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Abstract: Cyanopeptolins (CPs) are one of the most commonly occurring class of cyanobacterial non-
ribosomal peptides. For the majority of these compounds, protease inhibition has been reported. In
the current work, the structural diversity of cyanopeptolins produced by Nostoc edaphicum CCNP1411
was explored. As a result, 93 CPs, including 79 new variants, were detected and structurally charac-
terized based on their mass fragmentation spectra. CPs isolated in higher amounts were additionally
characterized by NMR. To the best of our knowledge, this is the highest number of cyanopeptides
found in one strain. The biological assays performed with the 34 isolated CPs confirmed the signifi-
cance of the amino acid located between Thr and the unique 3-amino-6-hydroxy-2-piperidone (Ahp)
on the activity of the compounds against serine protease and HeLa cancer cells.

Keywords: cyanopeptolin; cyanobacteria; proteases inhibition; anticancer activity

1. Introduction

Cyanobacteria are widely recognized as a source of different classes of non-ribosomal pep-
tides. Of these, microcystins, cyanopeptolins, anabaenopeptins, microginins, and aeruginosins
have been most commonly studied [1,2]. Cyanopeptolins (CPs) belong to cyclic depsipeptides.
They were first isolated from Microcystis sp. PCC 7806 [3] and identified in such cyanobacterial
genera as Caldora [4], (Coleofasciculales), Anabaena [5], Dichothrix [6], Microchaete [7], Nos-
toc [8–12], Scytonema [13,14], Stigonema [15], (Nostocales), Aphanocapsa [16], Leptolyngbya [17],
Lyngbya [18,19] (Synechococcales), Microcystis [3,20–24], Oscillatoria/Planktothrix [25–28], Ra-
diocystis [29] (Chroococcales), and Symploca [30,31] (Oscillatoriales). There are also reports on
the presence of CPs in the sea hare Dolabella auricularia [32], mucus bacteria Chondromyces [33],
and Streptomyces olivochromogenes NBRC 3561 [34].

Similar to many other non-ribosomal peptides, cyanopeptolins belong to bioactive
metabolites with some biotechnological potential. The peptides are primarily known for
their ability to inhibit serine proteases such as trypsin [22,35–38], chymotrypsin [22,33,39–41],
thrombin [36,42,43], elastase [4,28,44–46], plasmin [28,36,37,47,48], proteinase-3, cathepsin
G [49], and kallikrein [35]. They also affect the activity of protein phosphatase 1 (PP1) and
PP2 [11,47], cytosolic AP [21], aminopeptidase N (APN) [21,50], and factor XIa [35]. Less
frequently, antimicrobial, anticancer [4,51–53], and antiviral activities [54] have been reported.
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To date, 227 CPs and CP-like compounds have been described [1], 103 of which
are produced by cyanobacteria of the Microcystis genus. They have been named aerug-
inopeptins [23,55], anabaenopeptolides [5], bouillomides [19], crocapeptins [33], dolas-
tatin [32], hofmannolin [14], ichthyopeptins [54], insulapeptolides [49], jizanpeptins [56],
kempopeptins [18,52], kyanamide [4], largamides [26], lyngbyastatins [44,57,58], logger-
speptins [52], microcysilide [59], micropeptins [60–66], molassamide [6,52], nostocyclin [11],
nostopeptins [9], oscillapeptilides [27], oscillapeptins [27,28,46,67], planktopeptins [45],
pompanopeptin [68], scyptolins [13,14], somamides [69], stigonemapeptin [15], streptopep-
tolin [34], symplocamide [31], and tasipeptins [30].

The structural diversity of these compounds is a consequence of their biosynthetic
pathway. Biosynthesis is carried out on large enzymatic complexes called non-ribosomal
peptide synthetases (NRPS). One cyanobacterial strain can produce a mixture of non-
ribosomal peptides with modifications in different positions of their structure [70,71].
Typically, all CPs consist of a six-amino acid cyclic part closed by an ester bond between
the b-hydroxy group of the residue in position 1 and the carboxy-group of the residue in
position 6 (Figure 1, Table S1 [3,5–11,13–16,19–38,40–47,49,52,54–65,67–69,72–90]). Most
CPs have a side-chain composed of 1–4 units attached to the residue in position 1, usually
occupied by Thr (221/227), optionally, by 3-hydroxy-4-methyl-proline (Hmp) (4/227) [49]
or O-Hmp (2/227) [9]. A common feature of all cyanopeptolins is the presence of 3-amino-
6-hydroxy-2-piperidone (Ahp) or its methylated form in position 3 (Figure 1). Position 5 is
occupied by methylated aromatic amino acids, mainly tyrosine or phenylalanine. In some
cases, the aromatic amino acid is chlorinated or brominated [16,18,52,56,68,73]. Position 6
is quite conserved and mainly occupied by Val, Leu, or Ile. In one CP variant, this position
is occupied by Gln, and in one by Ala. High structural variability of CP-like depsipeptides
is also evident in a wide range of molecular masses of the compounds: from 770 Da for
tasipeptin A [30] to 1181 Da for oscillapeptin B [28].
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Figure 1. General structure of cyanopeptolin variants with residues occupying a given position (Abu—
2-amino-2-butenoic acid; Ac—acetate; Ahp—3-amino-6-hydroxy-2-piperidone; Ahppa—2-amino-5-
(4′-hydroxyphenyl)pentanoic acid; BA—Butanoic acid; Cit—Citrulline; GA—Glyceric acid; H4Tyr—
Tetrahydrotyrosine; HA—Hexanoic acid; Hmp—3-hydroxy-4-methyl-proline; Hmv—2-hydroxy-3-
methylvaleric acid; Hpla—Hydroxy-phenyl lactic acid; Hse—Homoserine; Hty—Homotyrosine; Ibu—
Isobutyric acid; Kyn—Kynurenine; Mba—Methyl-2-butenoic acid; Mdhp—Methyl-dehydroproline;
OA—Octanoic acid; Pr—Propanoyl; Su—Sulfo).
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Structural elucidation of CPs and other natural products is mainly based on high-
resolution mass spectrometry (HRMS), the accurate m/z measurements of pseudomolecular
ions, and the analysis of fragmentation spectra. Accessible platforms such as GNPS (Global
Natural Product Social Molecular Networking) facilitate the analysis and exchange of
tandem mass spectrometry data (MS/MS) [91]. The Feature-Based Molecular Networking
(FBMN) workflow in GNPS [92] builds on chromatographic feature detection and alignment
and connects related molecules by their spectral similarity to ‘spectral families‘. In addition
to automated search of the spectral library, visualization of the molecular network facilitates
spectral annotation and dereplication [91–96].

