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Abstract: Biofilms, responsible for many serious drawbacks in the medical and marine environment,
can grow on abiotic and biotic surfaces. Commercial anti-biofilm solutions, based on the use of
biocides, are available but their use increases the risk of antibiotic resistance and environmental
pollution in marine industries. There is an urgent need to work on the development of ecofriendly
solutions, formulated without biocidal agents, that rely on the anti-adhesive physico-chemical
properties of their materials. In this context, exopolysaccharides (EPSs) are natural biopolymers with
complex properties than may be used as anti-adhesive agents. This study is focused on the effect of
the EPS MO245, a hyaluronic acid-like polysaccharide, on the growth, adhesion, biofilm maturation,
and dispersion of two pathogenic model strains, Pseudomonas aeruginosa sp. PaO1 and Vibrio harveyi
DSM19623. Our results demonstrated that MO245 may limit biofilm formation, with a biofilm
inhibition between 20 and 50%, without any biocidal activity. Since EPSs have no significant impact
on the bacterial motility and quorum sensing factors, our results indicate that physico-chemical
interactions between the bacteria and the surfaces are modified due to the presence of an adsorbed
EPS layer acting as a non-adsorbing layer.

Keywords: exopolysaccharide; anti-adhesive activity; anti-biofilm activity; marine bacteria; non
biocidal agent; Pseudomonas aeruginosa; Vibrio harveyi

1. Introduction

In the natural environment, bacteria do not live in a planktonic condition but as a
biofilm [1]. This way of life provides microorganisms with better resistance to environmen-
tal stress. Several steps govern the formation of biofilms: reversible and then irreversible
adhesion, cell multiplication, the formation of micro colonies, and a polymeric extracellular
matrix, the overall process forming what is called biofilm [2–4]. This matrix allows the
bacteria to exchange genetic information, access a supply of nutrients, and resist antibi-
otics as well as allowing for intercellular communication (quorum sensing) and defense
mechanisms [1,5,6].

Biofilm formation and increased resistance to environmental stresses cause many
problems in marine and medical environments. In the medical environment, any sur-
face, biological or not, is vulnerable to colonization by bacteria. The increase in infection
problems in hospitals is partly due to new technologies that use more and more medical
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technologies and medical equipment. Indeed, the formation of biofilm on this equip-
ment leads to more interventions (removing the contaminant), treatments (antibiotics),
and antibiotic resistance. Moreover, these issues also lead to higher economic costs [7,8].
Infections due to biofilms are responsible for at least 80% of all infections, representing a
significant problem for human health [9]. According to the World Health Organization,
approximately 700,000 people worldwide die each year because of resistance to the various
existing anti-microbial treatments [10].

In the marine environment, the main problem related to biofilm is the development
of biofouling on immersed surfaces. Biofouling is characterized by the first stage of
microbial colonization (bacteria and diatoms) called microfouling, prior to the adhesion
and colonization of macroorganisms such as algae, barnacles, and mussels. Biofouling
leads to a loss of structural integrity and performance, corrosion [11], and the settlement
and development of unwanted aquatic species. Biofouling communities may compete with
cultivated organisms, including predators and host diseases. Several diseases in marine
vertebrates and invertebrates are caused by the ability of pathogens to attach and form
biofilms, leading to vasculitis, gastroenteritis, and ocular lesions in fish. The economic
impact of biofouling management in aquaculture is estimated to be 5–10% of production
costs [12]. Furthermore, the use of antibiotics in aquaculture can lead to the spread of
antibiotic residues in the marine environment, increasing the rate of antibiotic resistance in
marine bacteria and ultimately transferring this resistance to human pathogens [13].

Control methods, such as antibiotics and biocides, are confronted with problems of
antibiotic resistance and pollution. In fact, the regulation of biocidal products is in constant
evolution with improving commercial solution quality to ensure a high level of protection
of human health and the environment as well as antifouling efficacy [14].

This is why it is necessary to be proactive and actively work on the discovery of new
alternatives to these agents. One line of research is the use of active molecules to inhibit
adhesion without toxicity. This is particularly the case for EPSs, which are known as anti-
biofilm agents. For example, marine bacterial EPSs have shown anti-biofilm activity against
Pseudomonas aeruginosa, Vibrio sp., Escherichia coli, and Staphylococcus aureus [15–18]. EPSs
have the ability to inhibit and/or disrupt biofilm formation through different modes of
action [19]. They are able to modify the physico-chemistry of biotic or abiotic surfaces, they
can modulate the expression of cell-cell communication genes or adhesion factors, and they
also have the ability to act on biofilms thanks to biosurfactant properties [19]. For example,
EPS273, produced by a marine bacterium, Pseudomonas stuzeri, plays an anti-biofilm role in
regulating the expression of the PhoP-PhoQ gene and in the quorum sensing pathway [20];
in addition, the EPS A101 from a Vibrio strain was able to disperse P. aeruginosa biofilm due
to the potential EPS/bacterial surface interaction [16].

MO245 is an EPS produced by a marine bacterium, a Vibrio alginolyticus sp., iso-
lated from microbial mats located in Moorea Island lagoon (French Polynesia). This EPS
has a molecular weight of 1.5 MDa and is composed of repeating units of glucuronic
acid, N-acetylglucosamine, and N-acetyl-galactosamine, 2:1:1 (→4)-β-D-GlcpA-(1→4)-
α-D-GalpNAc-(1→3)-β-D-GlcpNAc-(1→4)-β-D-GlcpA-(1→). Due to its structure and
rheological properties (Figure 1), MO245 shows similarities with hyaluronic acid (HA),
which may lead to some close physico-chemical properties [21]. HA (1.5 MDa) is com-
posed of D-glucuronic acid and D-N-acetyl-glucosamine, 1:1 (→4)-β-D-GlcpA- (1→3)-
β-D-GlcpNAc-(1→). Both of them are linear polymers with alternating 1→3 and 1→4
linkages [22]. Moreover, HA has shown interesting anti-adhesive properties [23], without
bactericidal effects [24].

The activity of MO245 was studied on two bacteria. The first one was Pseudomonas
aeruginosa (PaO1), a bacterium that is often associated with biofilm-related infections. This
strain plays an important role in infections such as cystic fibrosis pneumonia, chronic
wound infection, chronic otitis media, chronic bacterial prostatitis, and medical-related
infection [25]. The second one was Vibrio harveyi (DSM19623), a marine bacterial model. It
is a pathogenic bacterium of wild and aquaculture fish and marine invertebrates. Diseases
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caused by this bacterium have lead to serious economic problems in China, Japan, Europe,
and North America [26].

