensive rat model [71–77].

Hypertensive rat treatment with fucoidan resulted in a persistent reduction of high
blood pressure, with mechanisms that might involve an endothelial-protective function
mediated by the Akt-eNOS signalling pathway [78]. In addition, the algal polysaccharides
alginate, in both potassium and sodium form, has established anti-hypertensive activity,
as demonstrated in spontaneous and induced rat models of hypertension [79–83], both
as a scaffold for potassium delivery [79] and as an active molecule [80–83]. This effect
was associated with low cardiovascular and renal damage [81] and downregulation of
heart failure markers [82], and is likely due to a modulation of the gut microbiota and an
improvement of the gut barrier [82,83] (Table 1).

Table 1. Marine compounds showing cardiovascular effects in pre-clinical in vivo studies and related
mechanisms of action.

Marine Compound Source CVD Model Effects Mechanisms Positive Control Ref.

Astaxanthin Microalgae, crustaceans

Rat, high fat diet;
Mice, ldlr−/− and Apoe−/− ;

Rabbits, Watanabe
heritable hyperlipidemic

Anti-atherosclerotic,
hypolipidemic,

atherosclerotic plaque
stabilization

Decrease macrophage
infiltration

decrease apoptosis, antioxidant
Atorvastatin [27,29]

Manzamine A
Sea sponge

Acanthostrongylophora
ingens

Mice, Apoe−/− Anti-atherosclerotic,
hypolipidemic

Inhibition of ACAT cholesterol
esters decrease (macrophages),
foam cell formation decrease

Absent [37]

Saponins Sea cucumber Mice, Apoe−/− Anti-atherosclerotic,
hypolipidemic

Regulation of hepatic
cholesterol efflux, change in

microbiota, anti-inflammatory
Simvastatin [33,34]

Saringosterol Brown algae
Sargassum fusiforme Mice, Apoe−/− Anti-atherosclerotic,

hypolipidemic

LXRβ inhibition, cholesterol
efflux increase, foam cell

formation decrease, choloesterol
catabolism increase

T0901317 (LXR
agonist) [42]

Xyloketal B Marine fungus
Xylaria sp. Mice, Apoe−/−

Anti-atherosclerotic,
endothelial function

improvement

Regulation of the Akt/eNOS
pathway, decrease vascular

oxidative stress
Simvastatin [45]

Mycoepoxydien Marine fungus
Diaporhte sp. Mice, Apoe−/− Anti-atherosclerotic

Foam cell formation decrease,
NF-κB pathway inhibition,

anti-inflammatory
Absent [44]

Asperlin Marine fungus
Aspergillus versicolor Mice, Apoe−/− Anti-atherosclerotic

Cholesterol efflux increase
(macrophages), foam cell

formation decrease,
anti-inflammatory

Simvastatin [43]

Fascaplysin Sponge
Fascaplysinopsis

Mice, photochemically-induced
thrombosis

Antithrombotic,
antiplatelet

Inhibition of PI3K signalling
and glycoprotein IIb/IIIa Heparin [54]

Frondoside A Sea cucumber
Cucumaria frondosa

Mice, photochemically-induced
thrombosis Antithrombotic

Inhibition of PI3K/Akt
signalling and

glycoprotein IIb/IIIa
Clopidogrel [53]

Tachyplesin I Crab
Tachypleus tridentatus

Antithrombotic,
antiplatelet

Regulation of PI3K/Akt
signalling n.a. [55]

R-/S-2-(2-
Hydroxypropanamido)

benzoic acid
(R-/S-HPABA)

Marine fungus
Penicillium chrysogenum

Mice, collagen-epinephrine
induced thrombosis;

Rats, carotid
artery-induced thrombosis

Antithrombotic,
antiplatelet COX1 inhibition, TXB2 decrease Aspirin [58]

Echinochrome A Sea urchins

Rat, middle cerebral artery
occlusion model;
Rats, myocardial

ischemia-reperfusion model;
Mice, coronary artery ligation

Cerebral infarct volume
reduction,

cardioprotective
(reduced infarct size,

heart fibrosis,
remodeling and

dysfunction)

Regulation of Akt/ERK
pathway and BDNF, regulation

of apoptosis and ferroptosis,
antioxidant, prevent reactive

sulfur species catabolism

Absent [64–66]
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Table 1. Cont.

Marine Compound Source CVD Model Effects Mechanisms Positive Control Ref.