In our previous studies, the production of 13 cyanopeptolins by Nostoc edaphicum
CCNP1411 was reported [8]. The goal of the current work was to expand the existing
knowledge about the structural diversity of CPs produced by CCNP1411 and to explore its
effect on the biological activity of the peptides.

2. Results and Discussion
2.1. Identification of CP Structures

Cyanobacteria possess the ability to synthesize a wide array of natural products. The
analyses of 185 cyanobacterial genomes led to the identification of 1817 natural products
biosynthetic gene clusters (BGCs) [97]. In the same study, a positive correlation between
the number of BGCs and the size of the genome was documented. Cyanobacteria of the
order Nostocales are characterized by the largest genomes and are among those that pose
the highest average number (11–25) of natural product BGCs [97]. Many of the synthesized
compounds are biologically active, and their biotechnological and pharmaceutical potential
is commonly explored. In CCNP1411, three classes of non-ribosomal peptides were identi-
fied. This includes: anabaenopeptins with four structural variants [98], nostocyclopeptides
with six linear and five cyclic variants [99], and thirteen cyanopeptolins [8]. In the current
study, the number of CPs variants detected in CCNP1411 increased to 93. However, when
the cell extract of CCNP1411 was analyzed with LC-HRMS, only 67 CPs were detected. For
these peptides, the exact masses were determined [Table S2]. The remaining peptides were
detected in concentrated fractions collected during the separation process.

The structures of all detected peptides were identified based on their mass fragmen-
tation spectra (Figures 2–7 and Figures S1–S87). In the spectra of all CPs containing Phe
in position 4, there were ion peaks at m/z 243 [Ahp + Phe + H − H2O]+ and 215 [Ahp +
Phe + H − CO − H2O]+, while those containing Leu4 gave ion peaks at m/z 209 [Ahp +
Leu + H − H2O]+ and 181 [Ahp + Leu + H − CO − H2O]+. Immonium ions at m/z 86
(Leu/Ile), 120 (Phe), 134 (MePhe), 150 (MeTyr), 159 (Trp), 173 (MeTrp), 164 (diMeTyr), and
180 (diMe,OTyr), and the peak at m/z 405, 420, 434, and 450 corresponding to fragments
[Ahp3 + Phe4 + X5 + H − H2O] or at m/z 371, 386, 400, and 416 corresponding to fragments
[Ahp3 + Leu4 + X5 + H − H2O] belong to the most important diagnostic ions. Other
ions that supported the process of structure elucidation are listed in Table S3. For the
dereplication process, the CPs identified in CCNP1411 were compared with the resources
of the CyanoMetDB [1]. This is the most comprehensive and openly accessible database
containing cyanobacterial metabolites. The updated versions of the database are available
on the Zenodo and NORMAN Suspect List Exchange (No S075). Of the 93 CPs detected in
CCNP1411 in this work, only 14 were included in the database. Generally, the presence and
frequency of specific residues in the structure of CPs produced by CCNP1411 (Figure 8)
were in line with the residues present in the previously identified CPs presented in Figure 1.
Position 2 of the CPs is most diverse and occupied by Arg, Tyr, Phe, Leu, Met, Trp, as well as
methylated Leu, Phe, and Tyr. Similarly to the spectra of Tyr2, H4Tyr2, and Leu2-containing
aeruginopeptins 917S-A, -B, and -C [55], the Tyr2, Leu2, or Phe2-containing CPs identified
in CCNP1411 gave a high intensity dehydrated [M + H − H2O]+ precursor ion peak.
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Based on the mass fragmentation spectra, it is not possible to distinguish the isobaric
residues (e.g., Ile/Leu). Therefore, for CPs isolated in the highest quantities, i.e., CP 941
and CP 999 (with Tyr2), CP 990 (with Arg2), CP 983 (with Phe2), CP 949 and CP 919 (with
Leu2), NMR analyses were performed (Figures 2–7, Figures S88–S123, Tables S4–S9). The
obtained results were consistent with structure elucidation based on MS/MS and allowed
the identification of Leu2 in CP 949 and CP 919. The NMR analyses also allowed us to
verify the previously published structure of CP 999 [8]. It was revealed that position 5
in CP 999 is occupied by N,O-di-MeTyr, and not by MeHty, as suggested based on the
MS/MS spectrum. Both residues give the same fragment ions, including the immonium
ion at m/z 164. N,O-di-MeTyr5 was previously detected in cyanopeptolins produced by
Nostoc insulare [49] and Oscillatoria agardhii [27,28,46,84]. This structure misinterpretation
illustrates well the need for the application of at least two spectroscopic methods, e.g.,
NMR and MS/MS, to provide the correct information on chemical structure, especially
when isomers are analyzed [100]. Unfortunately, in the case of natural products, which are
biosynthesized in minute amounts, the isolation of sufficient amounts of pure compound
(>1 mg) for NMR is impossible or difficult to achieve. Then, the structural analyses can
be based on HRMS/MS, which allows the assignment of molecular formula and provides
important information on the structural components of the analyte [101]. Other, more
recently developed MS techniques (e.g., ion mobility MS) can additionally support the
structure elucidation process [102].