Figure 1. Structure of (A) MO245 and (B) HA.

The aim of this work is (i) to evaluate the anti-adhesive and anti-biofilm activity of the
hyaluronan-like MO245 compared to HA against pathogenic bacteria, and (ii) to determine
its mode of action.

2. Results
2.1. Rheological Characteristics

According to the literature, MO245 and HA were described as having non-Newtonian
or pseudoplastic behavior at high concentrations, with shear-thinning and elastoviscous
behavior. A clear relationship between viscosity and concentration of polysaccharide
solutions has been previously highlighted for MO245 and HA [21,27].

At equal concentrations, MO245 has a lower viscosity than HA (Table 1). The elastic
(G′) and viscous (G”) moduli of MO245 are always lower than HA in the same concentra-
tions and at the same frequency.

Table 1. Comparison of the known rheological properties of MO245 with the properties of HA
described in the literature.

Polysaccharide MW (Da) Viscosity (mPa·s) G′ (Pa) (a) G′′ (Pa) (a) Ref

MO245 1.5 × 106 5 0.9 20 [21]

HA
1.1 × 106 11.6 55.8 67.5

[27]
2.0 × 106 107 220 125

(a): Frequency = 2.5 Hz.

2.2. Biological Activity of MO245 and HA
2.2.1. Anti-Bacterial Activity

1. Bacteriostatic activity

The bacteriostatic activity of MO245 and HA on P. aeruginosa and V. harveyi was
evaluated in a rich medium. Several concentrations were tested: 125, 250, and 500 µg/mL
(full data set not shown). The impact on the growth of bacteria was based on a comparison
between the kinetics in the control Luria Bertani (LB) or Zobell medium for P. aeruginosa
and V. harveyi, respectively, without or with the addition of MO245 or HA in this medium.

Figure 2A,B shows that MO245 and HA did not have any impact on the growth curve
of P. aeruginosa and V. harveyi. The result for all concentrations was the same.
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Figure 2. Impact of MO245 or HA (125 µg/mL) on the growth of (A) P. aeruginosa in LB medium at
37 ◦C and (B) V. harveyi in Zobell medium at 28 ◦C for 30 h under 125 rpm agitation. Average of three
independent replicates ± standard deviation. Bactericidal effect and consumption of MO245 or HA
(125 µg/mL) or glucose (4 g/L) as a carbon source in M9 medium for (C) P. aeruginosa at 37 ◦C and
(D) V. harveyi at 28 ◦C for 26 h under 125 rpm agitation.

2. Use of MO245 or HA as a carbon source

MO245 and HA were tested as a carbon source in an M9 minimum medium supple-
mented with MO245 or HA at 125 µg/mL. The results were compared with glucose as a
carbon source at 4 g/L (Figure 2C,D).

The cell concentration did not significantly increase over time in the presence of
MO245 or HA. In contrast, in the presence of glucose, the concentration increased from 108

to 109 CFU/mL over the same period. The bacteria did not use MO245 or HA at 125 µg/mL
as a carbon source.

3. Bactericidal effect

The bactericidal activity of MO245 and HA was tested in minimum medium M9
supplemented with MO245 or HA at 125 µg/mL. The results were compared to a condition
without MO245 or HA (Figure 2C,D).

The cell concentration remained at 108 CFU/mL and did not significantly decrease
over time in presence of MO245 or HA. MO245 and HA at 125 µg/mL have no bactericidal
effect as shown in Figure 2C,D.

The concentration of 125 µg/mL, the minimum concentration with no bacteriostatic
effect, was chosen for the rest of the studies in order to study their impact on adhesion and
the biofilm.

2.2.2. Anti-Adhesion Activity

MO245 and HA activity on the adhesion of P. aeruginosa and V. harveyi was evaluated
in a flow cell system [28]. The activity of MO245 and HA was assessed in two conditions
(Figure 3).



Mar. Drugs 2022, 20, 728 5 of 22

Figure 3. Conditions of use of MO and HA during adhesion. (A) Addition of MO245 or HA within
the bacterial suspension and (B) glass slide conditioned with MO245 or HA.

The first condition was the addition of MO245 or HA within the minimum bacte-
rial media, allowing the study of the interactions with the biotic surface (called the first
condition). The second was conditioning the adhesion glass surface slide to study the
interactions with the abiotic surface (referred to as the second condition).

Table 2 shows the impact of MO245 and HA on the adhesion of P. aeruginosa and
V. harveyi. For P. aeruginosa, the addition of MO245 at 125 µg/mL within the minimum
bacterial medium shows a significant (p < 0.001) 53% decrease in adhesion. The effect of
MO245 in the second condition showed a significant decrease (p < 0.001) of 44% of adhesion.
For V. harveyi, MO245 decreased adherence by 29 and 49% (p < 0.001) compared to the
control when there was a conditioning of the biotic (first condition) and abiotic surface
(second condition).

Table 2. Anti-adhesion activity of MO245 and HA at 125 µg/mL on P. aeruginosa and V. harveyi under
two conditions.

Strain

Percentage of Adhesion Inhibition

First Condition Second Condition

MO245 HA MO245 HA

P. aeruginosa −53 ± 15% *** −6 ± 11% −44 ± 15% *** +6 ± 12%
V. harveyi −29 ± 18% *** 0 ± 15% −49 ± 17% *** −4 ± 24%

*** Significant difference at α 5%: p < 0.001 with the control without MO245 or HA.

In all cases, the activity of MO245 was significantly (p < 0.001) more than HA at
125 µg/mL. HA did not demonstrate an impact on the adhesion of either bacterial strain.

2.2.3. Impact on the Biofilm Maturation

The impact of MO245 and HA at 125 µg/mL on biofilm maturation was tested on
P. aeruginosa and V. harveyi. Biofilms were grown after allowing 2 h for bacterial adhesion
in the absence of MO245 or HA, and then a 24 h supplemented flow to allow colonization.

The addition of MO245 at 125 µg/mL in the growth medium led to a significant
decrease in the P. aeruginosa biofilm maturation. Figure 4 shows a reduction in the biomass
of 38% (p < 0.001). The average thickness decreased by 26% (p < 0.001) compared to the
control. However, with the same condition, HA had no significant impact (p < 0.05) on
biofilm maturation.

