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Abstract: Directional gap probability or gap fraction is asit parameter in the optical

remote sensing modeling. Although some approaches heen proposed to estimate this
gap probability from remotely sensed measuremeets, efforts have been made to
investigate the scaling effects of this parameidris paper analyzes the scaling effect
through aggregating the high-resolution directiagegd probability (pixel size of 20 meters)

estimated from leaf area index (LAI) images of VAR IEdatabase by means of Beer's law
and introduces an extension of clumping indéx,to compensate the scaling bias. The
results show that the scaling effect depends oh Hw¢ surface heterogeneity and the
nonlinearity degree of the retrieved function. Amighal expressions for the scaling bias of
gap probability and” are established in function of the variance of bAtl the mean value

of LAl in a coarse pixel. With the VALERI datase¢he study in this paper shows that
relative scaling bias of gap probability increasgéth decreasing spatial resolution for most
of land cover types. Large relative biases are dofiom most of crops sites and a mixed
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forest site due to their relative large varianceLAf, while very small biases occur over
grassland and shrubs sites. As €orit varies slowly in the pure forest, grasslandl an
shrubs sites, while more significantly in crops amged forest.

Keywords:. directional gap probability, scaling bias, leagaindex, clumping index

1. Introduction

Directional gap probability or gap fraction is defd originally as the probability of a beam
transferring at a given incident zenith angle tiglothe vegetative canopy without any interceptis.
a key variable describing canopy structure and aesspatial distribution, it is used to simplife tB-
D light interception problem to a 1-D problem (Riet al., 2004), and has been employed to estimate
surface component temperatures from multi-speetnal multi-angular measurements (Francois and
Ottle, 1997; Francois, 2002, Li et al.,, 2001; Mdnen al, 2008). Though gap probability can be
estimated in situ from optical instrument data sasthemispherical photographs (Leblanc et al., 2005
and usually used to derive leaf area index (LAlpaal scale in field (Jonckheere et al., 2004; ¥ ait
al., 2004), the field measurements cannot meepithetical demands at large scale. An attractive and
unique way to map and monitor LAl and directionapgprobability at large scale is to use the space
observation from satellite data in the visible amear-infrared bands. Nowadays LAl is widely
estimated directly from satellite measurementsgudifferent methods (Myneni et al., 1997; Weiss and
Baret, 1999; Chen et al.,, 2002; Fernandes et @03 and the directional gap probability P is
estimated from the spatially retrieved LAI by meaisthe following relationship (Norman, 1995;
Menenti et al., 2001),

— —GLAIl/cos@)
P(6, LA =€ )

where? is the zenith angle of incident beam, G is thggmtmn of leaf area in perpendicular to
incident beam and is related to the leaf angleidigion (Wang et al., 2007). With this relationshi
directional gap probability can be estimated thtowggetation structure information including LAl,
leaf angle distribution.

Through observation and studies in different scalekiding foliage (Rochdi and ad M. Chelle,
2006), shoot (Smolander and Stenberg, 2003), caftomty et al., 2004) and landscape (Garrigues et
al., 2006a) by remote sensing, ecological and alguial community, scientists have realized spatial
heterogeneity is universal. Besides the spatiarbgeneity of the land surface, non-linearity o th
transfer function is another source of uncertaintien the estimation of land surface
variables/parameters from remotely sensed datdl €Hal., 1992; Friedl et al., 1995; Pelgrum, 2000
Garrigues, 2006b). We can notice that the direetigap probability P estimated from equation 1 is
highly non-linear with respect to LAI, which wilhevitably induced scaling bias when applied to a
coarse pixel. Consequently it is necessary to @analye scaling effect of the directional gap proligb
at different scales, and to improve the retrievatusacy of directional gap probability, and
subsequently to improve the accuracy of land sarfammponent temperatures retrieved from multi-
spectral and multi-angular satellite data. Howewugrto now, there are no many efforts in literature
devoted to study the scaling effect of the direwiaap probability.
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This study focuses on the analysis of the scalffexieon the directional gap probability by means
of a simple scaling-up scheme and LAl derived fioigh resolution spatial data. The second section
provides the theoretical framework to estimate dbaling effect of directional gap probability raise
by two different aggregation schemes from localest@ larger scale. In the third section, we présen
the different types of remotely sensed LAl imagésamed from VALERI database (Validation of
Land European Remote sensing Instruments). Inasedti the scaling effect associated with the non-
linear relationship between LAl and gap probabiigyquantified over several types of landscape.
Conclusion is given in section 5.