Of the 25 CP-like peptides identified in cyanobacteria of the genus Nostoc and included
in Table S1, more than half (13) were reported from CCNP1411 [8]. When all structural
variants from this study are included in the database, Nostoc can be considered as rich
source of cyanopeptolins as Microcystis.

2.2. Molecular Networking of Cyanopeptolins

To describe the structural diversity of CPs, molecular networking was performed
using data from the HRMS/MS analysis of 10-mg dry biomass of CCNP1411 cell extract. A
search of databases linked with the GNPS spectra library did not detect any CPs produced
by N. edaphicum. Instead, it proposed 209 compounds structurally similar to CCNP1411



Mar. Drugs 2023, 21, 508 7 of 19

cyanopeptolins, including anabaenopeptilide 202A, cyanopeptolin 963A, lyngbyastatin 8,
and micropeptin 103. The search also resulted in the detection of 27 compounds within the
195–532 m/z range.

The molecular network for N. edaphicum CCNP1411 showed the existence of 116 nodes
connected into 9 clusters by 320 edges (Figure S124), including 3 clusters with CPs features
(Figure S124A), 4 with nostocyclopeptides features (Figure S124B), and 2 clusters which
did not match any of the above-mentioned groups of compounds (Figure S124C).

The 3 CP clusters were grouped into 62 nodes connected by 202 edges. We were able
to assign 32 nodes to specific CPs variants identified in CCNP1411 (Figure S124). The m/z
values of the remaining nodes did not match the compounds described in this work, or
their weak spectra did not allow the features to be confidently assigned to specific CP
variants. A visualization of the 32 annotated CPs is shown in (Figure 9).
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These 32 CPs were grouped into two main clusters based on the similarity of frag-
mentation pattern profiles being a consequence of their specific structural traits (Figure 9).
The Arg2-bearing CPs were distinctly separated from variants with Tyr2, Leu2, or Phe2,
which showed higher similarity to each other. This grouping might result from the fact that,
unlike CPs with Arg2, the three types of CPs gave dehydrated ions as parent ions in their
spectra. In both clusters, the CPs with different amino acids in position 5 grouped sepa-
rately. Visualization of the structural relationships between CPs using a molecular network
yielded consistent results with manually performed structural analysis of MS/MS data.



Mar. Drugs 2023, 21, 508 8 of 19

2.3. Enzymatic Assay

Serine proteases play a significant role in major metabolic pathways. Therefore,
inhibitors of these enzymes potentially constitute lead compounds in pharmaceutical re-
search. In our study, 34 CPs were isolated as pure compounds (purity > 95%) (Table 1)
and their in vitro activities against four serine proteases (trypsin, chymotrypsin, elastase,
and thrombin), were determined. In line with our previous results [8], neither of the
peptides were active against thrombin, even at the highest concentration applied in the
assay (45 µg ×mL−1). Our current work also confirmed the significance of the residue in
position 2 for the inhibition of trypsin, chymotrypsin, and elastase. Peptides with Arg2

inhibited trypsin at IC50 values from 0.28 µM (CP 1018) to 7.25 µM (CP 1048) and showed
weaker or no activity against chymotrypsin (from IC50 = 6.75 µM to nonactive) (Table 1).
Similar effects of CPs with Arg2 on trypsin and no or weak effect against chymotrypsin
were previously reported by other authors [22,28,37,38,47,74]. Opposite results were re-
ported only for a CP-like peptide called symplocamide A [31]. The peptide inhibited
trypsin at IC50 = 80.2 ± 0.7 µM and showed more potent activity against chymotrypsin
(IC50 = 0.38 ± 0.08 µM). The authors suggested that the activity of symplocamide A can be
modified by the N,O-dimethylbromotyrosine at position 5.

Table 1. Enzymatic activity of cyanopeptolins against serine proteases (trypsin (TRY), chymotrypsin
(CHY), elastase (E), and thrombin) (TRB)). (*) results published in [8]. (−, not active (inhibition below
50%); +/−, low activity (inhibition between 50 and 60%); +, medium activity (up to 60%).

Name Structure TRY CHY E TRB
[µM]

CP 1048 [Thr + Arg + Ahp + Phe + diMeTyr + Val]Asp + OA 7.25 +/− − −
CP 1034 [Thr + Arg + Ahp + Phe + MeTyr + Val]Asp + OA 5.51 − − −

CP 1020b [Thr + Arg + Ahp + Phe + diMeTyr + Val]Asp + HA 0.39 (0.25 *) 3.6 (3.1 *) − −
CP 1018 [Thr + Arg + Ahp + Phe + MePhe + Val]Asp + OA 0.28 (0.24 *) − − −
CP 992 [Thr + Arg + Ahp + Phe + diMeTyr + Val]Asp + BA 0.31 (0.24 *) 3.32 (3.5 *) − −
CP 990 [Thr + Arg + Ahp + Phe + MePhe + Val]Asp + HA 3.73 − − −
CP 978 [Thr + Arg + Ahp + Phe + MeTyr + Val]Asp + BA 0.29 (0.26 *) 4.2 (3.8 *) − −
CP 962 [Thr + Arg + Ahp + Phe + MePhe + Val]Asp + BA 3.18 − − −
CP 950 [Thr + Arg + Ahp + Phe + MeTyr + Val]Asp + Ac 0.66 − − −
CP 934 [Thr + Arg + Ahp + Phe + MePhe + Val]Asp + Ac 0.42 6.75 − −
CP 809 [Thr + Arg + Ahp + Phe + diMeTyr + Val] − − − −
CP 778 [Thr + Arg + Ahp + Phe + MePhe + Val] − − − −