For the V. harveyi strain, Figure 5 shows that the addition of MO245 or HA at 125 µg/mL
significantly decreased biofilm maturation. Unlike the case with P. aeruginosa, the addition
of HA in the growth medium led to a significant (p < 0.01) decrease of 38% of the biomass
and 37% (p < 0.01) in the average thickness of the biofilm. MO245 led to a significant
(p < 0.001) diminution of 53% of the biomass and a significant (p < 0.001) diminution of 49%
of the average thickness.
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Figure 4. Impact of MO245 and HA on a 24 h P. aeruginosa biofilm maturation. (A) Biomass and
average thickness quantification after COMSTAT analysis of confocal laser microscopy observations.
(B) Confocal laser microscopy observation (Syto9®) without or with the addition of MO245 or HA at
125 µg/mL in the LB growth medium. Data represent the mean± the standard deviation. * represents
the significant difference at α 5%: p < 0.05, *** represents the significant difference at α 5%: p < 0.001.

Figure 5. Impact of MO245 and HA on a 24 h V. harveyi biofilm maturation. (A) Biomass and
average thickness quantification after COMSTAT analysis of confocal laser microscopy observation.
(B) Confocal laser microscopy observation (Syto9®) without or with the addition of MO245 or HA
at 125 µg/mL in the Zobell growth medium. Data represent the mean ± the standard deviation.
** represents the significant difference at α 5%: p < 0.01; *** represents the significant difference at
α 5%: p < 0.001.

A double staining with Syto9® and propidium iodide was performed. The results
showed no red cells, therefore no dead cells (data not shown).

2.2.4. Impact on the Degradation of the Biofilm

The impact of MO245 and HA was tested on the disruption of a biofilm already formed.
P. aeruginosa or V. harveyi biofilms were formed in the flow cell system for 24 h in a growth
medium not supplemented with MO245 or HA. After 24 h of incubation, MO245 or HA at
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125 µg/mL were inoculated in the flow cell chamber. The degradation was observed after
2 h of MO245 or HA incubation on the biofilm and 30 min of washing.

The impact of MO245 and HA on the disruption of P. aeruginosa biofilm (Figure 6)
showed that MO245 and HA significantly decreased the average thickness by approxi-
mately 23%. However, only MO245 significantly decreased the biomass of the biofilm by
19% (p < 0.01).

Figure 6. Impact of MO245 and HA on the degradation of a 24 h P. aeruginosa biofilm already
formed. (A) Biomass and average thickness quantification after COMSTAT analysis of confocal
laser microscopy observation. (B) Confocal laser microscopy observation (Syto9®) without or with
the addition of MO245 or HA at 125 µg/mL on a 24 h biofilm already formed. Data represent the
mean ± the standard deviation. * represents the significant difference at α 5%: p < 0.05, ** represents
the significant difference at α 5%: p < 0.01.

Figure 7 shows that the effect of MO245 and HA on the preformed V. harveyi biofilm
led to the same results as P. aeruginosa. MO245 and HA significantly decreased (p < 0.01)
the average thickness by 30% and 27%, respectively. As previously shown for P. aeruginosa,
only MO245 had an impact on the biomass: the decrease was 28% (p < 0.01).

A double staining with Syto9® and propidium iodide was performed. The results
showed no red cells, therefore no dead cells (data not shown).

2.2.5. Morphological Impact on Bacteria

To understand how MO245 and HA could act on the cells, the impact on morphology
was tested. The cells were adhered to glass coverslips with and without conditioning
for 2 h at 20 ◦C in minimum medium and then observed, after fixation with glutaralde-
hyde and ethanol dehydration, under a scanning electron microscope (SEM). No impact
on morphology was observed in the presence of MO245 or HA with and without condi-
tioning (Figure S1). MO245 and HA activity would not appear to be from a change in
cell morphology.

2.3. Evaluation of the Biological Role of MO245 and HA
2.3.1. Impact on the Bacterial Motility

MO245 or HA was incubated at 125 µg/mL with P. aeruginosa or V. harveyi, in physio-
logical water or artificial seawater (ASW), respectively, for 2 h. The impact of MO245 and
HA on the motility was shown with the measurement of a growing circular zone. Separate
agar plates were used for swimming, swarming, and twitching tests [29].
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Figure 7. Impact of MO245 and HA on the degradation of a 24 h V. harveyi biofilm already formed.
(A) Biomass and average thickness quantification after COMSTAT analysis of confocal laser mi-
croscopy observation. (B) Confocal laser microscopy observation (Syto9®) without or with the
addition of MO245 or HA at 125 µg/mL on a 24 h biofilm already formed. Data represent the
mean ± the standard deviation. ** represents the significant difference at α 5%: p < 0.01, *** repre-
sents the significant difference at α 5%: p < 0.001.

Figure 8A shows the impact of HA on the swarming of P. aeruginosa and the impact
of MO245 on the twitching of the bacteria. However, no impact on the swimming was
recorded. For V. harveyi, no impact was recorded from MO245 or HA on the motility of the
bacterium as shown in Figure 8B.

Figure 8. Motility assay of (A) P. aeruginosa and (B) V. harveyi incubated with MO245 or HA at
125 µg/mL or nothing for 2 h at room temperature. Diameters were measured after the overnight
incubation of agar plates at 37 ◦C for P. aeruginosa and 28 ◦C for V. harveyi. Data represent the
mean ± the standard deviation. * represents the significant difference at α 5%: p < 0.05.

The impact of MO245 or HA on P. aeruginosa and V. harveyi does not appear to be
linked to a decrease in the motility of bacteria.
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2.3.2. Anti-Quorum Sensing Properties

The E. coli biosensor pSB401 allows the recognition of C6-HSLs leading to luminescence
emission by activation of the luxCDABE gene. This luminescence is directly correlated to
the quorum sensing of P. aeruginosa. The impact of MO245 and HA on the quorum sensing
of P. aeruginosa has been studied by this mean. Kojic acid, a known inhibitor of quorum
sensing, was used as a control.

The results (Figure 9A) showed no significant effect of MO245 or HA on the lumines-
cence to optical density ratio (RLU) of the E. coli pSB401 biosensor. Therefore, MO245 and
HA had no impact on this quorum-sensing pathway of P. aeruginosa using C6-HSLs.

Figure 9. Anti-quorum sensing effect of MO245, HA, and kojic acid (KA) at 125 µg/mL on (A) the
biosensor E. coli pSB401 and (B) V. harveyi for 9 h at 28 ◦C under 125 rpm agitation. Luminescence
and O.D.600 were measured every hour and RLU ratios were calculated.