2. Theoretical framework
2.1. Up-scaling of directional gap probability

There are two different schemes generally usedgoegate the parameters/variables from the local
scale to regional or global scale (Pelgrum, 20@8@jch are depicted in Figure 1 and described rgughl
below:

1) The aggregation of the results which are deriivech a distributed model f using distributed
input variables. Spatially distributed variablpéx, y) ( here LAI! , ) are input to a distributed

sub- pixe
model f ( here Eq. 1), results of the distributeddel f are denoted ab(p) ( hereP., oxe( &) ), then
the aggregative result(p) ( hereﬁpixel(ﬁ)) on a larger scale are deduced (Eq.2) from digteib

results;(see left flow chart of Figure 1)
2) The aggregation of input variables before usarinaggregative model F (here Eq.3), thereby
producing an aggregative result. Spatially distéduinput datap(x, y) ( hereLAI., oixer) @re first

averaged top (here LAl oxet) from local scale to a larger scale, theis input to aggregative model F

(Eq. 4), produces aggregative reskitp) (here P, (0) ). (see right flowchart of Figure 1)

Figure 1. General schemes of two aggregation schemes.
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As it concerned to gap probability, supposing ttet pixel whose area is S is composed by N

N
homogeneous sub-pixels, each sub-pixel i has anadre S = Z s, the directional gap probability for
i=1
a given direction (i.e. zenit@) is computed using the first aggregation scherae (sft flowchart of
figure 1) with,

N .
Z S I:sjub— pier(H)

P (6) = 22— @)

whereP! el the directional gap probability for sub-pixewhich can be estimated from Eq.1.

The directional gap probability can also be aggesydollowing the second aggregation scheme
(see right flowchart of figure 1) by

ZS LAL el
Pl =55 ©

Then computing the directional gap probability witklp of the same formula as Eq. 1 by
P (6) = Ol 4)

2.2. Scaling bias of directional gap probability

Since the distributed model related LAI to P islmear (see Eq.1) and the input LAI data at coarse
pixel is heterogeneous, there exists a differemtwd!)enﬁpixe, andP,.,. This difference comes from
the different aggregations. To assess the scalfagt®f the directional gap probability, insertifg. 1
into Eq. 2 and neglecting the third and higher otdems of the Taylor series expansion, one gets:
GZ

P pixe'(e) - Ppixel(e) = Ppixel(e) m)azw

(5)

N
Z S ( LA i I-'A‘Ipixel )2
with o, ,, is the standard deviation of LAl inside the cogbel, i.e. o7, =-= S

The relative scaling bias (RE) is therefore obtdine

ISpixel(e) B I:)pixel(e) _ GZ 2

RE= = O
Ppixel(e) 2 CO§ 6 )

(6)

From Eq.6, we notice that the relative scaling lsasnly dependent on the @, and the spatial
heterogeneity of LAl within a coarse pixel, but @pgndent on the LAI value itself.

2.3. Redefinition of clumping index

In order to take into account the scaling effedtspatial heterogeneity of LAl on estimate of the
directional gap fraction and to make the estimabtbthe directional gap fraction independent on the
observation scale and the aggregation schemesaipagamete€ is introduced in Eq. 4 so that
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exp(—GCA:pixel LAI o / cOSE ) I3pixel @)

Following the same development made by Wang ar{@d@08), combining Egs 4, 5 and 7, one gets:

- cos@) G? )
o=1- In(1+ g,
pixel GLAI ( 2cog @)

pixel

) (8)

As shown by this equation, the paraméids directly proportional to the mean LAI and insely

proportional to the spatial heterogeneity of L/ﬂf@ ) for given G function and direction.

It should be noted that the paramefeintroduced in Eq.7 compensate not only the scaliag in
the estimation of the gap probability, but also tressimilar meaning as the so-called leaf disparsi
parameter or clumping indexX2). Traditionally, clumping index is generally usea quantify the
heterogeneity of the foliage distribution based Beer-Lambert’s law considering a non-random
distribution of foliage in a forest canopy, as wagjen foliage is more often grouped together than
regularly spaced relative to the random distributtase (Chen, 1996), and vegetative canopies have
different levels of foliage organizations, whichntgbute to non-random distribution (Chen, 1999).
For Q= 1, canopy elements are randomly distributedlumped canopieg is always less than unity.
The smaller the value 6%, the more the canopy is clumped.

Foliage clumping affects the gap probability foe ttkame LAl by delaying the occurrence of the
saturation in reflectance as LAl increases. Theke lieen some studies mostly concentrated on the
estimation of clumping index with multi-angular datWalter et al. (2003) has conducted an
experiment involving hemispherical photographs iofudated and real forest canopies to determine
clumping index. Leblanc et al. (2005) and Chenl.e2005) mapped the foliage clumping index over
Canada and at the global scale based on the seduMDHD-clumping index relationships for
different cover types. But the capability of clumgiindex for representing spatial heterogeneity and
eliminating scaling bias is rarely concerned.