Fucoidan
Brown algae e.g.,

Saccharina japonica,
Undaria pinnatifida

Hyperlipidemic mice,
P407-induced;

Mice, Apoeshl (spontaneously
hyperlipidemic);
Mice, ldlr−/− ;

Mice, photochemically-induced
thrombosis;

Rats, l-NAME-induced
hypertensive;

Mice, Apoe−/−

Anti-atherosclerotic,
hypolipidemic, hepatic

steatosis reduction,
endothelium-

protective,
anti-thrombotic,
anticoagulative,

anti-hypertensive

Regulation of hepatic SREBP-2,
PPARa pathway activation,

antioxidant (inhibition of eNOS,
NOX-4, ICAM-1, VCAM-1),
PI3K/Akt/eNOS pathway
activation, FGF and VEGF

pathways regulation, inhibition
of vascular cells

proliferation, anti-inflammatory

Atorvastatin,
probucol, heparin

[20–23,49,
50,78]

Sulphated glycans
Sea urchin

Lytechinus variegatus,
Echinometra lucunter

Rats, tromboplastin-induced
thrombosis

Anti-thrombotic,
anticoagulative Unidentified Heparin [51]

Potassium alginate Brown algae

Rats, DOCA salt-induced
hypertensive;

Rats, spontaneously
hypertensive

anti-hypertensive

Increased potassium levels and
sodium excretion, decreased
angiotensin II and natriuretic
peptide levels, modulation of

gut microbiota

KCl, captopril [79,82]

Sodium alginate Brown algae
Saccharina japonica

Rats, spontaneously
hypertensive;

Rats, salt-induced;
Rats, renovascular

hypertensive (2K1C)

Anti-hypertensive,
prevent kidney damage,
reduced cardiac fibrosis

Decrease fractional sodium
excretion, modulation of

gut barrier
Absent [80,81,83]

Protease Marine worm
Sipunculus nudus Rats, FeCl3-induced thrombosis Antithrombosis,

anticoagulant
Fibrinolytic and

fibrinogenolytic activities Urokinase [60]

Salmon protein
hydrolysate Fish (salmon) Mice, Apoe−/− Anti-atherosclerotic Anti-inflammatory Absent [48]

Peptides

Brown algae
Undaria pinnatifida,

Sea bream scale,
Tuna dark muscle,

Tunicate Styela clava,
Sea cucumber Acaudina

molpadioidea,
Tuna frame,
Red algae

Gracilariopsis lemaneiformis

Rats, spontaneously
hypertensive Anti-hypertensive ACE inhibition Captopril,

enalapril [71–77]

EPA Fish Rabbits, myocardial
ischemia-reperfusion model

Cardioprotective
(reduced infarct size)

Opening Ca-activated
K channels Absent [84]

DHA Fish Pigs, myocardial
ischemia-reperfusion model

Cardioprotective
(reduced infarct size,
reduced mortality)

n.a. Absent [85]

Omega-3 PUFA Fish Rats, myocardial
ischemia-reperfusion model

Cardioprotective
(reduced infarct size)

Activation of Akt pathway,
reduced apoptosis [86]

EPA or DHA Fish Rats, myocardial
ischemia-reperfusion model

Cardioprotective
(reduced infarct size)

Activation of Akt pathway,
reduced caspase-3-activity,

inhibition of mPTP
channel opening

[87]

Omega-3 PUFA Krill Rats, myocardial
ischemia induction

Cardioprotective
(reduced left

ventricle remodeling
and hyperthrophy)

Anti-inflammatory Absent [62]

Extract Brown algae
Eisenia bicyclis

Rats, arteriovenous (AV)-shunt
model

Antithrombotic,
antiplatelet

P2Y12 signaling inhibition,
PI3K/Akt signalling inhibition,

integrin αIIbβ3
signalling inhibition

Absent [59]

ACAT—acyl-coenzyme A:cholesterol acyl-transferase; ACE—angiotensin converting enzyme; COX1—cyclooxigenase 1;
DOCA—deoxycorticosterone acetate; eNOS—endothelial nitric oxide synthase; NOX-4—NADPH oxydase 4;
ICAM-1—intercellular adhesion molecule-1; LXR-β—liver X receptor beta; mPTP—mitochondrial permeability
transition pore; PI3K—phosphatidyl inositol 3-kinase; NF-κB—nuclear factor kappa B; FGF—fibroblast growth
factor; VEGF—vascular endothelial growth factor; BDNF—brain-derived neurotrophic factor; SREBP-2—sterol reg-
ulatory element-binding protein 2; PPARα—peroxisome proliferator activated receptor alpha; ERK—extracellular
signal-regulated kinase; TXB2—thromboxane B2; VCAM-1—vascular cell adhesion molecule-1.

2.2. Marine Compounds under Clinical Trial for CVDs Treatment

Only a few molecules among those under pre-clinical studies have undergone clinical
investigations for CVD treatment so far [17]. The most explored molecules are fish-derived
omega-3 PUFA, i.e., EPA and DHA. Several clinical trials were conducted or are ongoing
to evaluate their benefits on cardiovascular health, highlighting contrasting results: while
some studies highlighted a lower risk of adverse cardiovascular events after omega-3
PUFA treatment, other studies showed no beneficial effects on cardiovascular health [88].
It was suggested that the effects of EPA alone are more beneficial than those of combined
formulations (EPA + DHA) [89,90].