V. harveyi is a bioluminescent bacterium. The bioluminescence is directly related to the
quorum sensing of the bacterium [30]. The impact of MO245 and HA was therefore tested
on the quorum sensing of V. harveyi by a kinetic of the RLU. The results (Figure 9B) showed
no effect of MO245 and HA at 125 µg/mL on V. harveyi quorum sensing.

Additionally, no decrease in luminescence was observed over time in the presence of
the MO245 or HA, in contrast to kojic acid.

2.4. Evaluation of Cell-Surface Interactions
2.4.1. Microbial Adherence to Hydrocarbons (MATH)

The MATH test allows the study of the impact of MO245 and HA on the surface
hydrophobicity of bacteria [31]. For this purpose, P. aeruginosa and V. harveyi were exposed
to MO245 or HA for 2 h and then toluene. Estimation of the hydrophobicity was performed
by measuring the absorbance of the aqueous phase.

P. aeruginosa showed a hydrophobicity of 62% and V. harveyi of 76%. These results
were supported by previous studies on P. aeruginosa and V. harveyi showing a surface
hydrophobicity of 68% [32] and 80%, respectively [30].

Results, Figure 10, showed that MO245 significantly decreased the surface hydropho-
bicity of P. aeruginosa from 62% to 34% (p < 0.05), in contrast to HA. However, the MATH
assay did not show a change in the hydrophobicity of V. harveyi in the presence of MO245
or HA. The hydrophobicity of V. harveyi remained at approximately 76%.
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Figure 10. Percentage hydrophobicity of P. aeruginosa and V. harveyi in the presence of MO245 or HA.
A total of 109 bacteria were put in contact with MO245 or HA at 125 µg/mL for 2 h and then in contact
with toluene. At the appearance of a phase separation, the aqueous phase was recovered and the
optical density was measured. The percentage of hydrophobicity was then calculated. * represents
the significant difference at α 5%: p < 0.05.

The impact of MO245 on the adhesion and biofilm of P. aeruginosa could come from
the modification of the hydrophobicity of the cells. This method did not lead to the same
conclusion for V. harveyi.

2.4.2. Quartz Crystal Microbalance (QCM) Measurements

The adsorption kinetic of MO245 and HA was investigated by QCM, under the same
pH and salinity conditions as for bacterial adhesion. Figure 11 represents the shift in
frequency vs. time for MO245 and HA. For HA, no shift of frequency could be observed,
revealing that HA did not adsorb on the SiO2 surface under these conditions. This result
was in accordance with previous studies [33]. On the contrary, for MO245, a decrease in
frequency up to −18 Hz was recorded, indicating the formation of an adsorbed layer on
the surface. The adsorption of other EPS, under similar conditions (pH 6.2 and I = 100 mM
NaCl) has already been observed by QCM [34], proving the complex adsorption behavior
of MO245 toward the SiO2 surface in comparison with HA.

Figure 11. Evolution of the frequency F3 versus time for MO245 and HA on silica-coated quartz crystal
(pH 7, 150 mM NaCl). MO245 and HA were injected at t = 0 min. After the adsorption of MO245 on
the surface of silica-coated quartz crystal, rinsing was performed to observe if desorption occurred.
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2.4.3. Water Contact Angle of the Abiotic Surface Interaction with MO245 or HA

The water contact angle was used to measure the hydrophobicity of a surface. To
determine the impact of MO245 and HA on the change in hydrophobicity of a surface, the
contact angle with water was measured on surfaces conditioned with MO245 or HA.

A decrease in the contact angle by about 40◦ (p < 0.001) was recorded when the glass
surface was conditioned with MO245 and HA, leading to a hydrophilic surface (Figure 12).

Figure 12. The water contact angle of a surface conditioned with MO245 or HA at 125 µg/mL
measured with a Digidrop. A total of 3 mL of MO245 and HA were deposited on a glass slide and
allowed to evaporate in a sterile environment. Contact angles were measured at room temperature
with a volume of 3 µL. *** represents the significant difference at α 5%: p < 0.001.

2.4.4. Emulsifying Properties

In order to efficiently study the surface active properties of MO245 and HA quickly and
simply, the emulsion index was calculated and the stabilization property of the emulsion
over time was measured [35].

For this purpose, MO245 or HA was mixed with olive oil as an apolar phase. The
emulsion layer was measured at 1 h, 24 h, 48 h, and 168 h, to determine the emulsion index
over time. A known surfactant, Triton X-100, was chosen as a positive control.

The results, Figure 13, showed that MO245 and HA are able to create an emulsion
with olive oil. The results also highlight that they had a lower emulsion index than Triton
X-100, around 60% for MO245 and HA compared to 70% for Triton X-100. However, they
were able to keep the emulsion stable at around 60% up to 168 h. Both MO245 and HA had
interesting surface-active properties.

Figure 13. Emulsifying properties of MO245, HA, and Triton X-100 at 0.25% (w/v) in the oil-in-water
phase over time. The emulsion index was calculated after 1 h, 24 h, 48 h, and 168 h at 20 ◦C.
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3. Discussion

EPSs have displayed interesting anti-adhesive and anti-biofilm properties in many
studies [19] related to their biological activity or their physico-chemical impact [19,36]. This
study evaluated (i) the anti-adhesive and anti-biofilm properties of an EPS, MO245, to
understand its mechanisms of action from a (ii) biological as well as a (iii) physicochemical
point of view.

3.1. Proven Anti-Biofilm Activity for MO245

MO245 and HA, at 125 µg/mL, did not show bactericidal or bacteriostatic effects
against P. aeruginosa and V. harveyi strains. As with MO245, this result has already been
found for several EPS in the literature. For example, a marine bacterium, Bacillus licheni-
formis T14, produced a 1000 kDa EPS with no effect on growth at 400 µg/mL [18]. However,
HA has already shown a strain and concentration-dependent bacteriostatic effect [24].

HA tested at 125 µg/mL, did not show anti-biofilm activity against P. aeruginosa.
Nevertheless, on V. harveyi, HA resulted in a decrease in biofilm biomass. HA has already
been described as a polysaccharide with variable anti-biofilm properties depending on the
molecular weight, concentration, and strains [37]. MO245 was able to disrupt the adhesion
of P. aeruginosa and V. harveyi, prevent biofilm formation, and degrade biofilm, thus showing
anti-biofilm activity. This EPS displayed an interesting activity without toxicity as already
described in other EPSs. An EPS produced by a marine bacterium, Pseudoalteromonas
NCIMB 2021, showed anti-adhesive activity by adsorbing onto a chromium surface [38].
B. licheniformis EPS exhibited dose-dependent anti-biofilm effects on four different strains,
including P. aeruginosa [30].