CP 1055 [Thr + Tyr + Ahp + Phe + diMeTyr + Val]Asp + OA − 3.69 − −
CP 1027 [Thr + Tyr + Ahp + Phe + diMeTyr + Val]Asp + HA − 0.38 (0.26 *) − −
CP 1025 [Thr + Tyr + Ahp + Phe + MePhe + Val]Asp + OA − +/− − −
CP 1013 [Thr + Tyr + Ahp + Phe + MeTyr + Val]Asp + HA − 3.97 − −
CP 999 [Thr + Tyr + Ahp + Phe + diMeTyr + Val]Asp + BA − + − −

CP 997b [Thr + Tyr + Ahp + Phe + MePhe + Val]Asp + HA − 7.10 − −
CP 985 [Thr + Tyr + Ahp + Phe + MeTyr + Val]Asp + BA − 0.49 (0.26 *) − −
CP 972 [Thr + Tyr + Ahp + Phe + diMeTyr + Val]Asp + Ac − 5.19 − −
CP 969 [Thr + Tyr + Ahp + Phe + MePhe + Val]Asp + BA − 1.94 − −
CP 958 [Thr + Tyr + Ahp + Phe + MeTyr + Val]Asp + Ac − 0.38 − −
CP 941 [Thr + Tyr + Ahp + Phe + MePhe + Val]Asp + Ac − 0.7 − −

CP 983b [Thr + Tyr + Ahp + Phe + MePhe + Leu]Asp + BA − 2.49 − −
CP 949 [Thr + Leu + Ahp + Phe + diMeTyr + Val]Asp + BA − 1.59 3.32 −
CP 935 [Thr + Leu + Ahp + Phe + MeTyr + Val]Asp + BA − 4.92 − −
CP 919 [Thr + Leu + Ahp + Phe + MePhe + Val]Asp + BA − 1.45 5.71 −

CP 1011 [Thr + Phe + Ahp + Phe + diMeTyr + Val]Asp + HA − − − −
CP 997 [Thr + Phe + Ahp + Phe + MeTyr + Val]Asp + HA − 4.64 − −
CP 981 [Thr + Phe + Ahp + Phe + MePhe + Val]Asp + HA − 3.92 − −
CP 983 [Thr + Phe + Ahp + Phe + diMeTyr + Val]Asp + BA − 0.99 − −

CP 969b [Thr + Phe + Ahp + Phe + MeTyr + Val]Asp + BA − 4.78 − −
CP 953 [Thr + Phe + Ahp + Phe + MePhe + Val]Asp + BA − 5.95 − −
CP 925 [Thr + Phe + Ahp + Phe + MePhe + Val]Asp + Ac − 5.45 − −
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In line with previous findings [20,21,41,82], CPs with hydrophobic amino acid residues,
i.e., Tyr2, Phe2 and Leu2, inhibited the activity of chymotrypsin (Table 1). The exception was
CP1011. The lowest IC50 value was determined for CP958 (0.38 µM). The presence of Leu2

was additionally associated with the inhibition of elastase [4,14,49,52], however, compared
to CP-like peptides such as kyanamide (IC50 = 0.13 nM) from Caldora penicillate [4] or logger-
peptins [52], the effects were moderate (minimum IC50 = 3.32 µM for CP949) (Table 1). In the
case of known CP-like peptides, elastase inhibition was additionally enhanced by the presence
of 2-amino-2-butenoic acid (Abu2). For Abu2-containing lyngbyastatins, symplostatins, and
molassamide, the IC50 values were in a sub-micromolar range [52,58,103]. The molecular
docking [52,103] and analyses of crystal structure [14] revealed that Abu2 and Leu2 occupy
the S1–S4 elastase subunits and confirmed the significance of these amino acids for their
interaction with the enzyme.

Although the amino acid in position 2 is belived to be critical for the interaction of
CPs with serine proteases, variants with no activity have been reported [42,47,64]. This
fact indicates that other components of the molecules are important for enzyme inhibition
as well. Indeed, in the work by Salvadore et al. [103], symplostatins with N-MeTyr5 were
found to be slightly stronger inhibitors of elastase than those with N-MePhe5. The effect
of the side-chain on the activity of CPs was also postulated. Interestingly, the two Arg2-
containing CPs from CCNP1411 that lack the side-chain (CP 809 and CP 778) were not
active (Table 1). Thus far, the CP-like peptide composed of only the cyclic part was tested
once [47]. Micropeptin MZ771, with Arg2 and without the side-chain, did not affect the
activity of enzymes. In addition, CPs with the same cyclic part but differing in the side-
chain structure (e.g., CP 1048 and CP 1020b) were shown to have different effects on the
tested enzyme (7.25 and 0.39 µM, respectively).

2.4. MTT Assay

The cytotoxic activity of two CPs produced by CCNP1411, CP 962 with Arg2, and CP
985 with Tyr2, was previously tested against a breast cancer cell line and no effects were
observed, even at 500 µg ×mL−1 [8]. In the current study, the activity of 17 isolated CPs
against a human cervical cancer (HeLa) cell line was assayed. Only for one of the free
Arg2-containing CPs, CP 978, was the concentration-dependent reduction in cell viability
significant (Figure 10). At the highest concentration (200 µg × mL−1), the cell viability
was 62.5% (SD = 5.35) lower than in the control. Significant effects were also observed for
Leu2-containing CPs, especially CP 949 and CP 919, which at 200 µg ×mL−1 reduced cell
viability by 71.5% (SD = 4.92) and 97.6% (SD = 0.12). Other CPs had no effect on cancer cell
proliferation. The cytotoxic effects of CP-like peptides have been rarely reported. Among
the few examples there are: symplocamide A that affected H-460 lung cancer cells and
neuro-2a neuroblastoma cells [31], tasipeptins A and B cytotoxic to KB human epithelial
carcinoma cells [30], molassamide inhibiting the elastase-mediated migration of breast
cancer cells [52], and kyanamide which was moderately cytotoxic to HeLa S3 cells [4].
The majority of the cytotoxic CP-like peptides belong to Leu2 or Abu2 bearing analogues
and elastase inhibitors, suggesting that these amino acids are critical for activity against
both targets.
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3. Materials and Methods
3.1. Extraction and Isolation of Cyanopeptolins

