Supplementary Information

- **Table S1.** Conformer relative free energies with respect to the most stable form.
- **Table S2.** Calculated binding energies (ΔG) for the most and least active compounds.
- Figure S1. HR-ESI-FTMS spectrum of Sarcoehrenbergilid A (1).
- Figure S2. ¹H NMR spectrum of Sarcoehrenbergilid A (1) in CDCl₃.
- Figure S3. ¹³C NMR spectrum of Sarcoehrenbergilid A (1) in CDCl₃.
- Figure S4. DEPT spectrum of Sarcoehrenbergilid A (1) in CDCl₃.
- Figure S5. HSQC spectrum of Sarcoehrenbergilid A (1) in CDCl₃.
- Figure S6. HMBC spectrum of Sarcoehrenbergilid A (1) in CDCl₃.
- Figure S7. NOESY spectrum of Sarcoehrenbergilid A (1) in CDCl₃.
- Figure S8. HR-ESI-FTMS spectrum of Sarcoehrenbergilid B (2).
- Figure S9. ¹H NMR spectrum of Sarcoehrenbergilid B (2) in CDCl₃.
- Figure S10. ¹³C NMR spectrum of Sarcoehrenbergilid B (2) in CDCl₃.
- Figure S11. ¹H-¹H COSY spectrum of Sarcoehrenbergilid B (2) in CDCl₃.
- Figure S12. HSQC spectrum of Sarcoehrenbergilid B (2) in CDCl₃.
- Figure S13. HMBC spectrum of Sarcoehrenbergilid B (2) in CDCl₃.
- Figure S14. NOESY spectrum of Sarcoehrenbergilid B (2) in CDCl₃.
- Figure S15. HR-ESI-FTMS spectrum of Sarcoehrenbergilid C (3).
- Figure S16. ¹H NMR spectrum of Sarcoehrenbergilid C (3) in CDCl₃.
- Figure S17. ¹³C NMR spectrum of Sarcoehrenbergilid C (3) in CDCl₃.
- Figure S18. DEPT spectrum of Sarcoehrenbergilid C (3) in CDCl₃.
- Figure S19. HSQC spectrum of Sarcoehrenbergilid C (3) in CDCl₃.
- Figure S20. HMBC spectrum of Sarcoehrenbergilid C (3) in CDCl₃.
- Figure S21. NOESY spectrum of Sarcoehrenbergilid C (3) in CDCl₃.
- **Figure S22.** Optimized structure and relative free energy of conformers of **1** with Boltzmann population higher than 1%.
- **Figure S23.** Optimized structure and relative free energy of conformers of **2** with Boltzmann population higher than 1%.
- **Figure S24.** Optimized structure and relative free energy of conformers of **3** with Boltzmann population higher than 1%.
- **Figure S25.** Anti-proliferative A549 response curves with **1-8** based on MTT-reduction assay.
- **Figure S26.** Anti-proliferative Caco-2 response curves with 1-8 based on MTT-reduction assay.
- Figure S27. Anti-proliferative HepG2 response curves with 1-8 based on MTT-reduction assay.
- **Figure S28.** Calculated (i) Autodock and (ii) MM/GBSA binding energies of compounds with EGFR kinase domain relative to the experimental binding energies for the tested compounds against A549 cell line.
- **Figure S29**. Hydrogen bond distance between **8** and carboxylate oxygen atom of Asp₇₇₆ inside EGFR active site.

Table S1. Conformer relative free energies with respect to the most stable form.

Compound	Conformer ID	Relative Free Energy ΔG (kj/mol)	Boltzmann Factor ^a e ^{(-ΔG} / _{RT})	Population %	Optical Rotation (degree) ^b
1	1a	0.00	1.00	37.44	-244.3
	1b	+2.8	0.32	11.89	-204.1
	1c	+3.1	0.29	10.74	-16.5
	1d	+3.2	0.27	10.26	67.0
	1e	+4.2	0.18	6.75	33.2
	1f	+4.3	0.17	6.50	-127.6
	1g	+5.3	0.12	4.48	192.7
	1h 1i	+7.0	0.06	2.18	88.2
	11	+7.4	0.05	1.87	-85.7 -107.7°
2	2a	0.00	1.00	34.21	-88.5
	2b	+0.2	0.94	32.03	-89.5
	2c	+1.5	0.54	18.48	68.8
	2d	+4.4	0.17	5.82	223.6
	2e	+6.6	0.07	2.37	-37.8
	2f	+6.8	0.07	2.24	37.5
	2g	+7.4	0.05	1.70	38.4
					-32.6°
3	3a	0.00	1.00	37.62	-162.84
	3b	+0.9	0.69	25.82	65.13
	3c	+4.0	0.20	7.41	-10.52
	3d	+5.5	0.11	4.11	-119.51
	3e	+5.9	0.09	3.47	-10.25
	3f	+6.0	0.09	3.34	-13.39
	3g	+6.0	0.09	3.33	132.21
	3h	+6.7	0.07	2.52	-96.37
	3i	+6.9	0.06	2.35	-40.38
	<u>3j</u>	+8.6	0.03	1.16	8.17
					-49.8^{c}

^aCalculated at 298K.

^bCalculated at B3LYP/6-31G* level of theory with the polarizable continuum model (PCM) for chloroform.

^cBoltzmann-weighted mean optical rotation.

Table S2. Calculated auto-dock and MM/GBSA binding energies (ΔG) for the most and least active compounds complexed with the EGFR kinase domain.