Several EPSs have already shown similarities in monosaccharide composition and
molecular weight without having the same viscoelasticity, however, no obvious correlation
has been determined between these three parameters. One of the hypotheses concerning
the difference in the anti-adhesive properties between MO245 and HA could come from
the differences in their viscoelastic properties [39].

3.2. The Biological Role of Quorum Sensing of MO245 Was Not Demonstrated

Quorum sensing is a form of cellular communication involving signaling molecules,
autoinducers, and receptors [40]. It is an important mechanism in pathogenic Gram-
negative bacteria for the production of virulence factors and the formation of biofilms [41].

In P. aeruginosa and V. harveyi, quorum sensing has been well-studied and widely
described [42–44]. Many studies aimed to disrupt this communication pathway to fight
against bacterial biofilm formation and proliferation [45].

Therefore, in order to understand how MO245 reduces P. aeruginosa and V. harveyi
biofilm, anti-quorum sensing assays were performed. Results showed no impact of MO245
on one of the quorum sensing paths of P. aeruginosa and V. harveyi. Nevertheless, many
active EPS showed biological activity by targeting quorum sensing and virulence factors,
impacting the expression of certain genes and competitively inhibiting the interactions
involved in adhesion [19,46]. For example, S. thermophilus produces an EPS with the ability
to inhibit the production of the violacein pigment of the C. violaceum biosensor and the
production of the C6-HSL signal molecule. These results highlighted the effect of EPSs on
the expression of virulence and quorum-sensing genes of pathogenic microorganisms [47].
Other EPSs, such as EPS 273 produced by P. stutzeri 273, had effects on the virulence
factors of P. aeruginosa (pyocyanin), thus reducing H2O2 production and extracellular DNA
excretion [48,49].

However, the observed anti-adhesive and anti-biofilm effects of MO245 did not originate
from properties inhibiting the known biological factors of adhesion and biofilm maturation.

3.3. Is the Anti-Biofilm Activity of MO245 Due to Its Physico-Chemical Properties?

The physical chemistry of bacterial and abiotic surfaces plays an important role in cell
adhesion and thus in the development of biofilms. Various interactions are involved in
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the early stages of adhesion and hydrophobic and electrostatic interactions are the most
studied [4]. Indeed, bacteria, being negatively charged, preferentially attach themselves to
positively charged surfaces. Therefore, negatively charged surfaces should cause electro-
static repulsion, thus decreasing the adhesion of bacteria. Moreover, bacteria adhere better
to hydrophobic surfaces, as seen by the favorable interactions of flagella, fimbriae, and pili
on these surfaces [3,4,50].

The results of the impact of MO245 on surfaces showed that the EPS is able to
(i) significantly decrease the hydrophobicity of P. aeruginosa but not V. harveyi, and
(ii) significantly decrease the hydrophobicity of a glass slide. Many EPSs have already
shown their anti-biofilm efficiency thanks to their physico-chemical properties [51]. For
example, an EPS produced by B. licheniformis had the ability to reduce the surface hy-
drophobicity of E. coli by 60% and of P. fluorescens by 25%. Moreover, this EPS also showed
anti-biofilm activities on many pathogenic strains without having any effect on growth. The
mechanism of action of this activity seems to be independent of an anti-quorum sensing
activity but is exerted by the modification of the surfaces by decreasing the hydrophobic-
ity of the cells [30]. In a cyanobacterium (Synechocystis), the production of EPS showed
a significant decrease in surface hydrophobicity and interesting anti-biofilm properties.
Indeed, hydrophobicity tests on the EPS-producing strain showed a significant decrease
in surface hydrophobicity of 90% [52]. Similarly to MO245, the EPS Ec300 produced by
an E. coli strain decreased the hydrophobicity of a glass surface by 20◦ and reduced the
formation of an S. aureus biofilm by 40% [53]. Indeed, it is often observed that surfaces with
a hydrophilic character were less favorable to adhesion by microorganisms [54].

MO245 via QCM-D confirmed its ability to adsorb to a silica surface, to remain after
washing, and thus to change the surface properties as described previously. The ability
of EPSs to adsorb to surfaces has already been demonstrated. For example, dextran, an
important bacterial extracellular polysaccharide, has been shown to adsorb to a silica
surface [55]. However, in the case of MO245, a washing of the quartz crystal resulted in
only a slight decrease in the adsorbed layer, reflecting stronger interactions with the surface
than in the case of dextran, where it was completely removed.

In addition, MO245 played a role at the water-oil interface due to its emulsifying
properties; MO245 was able to stabilize an oil-water emulsion over time. These surfactant
properties have already been demonstrated with other EPSs and linked with anti-biofilm
activities. At the same concentration as MO245, and after 168 h, two EPSs produced by
B. amyloliquefaciens LPL061 had an emulsification index of 30% [56]. The B. licheniformis T14
EPS displayed a similar emulsion index to MO245 (60%) but at half the concentration [18].
Other EPSs have shown their ability to act as surfactants such as an EPS produced by
L. helveticus MB2-1 which has the ability to stabilize an emulsion over time and inhibit the
attachment step and self-aggregation by decreasing the interactions between cells or cells
and a substrate [57]. For an O. iheyensis BK6 strain, the anti-biofilm properties come from
both surface tension reduction and emulsifying properties [58].

3.4. Complex Physico-Chemical Properties of MO245

In this study, the activity of MO245 was determined through its surface modification
properties and not by modulation sof the biological activity (Figure 14). However, several
scientific questions remain to be investigated.

Firstly, the anti-adhesion results of MO245 against P. aeruginosa were explained by a
change in the hydrophobicity of biotic and abiotic surfaces. However, concerning V. harveyi,
MO245 led mainly to a modification of the abiotic surface. It would be interesting to
demonstrate, using complementary analytical methods, the adsorption of MO245 on the
surface of V. harveyi. Does the activity of MO245 result from a combined effect between
biotic and abiotic adsorption or is there a balance between biotic and abiotic surface
adsorption in order to have an anti-adhesive effect?



Mar. Drugs 2022, 20, 728 14 of 22

Figure 14. Summary scheme of the potential anti-biofilm mode of action of MO245.

Secondly, concerning HA, a lower activity than MO245 was observed while it de-
creased the hydrophobicity of the abiotic surface in the same way. One hypothesis for this
change in activity is that HA does not adsorb to surfaces in the same way as MO245 because
the purity is not the same as MO245. This difference in purity could explain differences in
adsorption to surfaces. The weak protein portion could also allow the adsorption of MO245
to the surfaces, allowing the polysaccharide portion to have anti-biofilm activity [38].