N. edaphicum CCNP1411 (GenBank accession number KJ161445), isolated from the
Gulf of Gdańsk, was grown for biomass as previously described by Fidor et al. [99]. The
freeze-dried material (100 g) was extracted with 75% methanol (MeOH) in MilliQ water
(1000 mL × 5) by vortexing (15 min × 5) and bath sonication (10 min × 3) followed by
centrifugation (10,000× g; 15 min; 4 ◦C). The separation of the material was performed with
the application of the Shimadzu HPLC system (Shimadzu Corporation, Kyoto, Japan). First,
the sample was loaded onto a Biotage®Sfär C18 D flash chromatography column (120 g, 100 Å,
30 µm) (Biotage, Uppsala, Sweden) and a step gradient elution (12 mL ×min−1) with water:
methanol mixture was applied. The fractions containing CPs were evaporated in a centrifugal
vacuum concentrator (MiVac, SP Scientific, Ipswich, UK) and subjected to further separa-
tion in Jupiter Proteo C12 preparative and analytical columns (250 × 21.2 mm, 4 µm, 90 Å,
12 mL × min−1; 250 × 10.0 mm, 4 µm, 90 Å, 5 mL × min−1; 150 × 4.6 mm, 4 µm, 90 Å,
0.5 mL ×min−1) (Phenomenex, Aschaffenburg, Germany). The mobile phase was a mixture
of 5% acetonitrile in MilliQ water (phase A) and 100% acetonitrile (phase B), both with the
addition of 0.1% formic acid. The collected fractions were analyzed with the application of
LC-MS/MS. If needed, the fractionation process was repeated.

3.2. LC-MS/MS Analysis

The LC-MS/MS system composed of Agilent 1200 HPLC (Agilent Technologies, Wald-
bronn, Germany) and a QTRAP5500 tandem mass spectrometer (Sciex, Toronto, Canada)
was used. Compounds were separated in a Jupiter Proteo C12 column (150 × 4.6 mm,
4 µm, 90 Å) (Phenomenex, Aschaffenburg, Germany), using water: acetonitrile mixture
(both solvents with 0.1% formic acid). The turbo ion spray operated in positive ionisation,
at 550 ◦C; voltage, 5.5 kV; nebuliser gas pressure, 60 psi; curtain gas pressure, 20 psi. To
determine the content of the samples, an IDA (information-dependent acquisition) mode
was used, and ions within the m/z range 500–1250 and intensity greater than 5 × 105 cps
were fragmented. The collision energy was 60 eV, and the dwell time was 100 msec.

3.3. LC-HRMS Analysis

The analysis of CPs present in the cell extract was performed with theapplication of
an Elute HPG1300 HPLC system (Bruker Daltonics, Bremen, Germany) coupled with an
Impact II high-resolution time of flight tandem mass spectrometer (QToF-HRMS) (Bruker
Daltonics, Bremen, Germany). Chromatographic separation was performed in an Atlantis
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T3 C18 column (100 Å, 3 µm, 2.1 mm × 100 mm, Waters) with a VanGuard cartridge
precolumn (Waters). The mobile phases were water (A) and acetonitrile (B) both acidified
with 0.1% formic acid. A gradient elution program from 25 to 100% B was used with a
constant flow of 0.2 mL × min−1. The ESI conditions were: positive ionization mode,
capillary voltage 3100 V, nebulizer gas 1.0 bar, dry gas 6.0 L × min−1, dry gas temperature
220 °C, hexapole 100 Vpp and pre-pulse storage 5 µs. Stepping mode was activated as
follows: collision RF from 200 Vpp to 700 Vpp (50–50% of the timing), transfer time from
20 µs to 80 µs (50–50% of the timing) and collision energy from 8.4 eV to 10.5 eV (25–7 5%
of the timing). Full scan accurate mass spectra were obtained in the range 50–1300 m/z
in Auto MS (Data Dependent Analysis, DDA) with dynamic exclusion. Calibration was
carried out in every sample run using the sodium formate cluster ions (10 mM). Bruker’s
HyStar and Data Analysis software was utilized for data acquisition, calibration, and raw
data conversion to the .mzXML format before further processing.

3.4. Molecular Networking

A molecular network was created with the Feature-Based Molecular Networking
(FBMN) workflow [92] on GNPS (https://gnps.ucsd.edu, accessed on 10 August 2023) [93].
The mass spectrometry data were first processed with MZmine3 [104] and the results
were exported to GNPS for FBMN analysis. Data were filtered by removing all MS/MS
fragment ions within ±17 Da of the precursor m/z. MS/MS spectra were window filtered
by choosing only the top 6 fragment ions in the ±50 Da window throughout the spectrum.
The precursor ion mass tolerance was set to 0.05 Da and the MS/MS fragment ion tolerance
to 0.05 Da. A molecular network was then created where the edges were filtered to have a
cosine score greater than 0.7 and more than 6 matched peaks. Further, edges between two
nodes were kept in the network if, and only if, each of the nodes appeared in each others
respective top 10 most similar nodes. Finally, the maximum size of a molecular family was
set to 100, and the lowest scoring edges were removed from the molecular families until
the molecular family size was below this threshold. The spectra in the network were then
searched against the GNPS spectral libraries [93]. The library spectra were filtered in the
same manner as the input data. All matches kept between network spectra and library
spectra were required to have a score greater than 0.7 and at least 6 matched peaks. The
DEREPLICATOR was used to annotate MS/MS spectra [105]. The molecular networks
were visualized using Cytoscape software [106].