Alginate was investigated for cardiac regeneration after a heart injury [89,90]. The
IK-5001 alginate hydrogel formulation was tested in clinical trials to evaluate the effects of
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the intracoronary injection on the prevention of negative ventricular remodeling. Despite
the good tolerability of the alginate implant [91], a multicenter clinical trial involving
individuals with recent myocardial infarction revealed no beneficial effects on left ventricle
remodelling or cardiac events (Clinical Trial Identifier: NCT01226563) [92]. On the contrary,
promising results were obtained for the Algisyl-LVR™ alginate hydrogel implants after
intramyocardial injection. The results of the multicenter randomised clinical trial demon-
strated that Algisyl therapy improved functional capacity and clinical outcomes in patients
with advanced heart failure compared to standard medical therapy (NCT01311791) [93].

The carotenoid astaxanthin is also under clinical investigation as a food supple-
ment, formulated in combination with other molecules or administered alone, for the
treatment of arrhythmias or strokes (ongoing clinical trials NCT02087033, NCT01647984,
and NCT03945526).

The microalgae Spirulina maxima, administered as a food supplement, was proven
effective against systemic arterial hypertension in a randomised pilot clinical trial, reducing
blood pressure and decreasing markers of endothelial damage [94].

2.3. Marine Compounds Approved for CVDs Prevention

Omega-3-acid ethyl esters, derived from fish, are the only marine product marketed
for CVD prevention so far. Approved by both the FDA and the EMA (in 2004 and 2005,
respectively) for the reduction of triglyceride plasmatic levels in patients with severe
hypertriglyceridemia, they are now commercialised by several brands [4,95].

3. Marine Compounds and Type 2 Diabetes Mellitus

Type 2 diabetes mellitus (T2DM) is a chronic multifactorial disease characterised by
hyperglycaemia, due to defective insulin secretion and the occurrence of insulin resistance
in the liver, skeletal muscle, and adipose tissue, often causing severe complications such
as nephropathy, retinopathy, CVD, and disability [96,97]. During ageing, senescent cells
accumulate in multiple organs, including pancreatic islets, which play a primary role in
the regulation of blood glucose and lipid levels. Senescent β-cells display altered insulin
production, leading to impaired glucose and lipid homeostasis, and strongly contributing
to the pathogenesis of T2DM [98]. Hence, the incidence of T2DM rapidly increases with age.
It was estimated that in 2019, 136 million elderly people (>65) live with diabetes worldwide
(1 in 5), and that this number will reach 195.2 million by 2030 [99]. In addition to ageing,
obesity is an important risk factor for T2DM since the over-secretion of pro-inflammatory
adipocytokines by fat-enriched adipocytes is associated with the development of insulin
resistance [100]. Thus, the treatment of diabetes is closely related to the alleviation of
hyperlipidemic disorders, as for CVD.

Current anti-diabetic drugs act through different mechanisms. Inhibitors of
α-glucosidase and α-amylase enzymes (e.g., acarbose) reduce the metabolism of polysaccha-
rides into glucose/fructose in the intestine, thus controlling postprandial hyperglycaemia.
The adenosine monophosphate-activated protein kinase (AMPK) and Akt pathways are
targeted by other antidiabetics (e.g., metformin and berberine) to reduce hepatic gluconeo-
genesis and to induce insulin sensitivity and glucose uptake by skeletal muscle cells [101].
The peroxisome proliferator-activated receptor gamma (PPAR-γ) is activated by drugs such
as rosiglitazone, resulting in increased insulin sensitivity and glucose uptake in adipose
tissue and muscle and stimulating fatty acid oxidation. Sodium-Glucose Transport Protein
2 (SGLT2) inhibitors promote glucose urinary excretion. Inhibitors of the protein tyrosine
phosphatase 1B (PTP1B), a negative regulator of the insulin signalling pathway, have
emerged as a promising target for diabetes, but none have yet reached the market [102].

The chronic use of anti-diabetics may enhance their side effects, especially in elderly
people, and this aspect may be further exacerbated by the presence of co-morbidities
and polypharmacy, i.e., multi-drug consumption. Marine compounds may offer valuable
alternatives. Indeed, several molecules with mechanisms related to glucose homeostasis
were identified in vitro and have been extensively reviewed elsewhere [103–106].



Mar. Drugs 2024, 22, 210 8 of 22

3.1. Pre-Clinical Studies on Marine Compounds for T2DM Treatment

Several marine molecules tested in animal models of diabetes displayed anti-diabetic
properties, primarily assessed as the ability to reduce blood glucose levels (hypoglycemic
effects) (Table 2).