3.5. Biotechnological Interests

The EPS MO245, due to its ability to prevent adhesion, biofilm maturation, and
degrade a preformed biofilm, is a new candidate as an alternative to antibiotics and biocidal
agents. Moreover, the first results of its anti-biofilm mode of action could be directly linked
to its surfactant properties. Due to these properties, MO245 could have a wide field of
application in aquaculture, the cosmetic industry, or in the hospital environment [36].

In addition, HA, in other forms, is also often used in medical and marine applications;
MO245, based on the results of this study, would make a good alternative or complement
to HA.

4. Materials and Methods
4.1. Materials

The HA 1.5 MDa (protein ≤ 0.1%) was purchased from Glentham (Corsham, United
Kingdom). Sodium dibasic phosphate, potassium phosphate, ammonium chloride, magne-
sium chloride, calcium chloride, magnesium sulfate, L-arginine, antibiotics, kojic acid, and
olive oil were ordered from Sigma (Lezennes, France). Sodium chloride and glucose were
bought from Grosseron (Couëron, France). Yeast extract, tryptone, agar, and glycerol were
ordered from Fisher Bioreagent (Illkirch-Graffenstaden, France). Vitamin-free casamino
acid was purchased from Difco (Saint-Ferréol, France). Glutaraldehyde solution, 25%, was
purchased from Fisher Scientific (Illkirch-Graffenstaden, France). Triton X-100, Tris, and
sodium dodecyl sulfate (SDS) were ordered from Roth (Lagny-sur-Marne, France).
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4.2. Strains and Growth Conditions

P. aeruginosa PaO1 was cultivated in LB medium (NaCl 10 g/L, Yeast Extract 5 g/L,
Tryptone 10 g/L) at 37 ◦C under agitation at 125 rpm.

V. harveyi DSM19623 was cultivated in Zobell medium (Sea Salt 30 g/L, Yeast Extract
1 g/L, Tryptone 4 g/L) at 28 ◦C under agitation at 125 rpm.

4.3. Industrial Production, Extraction, and Purification of MO245

Large-scale production was performed in a 500 L bioreactor containing a Zobell-
adapted medium. Dextrose was added in a continuous fed batch to maintain a high C/N
ratio. Aeration and agitation were maintained at the highest level, pH was adjusted at
7.4 with NaOH (8 N), and the temperature was maintained at around 30 ◦C. Foaming was
avoided by the addition of Pluronic acid (BASF). After around 48 h cultivation, MO245
EPS was extracted from the culture medium by high-speed disk-stack centrifugation at
14,000× g. The supernatant was then subjected to ultrafiltration using hollow fiber, 100 kD
cut-off, polyestersulfone membranes (Koch Industrie Inc., Wichita, KS, USA) and washed
with deionized water. After a sterilizing frontal filtration in a 0.2 µm filter, purified EPS
was concentrated up to 1% (w/v) and freeze-dried.

The purity of MO245 was moisture < 10% and protein < 3%.

4.4. Anti-Bacterial Activity

The anti-bacterial activities of MO245 and HA were assessed against Pseudomonas
aeruginosa PaO1 and Vibrio harveyi DSM19623.

P. aeruginosa and V. harveyi were grown overnight and were then diluted to reach
106 CFU/mL (O.D.600 = 0.001) in 50 mL of culture media (LB for P. aeruginosa and Zobell
for V. harveyi), containing MO245 or HA at 125, 250, or 500 µg/mL. A negative control was
performed without MO245 or HA. All trials were subjected to incubation at 37 ◦C for 30 h
under 125 rpm for P. aeruginosa and 28 ◦C for 30 h for V. harveyi. Every hour, the optical
density (O.D.600) was recorded at 600 nm and 0.1 mL of the dilution, between 101 and 103,
was spread on the LB agar for P. aeruginosa and Zobell agar for V. harveyi. Agar plates were
incubated at 37 ◦C for 24 h for P. aeruginosa and 28 ◦C for 24 h for V. harveyi. Unit forming
colonies (UFC) were then counted.

The ability of bacteria to use MO245 or HA as a carbon source was determined. For
this purpose, M9 medium (Na2HPO4 30 g/L, KH2HPO4 15 g/L, NH4Cl 0.1 g/L, and
NaCl 0.5 g/L for P. aeruginosa and Sea Salt 20 g/L for V. harveyi, MgCl2 2 mM, and CaCl2
0.1 mM) was used. MO245 and HA were added at 125 µg/mL. A medium supplemented
with glucose at 4 g/L was used as a positive control and the M9 medium alone as a
negative control.

Bacteria were inoculated at 108 CFU/mL (O.D.600 = 0.1), in 50 mL M9 in 250 mL
Erlenmeyer flasks, under agitation at 125 rpm, at 37 ◦C and 28 ◦C for P. aeruginosa and
V. harveyi, respectively. At 3 h, 6 h, 24 h, and 26 h, the O.D. was recorded at 600 nm and
dilutions between 101 and 103 were inoculated on LB and Zobell agar for P. aeruginosa and
V. harveyi, respectively. The agar plates were then incubated at optimal temperatures. UFC
were then counted.

All experiments were run in triplicate.

4.5. Anti-Adhesion Activity

MO245 and HA activities on the adhesion of P. aeruginosa and V. harveyi were evaluated
using the flow cell system [59]. Bacterial adhesion was assessed in a three-channel flow cell
(1 × 4 × 44 mm, Biocentrum DTU Danemark) prepared with a microscope glass coverslip
(24 × 50 mm) [28]. Before the experiment, flow cells were sterilized under UV lamps for
30 min. The tubing system was sterilized overnight using a bleach flow at 130 µL/min and
then rinsed with media (minimum medium for P. aeruginosa and ASW for V. harveyi).

Anti-adhesion activity was performed in two conditions: the first condition consisted
of the addition of MO245 or HA within the bacterial suspension on the channel (Figure 4A);
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the second condition consisted of conditioning the surface glass slide with MO245 or HA
(Figure 4B) for 2 h at room temperature, then the surface was washed 30 min at 130 µL/min.
Bacteria were inoculated. MO245 and HA were used at 125 µg/mL.

For each sample, 300 µL of 108 CFU/mL bacteria dilution was inoculated in every
channel with a 1 mL syringe [28]. After incubation at 20 ◦C for 2 h, the system was washed
for 30 min at 130 µL/min to remove planktonic cells.