3.5. NMR Analysis

The 1H NMR and 2D homo- and heteronuclear NMR (COSY, TOCSY, ROESY, HSQC,
and HMBC) were acquired with the application of a Bruker Avance III spectrometers at
500 MHz (1D NMR) and 700 MHz (2D NMR). The spectra were recorded in dimethyl
sulfoxide-d6 (DMSO-d6). The NMR data were processed and analyzed by TopSpin (Bruker,
Billerica, MA, USA) and POKY software [107].

3.6. Enzymatic Assays

The enzyme inhibitory activity of cyanopeptolins was assayed against trypsin [108],
chymotrypsin, thrombin [109], and elastase [57] as described before [98]. In brief, the samples
were prepared and serially diluted (1 mg, 1:1—1:10,000 times) in 1% DMSO; the standard
inhibitors: aprotinin (trypsin and chymotrypsin) AEBSF 4-(2-aminoethyl)benzenesulfonyl
fluoride hydrochloride (thrombin), elastatinal (elastase) (all from Sigma Aldrich; St. Louis,
MO, USA) were also prepared in 1% DMSO. DMSO (1%) without the addition of the enzyme
served as a negative control. All tests were carried out in triplicates. After the incubation
of the assay mixtures, the absorbances were measured at 405 nm (Varioskan Flash Thermo
Fisher Scientific OY, Vantaa, Finland). The reduction in enzyme activity greater than 50% was
considered as significant.

https://gnps.ucsd.edu
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3.7. MTT Assays

The cytotoxic activity of the selected 17 CPs against the HeLa cervical cancer cell line
(Merck KGaA, Darmstadt, Germany) was assessed with the MTT (3-(4,5-dimethylthiazole-
2-yl)-2,5-diphenyltetrazolium bromide) assay according to Felczykowska et al. [110]. HeLa
cells were seeded at 4 × 103 cells per well in DMEM medium (Merck KGaA) supplemented
with 10% (v/v) fetal bovine serum (Merck KGaA) and penicillin-streptomycin solution
(1% v/v, stock solution 50 u and 0.05 mg ×mL−1, respectively; Merck KGaA). Cells were
allowed to attach overnight, and then the tested compounds prepared in 1% DMSO were
added. After incubation (24 h), 25 µL of MTT solution (4 mg ×mL−1; Merck KGaA) were
added and then the samples were incubated for another 4 h. The formazan crystals were
dissolved with 100% DMSO and absorbance was measured with Spectramax i3 (Molecular
Deviecs, LLC San Jose, CA, USA). The reduction in cell viability greater than 60% was
considered as significant.