Dietary intake of different species of macroalgae (e.g., Petalonia binghamiae, Padina
arborescens, Ecklonia stolonifera, Ecklonia cava, Sargassum yezoense, Sargassum polycistum, Sar-
gassum coreanum, Ulva rigida), the seagrass Posidonia oceanica, and the soft coral Sinularia
erecta, administered as extract or powder, displayed anti-diabetic properties in animal
models, often associated with a hypolipidemic effect [107–119] (Table 2). In brown al-
gae, such effects were suggested to be mediated by the highly abundant phlorotannins,
polyphenolic compounds that demonstrated α-glucosidase and α-amylase inhibitory activ-
ity in vitro [117,120]. Dieckol, isolated from the brown algae Ecklonia cava, is a phlorotan-
nin with a broad spectrum of biological properties, from anti-bacterial and anti-viral to
anti-inflammatory and hypolipidemic [121]. This compound showed anti-diabetic effects
in rat, mouse, and zebrafish models of diabetes, including a decrease in blood glucose, gly-
cosilated haemoglobin and lipid levels, preservation of pancreatic β-cells, increased insulin
production, and glucose tolerance. Its mechanisms of action involve α-glucosidase and α-
amylase inhibition, as well as activation of the AMPK and Akt pathways [118,119,122–124].
Also, diphlorethohydroxycarmalol, a phlorotannin compound derived from the brown
algae Ishige okamurae, exerted its hypoglicemic effect, observed in diabetic mice, through
potent α-glucosidase and α-amylase inhibitory activity, stronger than acarbose [125]. No-
tably, acarbose, either alone or in combination with rapamycin, is among the three agents
that have shown significant lifespan extension in both male and female mice, according to
the Intervention Testing Programme (ITP) [126]. Therefore, diphlorethohydroxycarmalol
holds particular interest in the context of its potential anti-ageing implications.

Table 2. Marine compounds showing antidiabetic effects in pre-clinical in vivo studies and related
mechanisms of action.

Marine Compound Source Diabetic Model Effects Mechanisms Positive Control Ref.

Extract Brown algae
Petalonia binghamiae Mice, stz-induced Hypoglicemic, glucose

tolerance increase
Pparg, glut4 and irs

upregulation (adipocytes) Rosiglitazone [107]

Extract Brown algae
Padina arborescens Mice, stz-induced Hypoglicemic A-glucosidase and

α-amylase inhibition Acarbose [108]

Methanolic extract Brown algae
Sargassum coreanum Db/db mice Hypoglicemic, insulin response

increase, hypolipidemic

Regulation of hepatic glycogen
metabolism (↑ gck, ↓ g6pase, ↓

pepck, ↑ glicogen)
Rosiglitazone [112]

Methanolic extract Brown algae
Sargassum yezoense Db/db mice Hypoglicemic, hypolipidemic

↓ g6pase (liver), Pparg, ucp3
and adiponectin upregulation

(white fat)
Rosiglitazone [113]

Water/ethanolic extracts Brown algae
Sargassum polycistum Rats, stz-induced

Hypoglicemic, insulin response
increase, hypolipidemic, liver,

kidney and pancrease
damage decrease

n.a. Metformin [114,115]

Extract Green algae
Ulva rigida Rats, stz-induced Hypoglicemic, hypolipidemic Antioxidant [116]

Methanolic extract
(polyphenols-rich)

Brown algae
Ecklonia stolonifera kk-a(y) mice Hypoglicemic A-glucosidase inhibition,

radical scavenging Absent [117]

Powder Brown algae
Ecklonia cava Mice, stz-induced

Hypoglicemic, insulinotrophic
(β-cell preservation, insulin

secretion increase),
hypolipidemic, liver

steatosis improvement

Absent [118]

Methanolic extract Brown algae
Ecklonia cava Rats, stz-induced Hypoglicemic, insulin

production increase
Ampk and akt

signalling activation Absent [119]

Dieckol-rich extract Brown algae
Ecklonia cava db/db mice Hypoglicemic, glucose tolerance

increase, hypolipidemic

Regulation of hepatic glycogen
metabolism (↑ gck, ↓ g6pase, ↓

pepck), antioxidant
Rosiglitazone [109]

Methanolic extract Soft coral
Sinularia erecta Rats, stz-induced Hypoglicemic Metformin [110]

Extract Seagrass
Posidonia oceanica

Rats,
alloxan-induced Hypoglicemic, vasoprotective Absent [111]
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Table 2. Cont.

Marine Compound Source Diabetic Model Effects Mechanisms Positive Control Ref.