Bacterial adhesion was observed on Confocal Laser Scanning Microscope (CLSM, LSM
710 from Zeiss, Germany) with 5 µM of Syto9® nucleic acid strain (Invitrogen from fisher)
by using a 40× oil immersion objective. The recovery percentage was calculated by using
the ImageJ software and measuring the difference between the black and white pixels. The
percentage of adhesion inhibition was represented as:

Percentage adhesion inhibition =

(
1− recovery percentage with MO245 or HA

recovery percentage control

)
× 100 (1)

Ten observations per condition were realized in triplicate. Those 30 acquisitions were
then analyzed.

4.6. Impact on the Biofilm Maturation

MO245 and HA activities on the biofilm maturation of P. aeruginosas and V. harveyi were
evaluated in the flow cell system. The flow cell system was prepared as described above.

P. aeruginosa and V. harveyi were adhered in the channels at 108 CFU/mL for 2 h at
room temperature in minimum media. The anti-biofilm activity was evaluated with a
nutrient flow supplemented with MO245 or HA at 125 µg/mL at 64 µL/min for 24 h at
37 ◦C for P. aeruginosa and 28 ◦C for V. harveyi. A control without the addition of MO245 or
HA in the medium was performed under the same conditions.

Bacterial biofilm was observed by CLSM as described above for bacterial adhesion.
Total biomass and average thickness were determined with the COMSTAT program from
MATLAB software. The normalized data were expressed as:

Normalized data =
data with MO245 or HA

data control
(2)

The inhibition factor was calculated by a ratio between the values of biofilm between
the control (bacteria without MO245 or HA) and the values obtained by the addition of
MO245 or HA. The percentage of biofilm maturation inhibition was represented as:

Percentage biomass inhibition =

(
1− biomass with MO245 or HA

biomass percentage control

)
× 100 (3)

Percentage thickness inhibition =

(
1− thickness with MO245 or HA

thickness control

)
× 100 (4)

Seven observations per condition were realized in triplicate. Those 21 acquisitions
were then analyzed.

4.7. Impact on the Degradation of the Biofilm

The ability of MO245 and HA to degrade a preformed biofilm was tested in a flow
cell system.

P. aeruginosa and V. harveyi were adhered in the channels at 108 CFU/mL for 2 h at
room temperature, in minimum media. The biofilm was grown in a culture medium at
64 µL/min for 24 h at 37 ◦C for P. aeruginosa and 28 ◦C for V. harveyi. MO245 or HA at
125 µg/mL was injected in the channels with a 1 mL syringe for 2 h at 37 ◦C for P. aeruginosa
and 28 ◦C for V. harveyi. A flow at 130 µL/min was added after incubation for 30 min to
eliminate the degraded biofilm and planktonic cells.

Bacterial biofilm was observed by CLSM followed by image analysis as described
above. The normalized data was calculated as mentioned before. The detachment factor
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was calculated by a ratio between the bacterial biovolume of the control (bacteria without
MO245 or HA) and the bacterial biovolume obtained by the addition of MO245 or HA. The
percentage of biofilm detachment was represented as mentioned above.

Seven observations per condition were realized in triplicate. Those 21 acquisitions
were then analyzed.

4.8. Morphological Impact on Bacteria

The impact of MO245 or HA on cell morphology was determined by SEM observation.
Both adhesion conditions were observed.

For the adhesion without conditioning, MO245 and HA at 125 µg/mL were incubated
in the presence of bacteria at 108 CFU/mL for 2 h at 20 ◦C. Then, the suspension was placed
on a glass slide for 2 h at 20 ◦C. The non-adhered bacteria were washed in physiological
water for P. aeruginosa or ASW for V. harveyi.

For adhesion with beforehand surface conditioning, MO245 or HA at 125 µg/mL was
incubated on a glass slide for 2 h at 20 ◦C. Excess MO245 or HA was removed by pipetting.
Bacteria at 108 CFU/mL were inoculated on the conditioned glass slides for 2 h at 20 ◦C.
The non-adhered bacteria were washed in physiological water for P. aeruginosa or ASW for
V. harveyi.

All slides were fixed in a 2.5% (v/v) glutaraldehyde bath overnight at 4 ◦C. Afterward,
the samples were washed three times for 10 min, in 0.1 M phosphate buffer with a pH of
7.35. They were then dehydrated by replacing the water with ethanol in a succession of
washes: three times for 10 min in 50% ethanol, three times for 10 min in 70% ethanol, three
times for 10 min in 95% ethanol, and three times for 10 min in 100% ethanol. Finally, the
samples were dried in the air and then observed by SEM.

SEM was performed using a JEOL JSM-IT500HR. The samples were placed on a carbon
sticker and coated with gold using a sputter coater (Scancoat6) from Edward. Observations
were conducted under high vacuum conditions with an acceleration voltage of 3 kV.

4.9. Evaluation of the Biological Role of MO245 and HA
4.9.1. Impact on the Bacterial Motility

The impact of MO245 and HA on the motility of P. aeruginosa and V. harveyi was
evaluated. LB medium or Zobell medium was supplemented with 3 g/L, 5 g/L, or 10 g/L to
test the impact of MO245 or HA on swimming, swarming, and twitching, respectively [29].
Bacteria were incubated at 108 UFC/mL, from an overnight culture, with physiological
water, MO245, or HA at 125 µg/mL for 2 h. At the end of the 2 h, plates were inoculated
with sterile toothpicks. Plates were incubated overnight at 37 ◦C or 28 ◦C for P. aeruginosa
and V. harveyi, respectively. Motility was analyzed by comparing the diameter of the
circular zone of each condition.

All experiments were run in triplicate.

4.9.2. Anti-Quorum Sensing Properties of MO245 and HA

The anti-quorum activity of MO245 and HA on P. aeruginosa was performed using the
E. coli biosensor pSB401. This biosensor contained the plasmid containing the luxCDABE
reporter gene. The plasmid pSB401 was maintained in the strain by adding tetracycline at
10 µg/mL. The addition of C6-HSL allowed the activation of the gene and the production
of luminescence [60].

The strain was grown at 28 ◦C under 125 rpm agitation in an LB medium supplemented
with 10 µg/mL tetracycline. This medium was also used for the assays. An overnight
culture of E. coli pSB401 was inoculated into a 100 mL Erlenmeyer flask containing 20 mL
of the medium at 108 CFU/mL. The medium was supplemented with C6-HSL and MO245
and HA were tested at 125 µg/mL or without them as a negative control. A known quorum-
sensing inhibitor, kojic acid, was added as a positive control at the same concentration as
MO245 and HA [61,62].
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Strains were incubated at 28 ◦C and a measurement of luminescence and O.D.600 was
performed every hour for 9 h using a white 96-well plate and a transparent 96-well plate,
respectively (Thermo Scientific). The measurements were performed with a microplate
reader (TECAN Infinite M200 pro).