4. Conclusions

Analysis of concentrated samples obtained from higher biomass of Nostoc edaphicum
CCNP1411 resulted in the identification of 93 cyanopeptolins, including 79 new variants.
To the best of our knowledge, this is the highest number of cyanopeptides ever recorded in
one strain. The tests performed with the application of 34 isolated CPs of diverse structure
confirmed the role of the residue located between Thr1 and Ahp3 on the activity of the
compounds. Arg2-containing CPs were most active against trypsin, CPs with hydrophobic
amino acid in position 2 inhibited chymotrypsin, while only CPs with Leu2 inhibited
elastase and showed the most potent cytotoxic effect on human cervical cancer (HeLa)
cells. The enzymatic assays also indicated the significance of the CP side-chain for the
interactions with serine proteases. With the cytotoxic activity against cancer cells and the
activity against enzymes implicated in a number of human diseases, CPs can be classified
as lead compounds for further studies on their pharmaceutical potential.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/md21100508/s1, Table S1. Cyanopeptolin variants de-
scribed so far.; Table S2. Cyanopeptolin variants produced by the Nostoc edaphicum CCNP1411.;
Figure S1. Structure and enhanced product ion mass spectrum of the cyanopeptolin CP 777.; Fig-
ure S2. Structure and enhanced product ion mass spectrum of the cyanopeptolin CP 807.; Figure
S3. Structure and enhanced product ion mass spectrum of the cyanopeptolin CP 892.; Figure S4.
Structure and enhanced product ion mass spectrum of the cyanopeptolin CP 922.; Figure S5. Struc-
ture and enhanced product ion mass spectrum of the cyanopeptolin CP 934.; Figure S6. Structure
and enhanced product ion mass spectrum of the cyanopeptolin CP 944.; Figure S7. Structure and
enhanced product ion mass spectrum of the cyanopeptolin CP 950.; Figure S8. Structure and en-
hanced product ion mass spectrum of the cyanopeptolin CP 962 [8].; Figure S9. Structure and
enhanced product ion mass spectrum of the cyanopeptolin CP 964.; Figure S10. Structure and
enhanced product ion mass spectrum of the cyanopeptolin CP 976.; Figure S11. Structure and en-
hanced product ion mass spectrum of the cyanopeptolin CP 978 [8].; Figure S12. Structure and
enhanced product ion mass spectrum of the cyanopeptolin CP 992 [8].; Figure S13. Structure and
enhanced product ion mass spectrum of the cyanopeptolin CP 992b.; Figure S14. Structure and
enhanced product ion mass spectrum of the cyanopeptolin CP992c.; Figure S15. Structure and en-
hanced product ion mass spectrum of the cyanopeptolin CP 1006 [8].; Figure S16. Structure and
enhanced product ion mass spectrum of the cyanopeptolin CP 1008.; Figure S17. Structure and
enhanced product ion mass spectrum of the cyanopeptolin CP 1018 [8].; Figure S18. Structure and
enhanced product ion mass spectrum of the cyanopeptolin CP 1020b [8].; Figure S19. Structure
and enhanced product ion mass spectrum of the cyanopeptolin CP 1020.; Figure S20. Structure
and enhanced product ion mass spectrum of the cyanopeptolin CP 1034.; Figure S21. Structure
and enhanced product ion mass spectrum of the cyanopeptolin CP 1036.; Figure S22. Structure and
enhanced product ion mass spectrum of the cyanopeptolin CP 1046.; Figure S23. Structure and en-
hanced product ion mass spectrum of the cyanopeptolin CP 1048 [8].; Figure S24. Structure and
enhanced product ion mass spectrum of the cyanopeptolin CP 1076.; Figure S25. Structure and en-
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hanced product ion mass spectrum of the cyanopeptolin CP 891.; Figure S26. Structure and enhanced
product ion mass spectrum of the cyanopeptolin CP 907.; Figure S27. Structure and enhanced prod-
uct ion mass spectrum of the cyanopeptolin CP 921.; Figure S28. Structure and enhanced product
ion mass spectrum of the cyanopeptolin CP 933.; Figure S29. Structure and enhanced product ion
mass spectrum of the cyanopeptolin CP 935.; Figure S30. Structure and enhanced product ion mass
spectrum of the cyanopeptolin CP 947.; Figure S31. Structure and enhanced product ion mass spec-
trum of the cyanopeptolin CP 963.; Figure S32. Structure and enhanced product ion mass spectrum
of the cyanopeptolin CP 963b.; Figure S33. Structure and enhanced product ion mass spectrum
of the cyanopeptolin CP 965b.; Figure S34. Structure and enhanced product ion mass spectrum
of the cyanopeptolin CP 975.; Figure S35. Structure and enhanced product ion mass spectrum
of the cyanopeptolin CP 977.; Figure S36. Structure and enhanced product ion mass spectrum
of the cyanopeptolin CP 991.; Figure S37. Structure and enhanced product ion mass spectrum
of the cyanopeptolin CP 1005.; Figure S38. Structure and enhanced product ion mass spectrum
of the cyanopeptolin CP 933b.; Figure S39. Structure and enhanced product ion mass spectrum
of the cyanopeptolin CP 949b.; Figure S40. Structure and enhanced product ion mass spectrum
of the cyanopeptolin CP 939b.; Figure S41. Structure and enhanced product ion mass spectrum
of the cyanopeptolin CP 967b.; Figure S42. Structure and enhanced product ion mass spectrum
of the cyanopeptolin CP 1011c.; Figure S43. Structure and enhanced product ion mass spectrum
of the cyanopeptolin CP 937.; Figure S44. Structure and enhanced product ion mass spectrum
of the cyanopeptolin CP 939.; Figure S45. Structure and enhanced product ion mass spectrum
of the cyanopeptolin CP 953b.; Figure S46. Structure and enhanced product ion mass spectrum
of the cyanopeptolin CP 995.; Figure S47. Structure and enhanced product ion mass spectrum
of the cyanopeptolin CP 1023.; Figure S48. Structure and enhanced product ion mass spectrum
of the cyanopeptolin CP 999d.; Figure S49. Structure and enhanced product ion mass spectrum
of the cyanopeptolin CP 1014.; Figure S50. Structure and enhanced product ion mass spectrum
of the cyanopeptolin CP 925.; Figure S51. Structure and enhanced product ion mass spectrum
of the cyanopeptolin CP 953.; Figure S52. Structure and enhanced product ion mass spectrum
of the cyanopeptolin CP 955.; Figure S53. Structure and enhanced product ion mass spectrum
of the cyanopeptolin CP 967.; Figure S54. Structure and enhanced product ion mass spectrum
of the cyanopeptolin CP 969b.; Figure S55. Structure and enhanced product ion mass spectrum