Dieckol Brown algae
Ecklonia cava

Mice, stz-induced;
zebrafish,

alloxan-induced;
db/db mice

Hypoglicemic

A-glucosidase and α-amylase
inhibition, regulation of hepatic
glycogen metabolism (↓ g6pase,

↓ pepck), ampk and
akt signalling

activation, antioxidant

Acarbose, metformin [122–124]

Diphlorethohydroxycarmalol
(DPHC)

Brown algae
Ishige okamurae Mice, Stz-induced Hypoglicemic A-glucosidase and

α-amylase inhibition Acarbose [125]

Fucoxanthin
Brown algae

Undaria pinnatifida
Laminaria japonica

Mice, high fat
diet-induced obese;

kk-a(y) mice;
db/db mice

Hypoglicemic, hypolipidemic,
hypoglicemic, hyperinsulinemia

suppression, hypolipidemic,
insulin resistance improvement,

pancreas damage decrease

Akt and ampk signalling
activation, IR signalling

activation, glut4 increase,
adipocytokine reduction,

regulation of glycogen
metabolism (↑ gck, ↓ pepck, ↓

gsk3β, ↑ gsy)

Metformin [127–130]

Fucoidan Brown algae spp. Db/db mice; gk rats;
mice, stz-induced

Hypoglicemic, serum insulin
decrease, pancreas damage

decrease, glycosilated
hb decrease

Camp pathway activation, sirt-1
activation, ampk/gapdh/pdx-1

signaling activation,
α-glucosidase and α-amylase

inhibition, NF-κb signaling
inhibition, microbiota changes

Metformin, acarbose [131–139]

Polysaccharides

Brown algae
Laminaria japonica

Mice,
alloxan-induced

Hypoglicemic, increased insulin
levels, hypolipidemic Glibenclamide [140,141]

Brown algae
Undaria pinnatifida Rats

Hypoglicemic, glucose tolerance
increase, insulin sensitivity
increase, liver and kidney

damage decrease

Microbiota changes, AKT
signalling activation, regulation

of glycogen metabolism (↓
G6Pase, ↓ PEPCK)

[142]

Red algae
Gracilaria

lemaneiformis

Mice,
alloxan-induced

Hypoglicemic, kidney damage
repair Antioxidant Acarbose [143]

Green algae
Enteromorpha prolifera Rats, stz-induced

Hypoglicemic, insulin
sensitivity increase, pancreatic

β-cells increase

↑GCK ↑ IR (liver), ↑ GLUT4 and
adiponectin (adipose tissue) Metformin [144]

Sulfated polysaccharides Brown algae
Undaria pinnatifida Mice, stz-induced

Hypoglicemic, glucose tolerance
increase, insulin sensitivity

increase, pancreatic islet
preservation, liver
steatosis decrease

Acarbose [145]

Sulphated galactofucan Brown algae
Undaria pinnatifida Mice, stz-induced Slight hypoglicemic,

slight hypolipidemic Microbiota changes Absent [146]

Butyl-isobutyl-phthalate Brown algae
Laminaria japonica Rats, stz-induced Hypoglicemic α-glucosidase inhibition [147]

Octaphlorethol A Brown algae
Ishige foliacea db/db mice Hypoglicemic, improve

glucose tolerance

AMPK and Akt signalling
activation, ↑ GLUT4, regulation

of glycogen metabolism (↓
G6Pase, ↓ PEPCK)

Absent [148]

Bromophenol derivatives
Red algae
Rhodomela
confervoides

Rats, stz-induced Hypoglicemic Ptp1b inhibition Absent [149]

HPN (synthetic
bromophenol derivative)

Red algae
Rhodomela
confervoides

db/db mice Hypoglicemic, hypolipidemic PTP1B inhibition Rosiglitazone [150]

Fucosterol Brown algae
Pelvetia siliquosa Rats, stz-induced Hypoglicemic Aldose reductase and

PTP1B inhibition Metformin [151,152]

Oligopeptides Salmon skin
Oncorhynchus kern Rats, stz-induced Hypoglicemic, B-cell

apoptosis decrease
Anti-inflammatory

Antioxidant Absent [153]

Protein hydrolysate Octopus muscle
Octopus vulgaris Rat, alloxan-induced

Hypoglicemic, insulin
production increase, pancreas

and liver damage
decrease, hypolipidemic

A-amylase inhibition Acarbose [154]

Collagen peptides Fish bone
Harpadon nehereus Mice, stz-induced

Hypoglicemic, insulin secretion
increase, pancreas and liver

damage decrease

Regulation of hepatic glycogen
metabolism (↑ gck, ↑ gsk3β,↓
pepck, ↓ g6pase, ↑ glycogen)

Metformin [155]

S-8300 Shark liver
Squalus mitsukurii Mice, stz-induced

Hypoglicemic, pancreatic islet
damage decrease,

hypolipidemic
Antioxidant Glibenclamide [156]

APSL (active peptide from
shark liver)

Shark liver
Chiloscyllium

plagiosum
Mice, stz-induced

Hypoglicemic, insulin secretion
and sensitivity increase,

pancreatic islet preservation,
hypolipidemic, liver steatosis
decrease, pancreas, liver and

kidney damage decrease

Anti-inflammatory Metformin [157]