3. Description of the data

The data used here are part of the VALERI databasehvgiovides high spatial resolution (20 m)
SPOT-HRV scenes for several landscapes sampletuding crops, forest, grassland and shrubs)
around world (Baret et al., 2005). This wide coveraflandscape makes the conclusion of this study
more general. Each site has an enough samplindatipeit 3km by 3km). Detailed information about
each site (including land cover type, location #mel date of measurement) is given in table 1. More
details on the data set and methodology concerdddf area index retrieval is referred to Batedle
(2005) and the VALERI web site ( www.avignon.inrazéleri ).
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Table 1. Detailed information of remote sensing images ugetthis research. The last
two columns represent the mean (m) and the stamtdsidtion (@) of LAI respectively.

Site name Land cover type Date Lat. Lon. My O
Aekloba-May01 Palm tree plantation 1/Jun./2001 .632 99.58 3.54 0.671
Alpilles-March01 Crops 15/Mar./2001 43.81 474 0.93 1.15
Barrax-July03 Cropland 3/Jul./2003 39.07 -2.10 0.97 141
Fundulea-May02 Crops 9/Jun./2002 44.41 26.59 531 1.30
Gilching-July02 Crops and forest 8/Jul./2002 088. 11.32 5.39 1.79
Hirsikangas-August03 Forest 2/Aug./2003 62.64 27.01 2.55 1.14
Jarvselja-June02 Boreal forest 13/Jul./2002 ®8.3 27.26 4.20 1.09
Laprida-November01  Grassland 3/Nov./2001 -36.99-60.55 5.66 2.07
Larose-August03 Mixed forest 18/Sep./2003 45.38 -75.21 5.87 2.00
Larzac-July02 Grassland 12/3ul./2002 43.94 3.12 0.81 0.20
Nezer-April02 Pine forest 21/Apr./2002 4457 .04 2.38 1.11
Rovaniemi-June04 Forest 23/Jul./2004 66.46 253 1.25 0.52
Turco-August02 Shrubs 29/Aug./2002 -18.24 -88.1 0.04 0.03

4. Results and Discussion

4.1. Simulation of relative scaling bias of gap Ipability

In this study, we adopt a simple formula proposgdrichs et al. (1984) to compute the projection
value of leaf area in perpendicular to incidentrbedth mean leaf angle,

G =cos@,)

where 8, is the mean of leaf inclination angle.

Inserting Eq.9 into Eq.6, we get relative scalinglmagap probability,

RE

_cos@)

T 2c0g2 @)

(9)

(10)

Figure 2 displays the results of RE conducted uBiqd.0 for8=0 and different G functions through

different mean of leaf inclination anglés given in Eq.9.



Sensors008, 8 3773

Figure 2. Relative scaling bias of gap probability vershg wariance of LAl for
different mean of leaf inclination anglék (0, 30, 45 and 60 degree) and view zenith
angled =0.

Relative scaling bias

S N N - PRI

Variance of LAI

As shown in Figure 2, the relative scaling biagap probability is linearly related to the variatio
of LAl inside the coarse pixel for a given mearie:rive inclination anglé. . As predicted by Eq.10,
the slope of this linearity is equal teigoi(z?-g)) , and for a given variance of LAI, the larger leaf

co
inclination angle is, the smaller relative errordafectional gap probability is. On the other hane,
can conclude that the relative scaling bias vasessonally since it has relationship with the vera

of LAl which is a seasonal variable.
4.2. Spatial scaling bias of gap probability obtihfrom the VALERI dataset

In order to see the magnitude of the spatial sgdilms of directional gap probability with real
scenarios, the VALERI dataset is used in this stidyee assumptions are made in the following
calculations:

1) Beer’s law used to retrieve gap probability fromlIl(&q.1) is assumed without any scaling bias

at 20 m spatial resolution, because no satellita dee available to us at the spatial resolution

finer than 20m.
2) Incident beam is assumed to be verticalcos@) = 1

3) A spherical leaf angle distribution is assumed, &e0.5, which is a reasonable assumption for
many conifer shoots and closed, broad-leaved casdValter, 2003).
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Following the schemes proposed and showed in figureith the VALERI dataset described in
table 1, we compute relative scaling bias of gayability for each site at different spatial scalesg
Eq.6. Figure 3 displays the relative scaling biagap probability in function of the pixel size for
different types of land surfaces, such as forespland, grassland and shrubs.