of the cyanopeptolin CP 981.; Figure S56. Structure and enhanced product ion mass spectrum
of the cyanopeptolin CP 997.; Figure S57. Structure and enhanced product ion mass spectrum
of the cyanopeptolin CP 1011.; Figure S58. Structure and enhanced product ion mass spectrum
of the cyanopeptolin CP 1025b.; Figure S59. Structure and enhanced product ion mass spectrum
of the cyanopeptolin CP 992d. Figure S60. Structure and enhanced product ion mass spectrum
of the cyanopeptolin CP 1036c.; Figure S61. Structure and enhanced product ion mass spectrum
of the cyanopeptolin CP 1050. Figure S62. Structure and enhanced product ion mass spectrum
of the cyanopeptolin CP 929.; Figure S63. Structure and enhanced product ion mass spectrum
of the cyanopeptolin CP 957.; Figure S64. Structure and enhanced product ion mass spectrum
of the cyanopeptolin CP 965.; Figure S65. Structure and enhanced product ion mass spectrum of
the cyanopeptolin CP 969 [8].; Figure S66. Structure and enhanced product ion mass spectrum
of the cyanopeptolin CP 971.; Figure S67. Structure and enhanced product ion mass spectrum of
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the cyanopeptolin CP 983c.; Figure S69. Structure and enhanced product ion mass spectrum of
the cyanopeptolin CP 985 [8].; Figure S70. Structure and enhanced product ion mass spectrum
of the cyanopeptolin CP 993. Figure S71. Structure and enhanced product ion mass spectrum of
the cyanopeptolin CP 997b.; Figure S72. Structure and enhanced product ion mass spectrum of
the cyanopeptolin CP 999b.; Figure S73. Structure and enhanced product ion mass spectrum of
the cyanopeptolin CP 999c.; Figure S74. Structure and enhanced product ion mass spectrum of
the cyanopeptolin CP 1011b. Figure S75. Structure and enhanced product ion mass spectrum of
the cyanopeptolin CP 1013 [8].; Figure S76. Structure and enhanced product ion mass spectrum
of the cyanopeptolin CP 1013b.; Figure S77. Structure and enhanced product ion mass spectrum
of the cyanopeptolin CP 1013c.; Figure S78. Structure and enhanced product ion mass spectrum
of the cyanopeptolin CP 1016.; Figure S79. Structure and enhanced product ion mass spectrum
of the cyanopeptolin CP 1025.; Figure S80. Structure and enhanced product ion mass spectrum of
the cyanopeptolin CP 1027 [8].; Figure S81. Structure and enhanced product ion mass spectrum
of the cyanopeptolin CP 1036b.; Figure S82. Structure and enhanced product ion mass spectrum
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of the cyanopeptolin CP 1041.; Figure S83. Structure and enhanced product ion mass spectrum
of the cyanopeptolin CP 1053.; Figure S84. Structure and enhanced product ion mass spectrum
of the cyanopeptolin CP 1055.; Figure S85. Structure and enhanced product ion mass spectrum
of the cyanopeptolin CP 1069.; Figure S86. Structure and enhanced product ion mass spectrum
of the cyanopeptolin CP 1083.; Figure S87. Structure and enhanced product ion mass spectrum
of the cyanopeptolin CP 1097.; Table S3. Diagnostic ions for cyanopeptolins produced by Nostoc
edaphicum CCNP1411.; Table S4. NMR spectroscopic data for cyanopeptolin CP 941—Ac-Asp-[Thr-
Tyr-Ahp-Phe-MePhe-Val].; Figure S88. 1H NMR spectrum of cyanopeptolin CP 941 in DMSO-d6.;
Figure S89. DQF-COSY spectrum of cyanopeptolin CP 941 in DMSO-d6.; Figure S90. TOCSY spec-
trum of cyanopeptolin CP 941 in DMSO-d6.; Figure S91. ROESY spectrum of cyanopeptolin CP 941
in DMSO-d6.; Figure S92. HSQC spectrum of cyanopeptolin CP 941 in DMSO-d6.; Figure S93. HMBC
spectrum of cyanopeptolin CP941 in DMSO-d6.; Table S5. NMR spectroscopic data for cyanopeptolin
CP 999—BA-Asp-[Thr-Tyr-Ahp-Phe-MeTyr(OMe)-Val].; Figure S94. 1H NMR spectrum of cyanopep-
tolin CP 999 in DMSO-d6. Figure S95. DQF-COSY spectrum of cyanopeptolin CP 999 in DMSO-d6.;
Figure S96. TOCSY spectrum of cyanopeptolin CP 999 in DMSO-d6.; Figure S97. ROESY spectrum
of cyanopeptolin CP 999 in DMSO-d6.; Figure S98. HSQC spectrum of cyanopeptolin CP 999 in
DMSO-d6.; Figure S99. HMBC spectrum of cyanopeptolin CP 999 in DMSO-d6.; Table S6. NMR
spectroscopic data for cyanopeptolin CP 990—HA-Asp-[Thr-Arg-Ahp-Phe-MePhe-Val].; Figure S100.
1H NMR spectrum of cyanopeptolin CP 990 in DMSO-d6.; Figure S101. DQF-COSY spectrum of
cyanopeptolin CP 990 in DMSO-d6.; Figure S102. TOCSY spectrum of cyanopeptolin CP 990 in
DMSO-d6.; Figure S103. ROESY spectrum of cyanopeptolin CP 990 in DMSO-d6.; Figure S104. HSQC
spectrum of cyanopeptolin CP 990 in DMSO-d6.; Figure S105. HMBC spectrum of cyanopeptolin CP
990 in DMSO-d6.; Table S7. NMR spectroscopic data for cyanopeptolin CP 983—BA-Asp-[Thr-Phe-
Ahp-Phe-MeTyr(OMe)-Val].; Figure S106. 1H NMR spectrum of cyanopeptolin CP 983 in DMSO-d6.;
Figure S107. DQF-COSY spectrum of cyanopeptolin CP 983 in DMSO-d6.; Figure S108. TOCSY spec-
trum of cyanopeptolin CP 983 in DMSO-d6.; Figure S109. ROESY spectrum of cyanopeptolin CP983 in
DMSO-d6.; Figure S110. HSQC spectrum of cyanopeptolin CP 983 in DMSO-d6.; Figure S111. HMBC
spectrum of cyanopeptolin CP 983 in DMSO-d6.; Table S8. NMR spectroscopic data for cyanopep-
tolin CP 949—BA-Asp-[Thr-Leu-Ahp-Phe-MeTyr(OMe)-Val].; Figure S112. 1H NMR spectrum of
cyanopeptolin CP 949 in DMSO-d6.; Figure S113. DQF-COSY spectrum of cyanopeptolin CP949 in
DMSO-d6.; Figure S114. TOCSY spectrum of cyanopeptolin CP 949 in DMSO-d6.; Figure S115. ROESY
spectrum of cyanopeptolin CP 949 in DMSO-d6.; Figure S116. HSQC spectrum of cyanopeptolin CP
949 in DMSO-d6.; Figure S117. HMBC spectrum of cyanopeptolin CP 949 in DMSO-d6.; Table S9.
NMR spectroscopic data for cyanopeptolin CP 919—BA-Asp-[Thr-Leu-Ahp-Phe-MePhe-Val].; Figure
S118. 1H NMR spectrum of cyanopeptolin CP 919 in DMSO-d6.; Figure S119. DQF-COSY spectrum
of cyanopeptolin CP 919 in DMSO-d6.; Figure S120. TOCSY spectrum of cyanopeptolin CP 919 in
DMSO-d6.; Figure S121. ROESY spectrum of cyanopeptolin CP 919 in DMSO-d6.; Figure S122. HSQC
spectrum of cyanopeptolin CP 919 in DMSO-d6.; Figure S123. HMBC spectrum of cyanopeptolin
CP 919 in DMSO-d6.; Figure S124. A CCNP1411 clusters formed by the GNPS analysis based on the
HRMS/MS fragmentation spectra obtained from Nostoc edaphicum CCNP1411 extract. Clusters are
separated as: A—nodes containing CPs features; B—nodes containing Nostocyclopeptides features,
and C—nodes containing unknown features.
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