STZ—streptozotocin; GCK—glucokinase; G6Pase—glucose 6-phosphatase; PEPCK—phosphoenolpyruvate car-
boxykinase; PPARg—peroxisome proliferator activated receptor gamma; UCP3—uncoupling protein 3; GLUT4;
GSK3β—glycogen synthase kinase-3 beta; GYS—glycogen synthase; AMPK—AMP-activated protein kinase;
PTP1B—protein tyrosine phosphatase 1B; GLUT4—glucose transporter 4; IR—insulin receptor; PDX-1—pancreatic
and duodenal homeobox 1.
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Dietary fucoxanthin, a specific carotenoid present in the chloroplasts of brown algae,
exerts a significant anti-diabetic and anti-obesity effect in models of diabetic/obese mice,
regulating blood glucose, improving insulin resistance, and reducing body and adipose
tissue weight [158]. The main mechanisms mediating such effects suggested by the different
in vivo studies include upregulation of insulin receptor and Akt signalling in liver and
skeletal muscle [128,130], induction of the glucose transporter type 4 (GLUT-4) in skeletal
muscle [127,128,130], reduced secretion of adipokines involved in insulin resistance [129],
regulation of glycogen synthesis [130], and decreased white adipose tissue (while increas-
ing brown one) [129]. The hypolipidemic effect of fucoxanthin may be mediated by the
induction of the uncoupling protein 1 (UCP1) (a mitochondrial protein typical of brown
fat) in white fat, thus stimulating fatty acid oxidation, dissipating energy through heat
production, and reduce lipid excess in adipocites [158,159].

Other algal compounds displayed hypoglicemic effects in vivo: butyl-isobutyl-phthalate,
a potential α-glucosidase inhibitor [147,160], octaphlorethol A, acting through activation
of the AMPK and Akt pathways [148], bromophenol-derived compounds from red alga
Rhodomela confervoides [149], and fucosterol [151], which both demonstrated PTP1B in-
hibitory activity [149,150,152,161].

Macroalgae are also particularly rich in polysaccharides exclusive to the marine envi-
ronment. Among them, fucoidan has a widely studied role in the treatment of diabetes and
its complications, e.g., diabetic nephropathy and retinopathy [24]. A substantial number
of studies have demonstrated that treatment with fucoidan (extracted from various algal
sources) is effective in lowering hyperglycaemia, regulating glucose metabolism, increas-
ing insulin production, and alleviating pancreatic β-cell damage [24]. Fucoidan showed
α-amylase and α-glucosidase inhibitory effects in vitro, and various other mechanisms of
action were suggested, e.g., the activation of cAMP and Akt signalling pathways [24]. To
note, it was demonstrated in vivo that the molecular mechanisms underlying the increase
in insulin synthesis by fucoidan may include activation of Sirt-1-dependent upregulation
of PDX and GLP-1R [134]. Moreover, fucoidan modulates the gut microbiota of diabetic
mice, decreasing the abundance of intestinal bacteria associated with the development of
diabetes [138,139]. In addition, the aforementioned hypolipidemic and anti-hypertensive
effects of fucoidan were observed even in diabetic mice [162]. Recently, it was demon-
strated in a T1DM mouse model that fucoidan supplementation reduces blood glucose
levels and modifies the pancreatic microenvironment, enhancing autophagy and apoptosis
of pancreatic β cells by the AMPK/mTOR1/TFEB signalling pathway [163].

Other algal polysaccharides were effective in lowering blood glucose. Sulfated polysac-
charides derived from the brown seaweed Undaria pinnatifida (e.g., sulfated galactofucan)
mitigated insulin resistance, improved glucose tolerance and dyslipidemia, and reduced
hepatic steatosis and damage to pancreatic islets, liver, and kidney. Such improvements
were associated with changes to the intestinal microbiota [142,145,146]. In diabetic mice, the
hypoglycemic effect of polysaccharides from Laminaria japonica was observed together with
increased insulin and lipid levels in serum [140,141], while an unidentified polysaccharide
from the red algae Gracilaria lemaneiformis, alleviating hyperglycaemia and pancreas and
kidney tissue damage, likely acts thanks to its antioxidant effects [143]. Enteromorpha prolif-
era polysaccharides significantly increased the number of pancreatic β-cells and enhanced
insulin sensitivity in diabetic rats; such effects were mediated by the increase of hepatic
glucokinase (GCK) and insulin receptor (IR), enhanced GLUT-4 and adiponectin (APN) in
the adipose tissue, and antioxidant action [144].

Functional peptides were also studied for their potential use in diabetes treatment.
Oligopeptides from marine salmon skin [164], protein hydrolysates from octopus muscle [154],
and collagen peptides from fish bone [155] were shown to drive an anti-diabetic effect
upon oral administration, associated with an improvement of pancreas and/or liver dam-
age. Anti-inflammatory and antioxidant properties [164], α-amylase inhibition [154], and
regulation of hepatic glycogen metabolism (decreased glucose 6-phosphatase, G6Pase,
and phosphoenolpyruvate carboxykinase, PEPCK1; increased GCK and phosporylation of
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glycogen synthase kinase-3β, GSK3β) [155] were detected as possible target mechanisms.
The Active Peptide from Shark Liver (APSL) and S-8300, hepatic functional peptides iso-
lated from shark species, were found to lower hyperglycaemia in diabetic mice, increasing
insulin secretion and sensitivity, repairing lesions to pancreatic islets, and having a hy-
polipidemic effect [156,157]. In addition, APSL improved hepatic steatosis and damage to
liver and kidney to a greater extent than metformin and highlighted its anti-inflammatory
properties [157]. Further studies suggested that the APSL is located at the N-terminus of the
TBC1D15 protein [165], which is involved in GLUT4 vesicular trafficking and membrane
translocation [166], thus providing an additional mechanism of action.