Figure 3. Relative scaling bias of gap probability agaipstel size for different
landscapes: six forest sites, five crops sites,grassland site and one shrubs site.
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From this figure, we notice that the relative soglbias of gap probability increases with decregsin
spatial resolution for most of land cover typestdea relative bias occurs at crops (104%, 50%, 26%,
14%, at pixel size of 1280m, respectively) thanepiarest sites< 20 %t pixel size of 1280m except
for the mixed forest (Larose-August03) which hakatree bias of 120% at pixel size of 1280m),
grassland and shrubs 05 &wopixel size of 1280m), demonstrating that ouipsrsites are relatively
more heterogeneous than forest, grassland andsskit@ls. Previous research conducted by Garrigues
et al. (2006b) has gained same conclusion. A lar@e occurs over mixed forest site (Larose-August03
due to large variance of LAI with this site, whitery small relative biases occur over grassland and
shrubs because the variance of LAl over these ii@s are small (<0.2) as indicated in table 1.
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As a result, a large uncertainty (bias) is intraztlén estimate of the gap probability from low
spatial resolution data such as NOAA-AVHRR or MODN&r large heterogeneous sites if the scaling
effects are not considered.

4.3. “Clumping index”C for VALERI sites

Letting Eq.8 equal to Eq.2, with VALERI dataset|ufmping index”C introduced in Eq.7 can be
easily obtained for each site at different spales. Figure 4 shows the mean value of “clumping
index” against the pixel size for different typddand surfaces, such as forest, cropland, gradsdad
shrubs. Since the SPOT-HRYV pixel is supposed tdhdraogeneous at 20m spatial resolution, the
corresponding “clumping index at original scale is unity (not displayed in figut).

Figure 4. same as figure 3, but with the mean value of piagiindex.
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As shown in Figure 4, “clumping index” varies muidt different land cover types and different
aggregated sizes. It decreases as aggregatives lewvakase, indicating that pixel becomes more
heterogeneous as demonstrated by the analysiseafethtive scaling bias of gap probability given
above. Particularly a relative large variation afumping index” occurs at Larose-August03, very
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similar to the relative scaling bias of gap proligbiln addition, “clumping index” varies slowlyni
pure forest, grassland and shrubs sites and mgndisantly in crops and mixed forest in our cases
study. The results demonstrate that less scalifegtetorrection should be performed for forest and
grass sites than crops sites, which is in goodeageat with the result shown in Figure 3.

As far as sites with the same land cover type ane@rned, the magnitude of “clumping index” also
varies at different aggregated sizes, and mosiiyvisrsely proportional to the spatial heteroggneft

2
LAI ( 9. For example, among forest sites, “clumping irfidexminimum at Aekloba-May01, then
Rovaniemi-June04, Jarvselja-June02, Nezer-AprilB&sikangas-August03, and maximum is at

2
Larose-August03, whos@La are 0.671, 0.52, 1.09, 1.11, 1.14, 2.00, respelgtiv
Therefore “clumping index” redefined by Eqg.8 has ttapability of representing and eliminating
scaling bias of directional gap probability indudsdthe heterogeneity of LA

5. Conclusion

In this study, spatial scaling effect of the gaplability based on Beer’s law for different typds o
land cover is analyzed and corrected for by intoiiy an extension of the “clumping indexX’,which
accounts for the spatial heterogeneity.

Analytical expressions developed in this paper stiat:

(1) relative scaling bias is only dependent on the i&tion and the spatial heterogeneity of LAl,

but independent on the LAl value itself, and

(2) extension of “clumping indexC is directly proportional to the mean value of Lahd

inversely proportional to the spatial heterogenefti Al for given G function and direction.

With the VALERI dataset, this study shows thatatigke scaling bias of gap probability increases
and “clumping index” value decreases with decragaspatial resolution for most of land cover types.
Large relative biases and large variation of “climypindex” C are found for most of crops sites and a
mixed forest site due to their relative large vaceof LAI, while very small biases and small viaoa
of clumping index are found for grassland and stites.

The parameters introduced in this paper has end@awveew significance to traditional clumping
index and provided evidence to the utility of clumgpindex as an improvement of the estimate of gap
probability from LAI. The results exhibit the caplgty of clumping index for scaling Beer’ law and
representing spatial heterogeneity, as well as féasibility of the inversion approach for gap
probability from remote sensing data. Meanwhilenapge and feasible method to estimate “clumping
index” from remote sensing data is also explorexinfithe above experiment, which will provide a
support to global mapping of the vegetation clurgpirdex.
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