Compound	IC50 (μM)a	ΔG _{exp} (kcal/mol) ^b	$\Delta G_{ m calc}$ (1	$\Delta G_{\rm calc}$ (kcal/mol)		Binding Features		
			AutoDock	MM/GBSA	Residue	Type	Length (Å)	
Erlotinib	nd		-7.23	-47.89	Met ₇₆₉	H-bond	2.01	
					Cys773	H-bond	2.05	
Afatinib	nd		-7.68	-55.90	Met ₇₆₉	H-bond	2.09	
					Leu ₆₉₄	H-bond	2.10	
					Cys773	H-bond	1.90	
					Lys692	H-bond	1.91	
Gefitinib	nd		-7.69	-50.23	Thr ₇₆₆	H-bond	2.08	
					Met ₇₆₉	H-bond	2.24	
Doxorubicin	0.62	-8.46	-8.94	-54.72	Lys721	H-bond	1.92	
					Thr ₇₆₆	H-bond	1.76	
					Met ₇₆₉	H-bond	1.82	
					Thr ₈₃₀	H-bond	1.92	
					Asp831	H-bond	1.94	
8	27.3	-6.22	-8.13	-41.18	Thr ₇₆₆	H-bond	1.79	
					Asp776	H-bond	1.62	
7	43.6	-5.94	-5.82	-36.52	Thr ₇₆₆	H-bond	1.75	
					Thr ₈₃₀	H-bond	1.87	
6	37.0	-6.04	-6.14	-38.04	Met ₇₆₉	H-bond	1.82	
					Asp831	H-bond	1.65	
4	91.5	-5.51	-7.17	-31.81	Lys ₇₂₁	H-bond	1.82	
Cor	Correlation coefficient (R ²)			0.96°				

^aIC₅₀ Values for the tested compounds against A549 cell line.

^bCalculated based on the experimental IC₅₀.

^cErlotinib, afatinib and gefitinib were not considered in the calculated correlation due to the absence of the corresponding experimental IC₅₀.

Figure S1. HR-ESI-FTMS spectrum of Sarcoehrenbergilid A (1) in CDCl₃.

Figure S2. ¹H NMR spectrum of Sarcoehrenbergilid A (1) in CDCl₃.

Figure S3. ¹³C NMR spectrum of Sarcoehrenbergilid A (1) in CDCl₃.

Figure S4. DEPT spectrum of Sarcoehrenbergilid A (1) in CDCl₃.

Figure S5. HMBC spectrum of Sarcoehrenbergilid A (1) in CHCl₃.

Figure

Fig. S6. ¹H, ¹H COSY spectrum of Sarcoehrenbergilid A (1) in CDCl₃.

Figure S7. NOESY spectrum of Sarcoehrenbergilid A (1) in CDCl₃.

Figure S8. HR-ESI-FTMS spectrum of Sarcoehrenbergilid B (2).

Figure S9. ¹H NMR spectrum of Sarcoehrenbergilid B (2) in CDCl₃.

Figure S10. ¹³C NMR spectrum of Sarcoehrenbergilid B (2) in CDCl₃.

Figure S11. ¹H-¹H COSY spectrum of Sarcoehrenbergilid B (2) in CDCl₃.

Figure S12. HSQC spectrum of Sarcoehrenbergilid B (2) in CDCl₃.

Mar. Drugs **2014**, 12 S17

Figure S13. HMBC spectrum of Sarcoehrenbergilid B (2) in CDCl₃.

Figure S14. NOESY spectrum of Sarcoehrenbergilid B (2) in CDCl₃.

Figure S15. HR-ESI-FTMS spectrum of Sarcoehrenbergilid C (3).

Mar. Drugs **2014**, 12 S**20**

Figure S16. ¹H NMR spectrum of Sarcoehrenbergilid C (**3**) in CDCl₃.

Mar. Drugs **2014**, 12 S21

Figure S17. ¹³C NMR spectrum of Sarcoehrenbergilid C (**3**) in CDCl₃.

Figure S18. DEPT spectrum of Sarcoehrenbergilid C (3) in CDCl₃.

Figure S19. HSQC spectrum of Sarcoehrenbergilid C (3) in CDCl₃.

Figure S20. HMBC spectrum of Sarcoehrenbergilid C (3) in CDCl₃.

Figure S21. NOESY spectrum of Sarcoehrenbergilid C (3) in CDCl₃.

Mar. Drugs **2014**, 12 **S26**

Figure S22. Optimized structure and relative free energy of conformers of **1** with Boltzmann population higher than 1%.

Figure S23. Optimized structure and relative free energy of conformers of **2** with Boltzmann population higher than 1%.

Figure S24. Optimized structure and relative free energy of conformers of **3** with Boltzmann population higher than 1%.

Figure S25. Anti-proliferative A549 response curves with 1-8 based on MTT-reduction assay.

Figure S26. Anti-proliferative Caco-2 response curves with 1-8 based on MTT-reduction assay.

Figure S27. Anti-proliferative HepG2 response curves with 1-8 based on MTT-reduction assay.

Figure S28. Calculated (i) Autodock and (ii) MM/GBSA binding energies of compounds with EGFR kinase domain relative to the experimental binding energies for the tested compounds against A549 cell line.

Figure S29. Hydrogen bond distance between **8** and carboxylate oxygen atom of Asp₇₇₆ inside EGFR active site over a 2.5 ns simulation time.

© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).