3.2. Marine Compounds under Clinical Trial for T2DM Treatment

Despite the numerous and promising pre-clinical studies on marine compounds with
anti-diabetic properties, the clinical trials are still quite rare, and none of these molecules
have reached the market so far. Moreover, clinical investigations have not always matched
the promising effects seen in preclinical experiments.

Oral administration of fucoidan to obese non-diabetic patients did not affect glycemia,
insulin levels, or insulin resistance compared to controls (ACTRN12614000495628) [167],
and no effect of a fucoidan-rich extract from the algae Ascophyllum nodosum was ob-
served on postprandial glucose levels or insulin response in normoglycemic subjects
(NCT05460884) [168]. Another clinical study with fucoidan treatment is ongoing on pre-
diabetic individuals (ACTRN12621000413820) [169], which will allow us to define its
antidiabetic potential in a more clinically relevant population. A study including healthy
participants on the impact of polyphenol-rich brown seaweed (Fucus vesiculosus) extract
showed no effect on glycemia or insulin levels (ACTRN12616000126415p) [170], as well as
the intake of the Undaria pinnatifida algae (containing fucoidan, fucoxanthin, and polyphe-
nols) in a healthy population, while a hypoglycaemic effect was observed after adminis-
tration of its sporophylls, likely due to the higher fibre content [171]. A slight effect was
also observed after administration of hydrolysates of the tunicate S. clava in patients with
Type 2 diabetes and hypertension, where significant reductions in blood pressure and
glycosilated haemoglobin were observed, with a non-significant decrease in insulin and
insulin resistance [172].

Conversely, an effective anti-diabetic activity was observed for a dieckol-rich extract
from the brown algae Ecklonia cava, which reduced hyperglycaemia and insulin resistance
in a randomised clinical trial enrolling pre-diabetic subjects without evident side effects
after dietary supplementation [173]. Similarly, marine collagen peptides significantly
reduced levels of fasting blood glucose, insulin, glycosilated haemoglobin, and lipids
while increasing insulin sensitivity in Type 2 diabetic patients [153]. The efficacy of the
microalgae Chlorella vulgaris in the treatment of hyperglycaemia and dyslipidaemia was
demonstrated in a randomised trial including patients with non-alcoholic fatty liver disease
(which often coexists with diabetes [174]), which displayed a significant decrease in fasting
serum glucose levels and in body weight (201202233320N7) [175]. Fucoxanthin effectively
increases insulin secretion and decreases body weight, blood pressure, and triglycerides in
patients with metabolic syndrome (NCT03613740) [176].

Clinical results on the effect of fish omega-3 on glucose-insulin homeostasis are contro-
versial. A meta-analysis including 20 randomised clinical trials on the effects of omega-3 in
Type 2 diabetic patients revealed no significant changes for plasmatic glucose, glycosilated
haemoglobin, body weight, or serum lipids, except for triglycerides, which were signif-
icantly decreased [177]. Contrasting results may be attributed to a sex-specific response
bias [178]. No effect of omega-3 was reported in T2DM patients for the prevention and
treatment of chronic kidney disease, a common T2DM complication (NCT01684722) [179].

4. Discussion

Marine compounds have a strong potential for the management of age-related diseases.
This review highlighted the wide burden of promising compounds for the treatment
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and prevention of CVD and diabetes. Due to the close link between such pathologies
and the high risk of comorbidity, the development of drugs with pleiotropic effects is of
outmost interest. Compounds with an action on common factors, like hyperlipidaemia,
inflammation, and oxidative stress, could probably have a therapeutic role in both diseases.
Several mechanisms have been suggested for marine compounds targeting CVDs and
T2DM (Figure 1).
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Figure 1. Main mechanisms of action of marine compounds targeting CVD and T2DM in vivo.

Molecules that specifically target a single enzyme (e.g., ACE, PTPB1, α-amylase, and
α-glucosidase inhibitors) or signalling pathway (e.g., FGF2, P2Y12, and insulin pathway) are
expected to be effective for a restricted pathological condition. Molecules with antioxidant
effect (e.g., fucoidan, xyloketal B, echinochrome A, dieckol, and S-8300 peptide) and anti-
inflammatory action (e.g., fucoidan, astaxanthin, fucoxanthin, micoepoxydien, asperlin,
saponins, and APLS peptide) may potentially hold a wider therapeutic spectrum. Anti-
inflammatory properties are particularly relevant since ageing is associated with low-
grade chronic inflammation, which is one of the underlying causes of many age-related
diseases [180,181].