The RLU was calculated to determine the impact of MO245 or HA on quorum sensing.
The impact of MO245 or HA on V. harveyi quorum sensing was determined via

measurement of luminescence intensity over time. For this purpose, an overnight culture
of V. harveyi was inoculated at 108 CFU/mL into a 100 mL Erlenmeyer flask containing
20 mL of autoinducer (AB) medium. AB medium is composed of NaCl 0.3 M, MgSO4
0.05 M, and vitamin-free casamino acids 0.2% at pH 7.5. After autoclaving, the medium
was complemented with potassium phosphate 0.01 M, L-arginine 0.001 M, and glycerol
1% [63]. As described previously, MO245 and HA were tested at 125 µg/mL or without
them as a negative control. A known quorum-sensing inhibitor, kojic acid, was added as a
positive control [61,62].

Strains were incubated at 28 ◦C and a measurement of luminescence and O.D600 was
recorded every hour for 9 h using a white 96-well plate and a transparent 96-well plate,
respectively. The measurements were performed with a microplate reader (TECAN Infinite
M200 pro).

The luminescence to O.D ratio was calculated to determine the impact of MO245 or
HA on quorum sensing.

All experiments were run in triplicate.

4.10. Cell-Surface Interactions
4.10.1. Microbial Adherence to Hydrocarbure (MATH)

The ability of MO245 or HA to modify the surface of bacteria was studied using
MATH [30].

Pre-cultures of P. aeruginosa and V. harveyi were centrifuged for 5 min at 1000 g at
room temperature. The pellet was washed in 10 mL of minimum medium (physiological
water or ASW for P. aeruginosa and V. harveyi, respectively). In a 2 mL Eppendorf tube,
1 mL of bacterial culture at 109 CFU/mL was placed in contact with 125 µg/mL of MO245
or HA. The solution was inoculated at room temperature for 2 h. The first measurement
of O.D.600m was measured, namely O.DA. A total of 1 mL of toluene was added to the
solution, then the whole was vortexed for 30 s.

The solution was then statically incubated for 1 h (in order to reach the separation
phase). The O.D.600nm of the aqueous phase was then measured, namely O.D.B.

The hydrophobicity of the cells was measured by the calculation:

Hydrophobicity % =

(
1− O.D.B

O.D.A

)
× 100 (5)

All experiments were run in triplicate.

4.10.2. QCM Measurements

MO245 and HA concentrated solutions were prepared, similarly, at a concentration of
15 g/L in Tris buffer solutions and 150 mM in NaCl stirred overnight. The pH was adjusted
to 7.5. From this stock solution, diluted solutions of MO245 and HA were prepared at
750 mg/L in TRIS buffer solution at the same ionic strength and a pH of 7 by the addition
of HCl (1 M). The solutions were then filtered through a 0.45 µm hydrophilic PVDF filter to
eliminate any dust or residual large aggregates prior to any adsorption experiments [33].

QCM measurements were performed using a Q-sense apparatus from Biolin Scientific
(Biolin, Sweden). The technique provides real-time measurements of both the resonance
frequency (∆f) and energy dissipation (∆D) of objects or materials that interact with the
surface of an oscillating crystal. In this work, silica (QSX 303) coated quartz crystals, with a
resonance frequency of 5 MHz, was used (Biolin, Sweden). Prior to any experiments, the
crystal substrates were carefully cleaned using the following procedure: first, the substrate
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was submitted to UV irradiation for 10 min, then it was introduced into a sodium dodecyl
sulfate (SDS) solution (2%) for 30 min, rinsed thoroughly MilliQ water, and dried under
filtered N2 flux. Finally, the dry substrate was again placed under UV light for 10 min and
directly introduced in the QCM flow-through cell. Adsorption experiments were performed
by first stabilizing the frequency and dissipation signal in a blank solution (buffer solution
without MO245 or HA) for at least 30 min under ambient temperature. Once a stable
baseline was obtained, the solution containing the MO245 or HA was injected at a volume
rate of 100 µL/min at ambient temperature. At the end of the adsorption time, the system
was rinsed again with the buffer solution free of MO245 or HA. The QCM measurements
were recorded at several overtones (n = 3, 5, 7, 9 11). For each sample, a minimum of three
replicas were performed to ensure a good reproducibility in the adsorption measurements
and cleaning procedure of both substrates and QCM cells.

4.10.3. Cell-Surface Interactions

Surface modification by EPS was calculated by contact angle measurements. Glass
coverslips were conditioned with MO245 or HA at 125 µg/mL. Briefly, 3 mL of MO245
and HA were deposited on a glass slide and allowed to evaporate in a sterile environment.
The contact angles were then measured with ultrapure water. Water contact angles were
measured with Digidrop (Digidrop, GBX, UK) at room temperature. The volume used was
3 µL.

Five measurements on three slides were performed and all values were averaged. The
resulting 15 measurements were then analyzed.

4.10.4. Emulsifying Properties

The emulsifying activities of MO245 or HA were determined by the emulsion in-
dex [64]. In a 1.5 cm glass tube, 1.5 mL of 0.25% (w/v) MO245 or HA was added to 2.25 mL
of olive oil. The solution was then stirred for 2 min at 40 Hz. Triton X-100 was used as
a known reference surfactant [35]. After 1 h, 24 h, 48 h, and 168 h at 20 ◦C, the emulsion
index was calculated as:

E % =
He

Ht
× 100 (6)

With He as the height of the emulsion layer and Ht as the total height of the mixture.
All the tests were performed in triplicate.

4.11. Statistical Analysis

All data were statistically analyzed with R studio software. Two-by-two comparative
of means were performed using the Mann–Whitney test. The significant level alpha was
set at 0.05.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/md20110728/s1, Figure S1: SEM images of the morphology of
P. aeruginosa and V. harveyi without or with the addition of MO245 or HA to the medium during
adhesion or with surface conditioning by MO245 or HA before bacterial adhesion. MO245 or HA
was used at 125 µg/mL and bacteria adhered for 2 h at 20 ◦C. Bacteria were observed by SEM after
fixation with glutaraldehyde and dehydration with ethanol.
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