Molecules that induce changes in the microbiota composition, mainly algal polysac-
charides (e.g., fucoidan, potassium alginate, sulphated galactofucan, and polysaccharides
from Undaria pinnatifida) and sea cucumber saponins, represent interesting candidates for
drugs with pleiotropic effects. Indeed, the gut microbiota is involved in the regulation
of multiple physiological and pathological processes; its age-related changes contribute
to health loss in the elderly and to several non-communicable pathologies [182], and its
pharmacological modulation may potentially impact global individual health.

Different marine drugs have been shown to target mitochondria or mitochondrial
signalling pathways, which may help to counteract pathological processes not only in
metabolic and cardiovascular diseases but also in neuro-muscular age-related diseases [40].

Fucoidan was shown to be the molecule that displayed more beneficial effects, being
able to target different diseases, from atherosclerosis, thrombosis, and hypertension (among
CVD) to diabetes. This may be partly due to its broad effects on inflammation, oxidative
stress, and gut microbiota (Figure 1) and partly biased by the fact that fucoidan is one
of the most common and studied marine compounds compared to the others. Further
studies would be useful to elucidate the possible role of other marine compounds in the
co-treatment of CVD and T2DM.
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However, we also highlighted evident limits in translating the knowledge from pre-
clinical research to clinical use. Indeed, to date, only one marine molecule among the
many candidates has reached the market, namely the omega-3 acid ethyl esters for the
treatment of hypertriglyceridemia as a preventative measure for CVD. The availability of
the compound of interest is a challenging issue since extraction from the natural source
often provides a low yield, which is a limit for industrial and pharmaceutical applications.
In addition, while algae and marine microorganisms may be cultivated, the exploitation
of marine animals is not desirable due to important ecological implications. Further, the
isolation of compounds from the natural environment may include the risk of contami-
nation by chemical pollutants (e.g., heavy metals and hydrocarbons) and other emerging
contaminants (e.g., microplastics, endocrine disruptors, and pharmaceuticals), which are
widespread in almost all marine ecosystems. The development of synthetic strategies for
high-yield production is essential to overcome these limitations. Methods of chemical
synthesis may be applied for the production of analogues of natural compounds with
the same or enhanced biological activity and pharmacokinetic properties [150,183]. The
availability of functional peptides would be significantly improved by the production of
recombinant versions, as developed for the active peptides from shark liver (APSL) [184].
The production of synthetic or recombinant analogues may enhance the availability of
marine-derived molecules and also overcome the difficulty of patenting natural substances,
thus increasing the interest of pharmaceutical companies. Further, various marine-derived
compounds, such as fucoidan, sulfated polysaccharides, and functional peptides, are still
lacking standardisation and quality control measures to ensure the constant purity and
bioactivity of these compounds, which are crucial considerations for their therapeutic use.
In many cases, the lack of chemical characterization of the active compound in an algal
extract or fraction hinders the transition from animal to human studies. The absence of a
positive control in pre-clinical evaluation (Tables 1 and 2) sometimes limits the assessment
of the real benefit of the marine compound alternative compared to the gold standard
therapy. Moreover, longitudinal studies in aged mice with an appropriate sample size, a
blinded design, and strong functional [185] as well as molecular [186] health outcomes
are still lacking. In the end, although various potential mechanisms of action for marine-
derived compounds have been proposed, there is a need for more in-depth investigation of
the underlying molecular mechanisms and pathways involved. Providing more detailed
insights into how these compounds exert their effects at the cellular and molecular levels
would enhance their translation into clinical trials.

5. Material and Methods

PubMed, Scopus, and Epistemic AI databases were used for the bibliographic search.
For the first search, the keywords “marine compounds” or “marine molecules” were
combined with words related to the pathologies of interest (e.g., “cardiovascular disease”,
“atherosclerosis”, “thrombosis”, “myocardial infarction”, “hypertension”, “diabetes”, and
“hyperglycemia”). In a second step, the keywords related to specific marine compounds
identified with the first search (e.g., “fucoidan”, “alginate”, “astaxanthin”, “dieckol”,
“marine peptides”, etc.) were combined to the terms “pre-clinical studies”, “in vivo studies”,
“clinical studies”, or “human studies”. The search was updated until February 2024.

6. Conclusions

Despite the wide and promising pool of marine-derived molecules displaying phar-
macological properties against CVD and T2DM, the path towards their clinical application
is still long. Many of them are of particular interest in the context of ageing, since they act
on targets highly relevant to the ageing process, such as inflammation, oxidative stress,
and gut microbiota. Their minimal side effects and the potential to act with a pleiotropic
effect are also optimal characteristics for use in the elderly, which often require a chronic
assumption of multiple drugs.
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