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Abstract: Remote sensing offers a cost efficient means fentifying and monitoring
wetlands over a large area and at different momentsme. In this study, we aim at
providing ecologically relevant information on cheteristics of temporary and permanent
isolated open water wetlands, obtained by standectiniques and relatively cheap
imagery. The number, surface area, nearest distancedynamics of isolated temporary
and permanent wetlands were determined for the &ife§€ape, South Africa. Open water
bodies (wetlands) were mapped from seven Landsagesi(acquired during 1987 — 2002)
using supervised maximum likelihood classificatidime number of wetlands fluctuated
over time. Most wetlands were detected in the wiof2000 and 2002, probably related to
road constructions. Imagery acquired in summerainatl fewer wetlands than in winter.
Most wetlands identified from Landsat images wenalter than one hectaréhe average
distance to the nearest wetland was larger in suminecomparison to temporary
wetlands, fewer, but larger permanent wetlands wetected. In addition, classification of
non-vegetated wetlands on an Envisat ASAR radagém@cquired in June 2005) was
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evaluated. The number of detected small wetlandslovaer for radar imagery than optical
imagery (acquired in June 2002), probably becausedaterioration of the spatial
information content due the extensive pre-procgsguirements of the radar image. Both
optical and radar classifications allow to asses$land characteristics that potentially
influence plant and animal metacommunity structémvisat imagery, however, was less
suitable than Landsat imagery for the extractiodethiled ecological information, as only
large wetlands can be detected. This study hasatedi that ecologically relevant data can
be generated for the larger wetlands through velticheap imagery and standard
techniques, despite the relatively low resolutidrLandsat and Envisat imagery. For the
characterisation of very small wetlands, high gpagsolution optical or radar images are
needed. This study exemplifies the benefits ofgragng remote sensing and ecology and
hence stimulates interdisciplinary research ofaitgal wetlands.

Keywords. Wetland monitoring, wetland distribution and depsitvetland ecology,
Landsat, Envisat

1. Introduction

Remote sensing and GIS techniques are both inoghasralued as useful tools for providing
large-scale basic information on landscape chaiatits [1]. They are used for habitat and species
mapping, biodiversity determination, land changeckon, monitoring of conservation areas, and the
development of GIS layers [2-8]. In many cases,atensensing data can partially replace the often
time consuming and expensive ground surveys [2ABb change detection of the earth’s surface can
be investigated due to the availability of longstestata [10-12].

Remote sensing offers a cost efficient means fonekting wetlands over a large area at different
points in time and can provide useful informationwetland characteristics [5, 9, 13, 14]. Based on
various remote sensing data types, many methodseforeating water bodies have been described [5,
15]. Wetland delineation involves most often the w$ aerial photographs and airborne or satellite
remotely sensed data [5, 15]. In the past, vism&trpretation of wetlands from maps, aerial
photography, and hard copy of satellite images Haen used extensively [5, 16]. Currently, also
digital image processing is used [2]. There is tandard method for computer-based wetland
classification [5, 17]. Landsat, SPOT, AVHRR, IRf8\d radar systems are the most frequently used
satellite sensors for wetland detection [5].

On optical imagery, clear open water bodies aratively easy to detect by means of computer-
aided classification, since water has a charatitespectral reflectance. The most distinctive deatis
the energy absorption at near-IR wavelengths an@rae [16]. Characteristics like water quality,
turbidity and chlorophyll contents can also be dateed using optical remote sensing techniques, but
are more complicated to assess [16, 18, 19].

Unlike optical systems, radar is an active sendmgce. It transmits short bursts of electromagneti
(EM) radiation to a surface target and measuregiieegy response returned from that target [16¢ Th
response of the signal largely depends on the reegghof the illuminated area. A very smooth sutface
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like an open water body, reflects the signal awagnfthe radar, resulting in a very weak responég [2
Contrarily, on very rough surfaces, such as vegdtabils, incident EM signals interfere and are
‘scattered’ in all directions, including the dirieet of the radar antenna [20]. This physical bebawvi
implies that a very simple and straightforward idigion between smooth open water surfaces and
rough dryland surfaces can be established by mafahseshold criteria. Another promising aspect of
the active radar sensor is its independency of dalanination [20]. As such, images can be acailiire
day and night. Moreover, the microwave signal, véatfrequency ranging between 220 MHz and 40
GHz, is not absorbed by clouds or haze, as ogigahls are.

Despite the potential of wetland delineation by o&nsensing, wetlands are in general not well
characterised, especially considering their ecobigmportance and vulnerability. Worldwide, these
a need for continued wetland inventories as smalenbodies have often been underemphasized, and
many inventories are therefore unreliable [15, ZPhe use of remote sensing in fundamental
temporary and permanent wetland ecology, moreasecurrently not widespread, but has a large
potential. Some biologists claim that spatial ssalé remote sensing and scales usually covered by
ecological or evolutionary research do not matbbstcreating a perception problem [8], limiting the
use of remote sensing techniques in biologicalissud

The aim of this study is to indicate that elemgntand relatively cheap imagery and basic remote
sensing techniques can substantially improve thewledge on characteristics of temporary and
permanent wetlands. In this study isolated opemrm@etlands in the Cape region of the Western Cape
were characterised from seven Landsat images ssipgrvised classification methods. Classification
results of the Landsat imagery were compared viitiseé of an Envisat image. Ecologically relevant
traits (surface area, distance, dynamics, total bmrmand fraction of temporary and permanent
wetlands) were investigated and discussed withensttope of wetland ecology. The effectiveness as
well as the limitations of this straightforward ret® sensing study, as an addition to ecological
research, were evaluated.

2. Materialsand Methods
2.1 Optical wetland detection

Isolated open water wetlands were classified frewes Landsat TM and ETM+ images acquired
on 9 January 1987 (summer), 16 October 1990 (Win&rJune 1999 (winter), 4 December 1999
(summer), 31 July 2000 (winter), 24 February 20€n(mer), and 3 June 2002 (winter). Images were
downloaded from the Global Land Cover Facility (G)Qvebsite or purchased from the United States
Geological Survey Organization (USGS). The studaas located in the Cape Region of the Western
Cape Province, South Africa (within latitude®3®' to 38 52' South and longitude 1%7' to 19 05'
East). It has a Mediterranean climate, receiveshnadigts rainfall in winter months, and has relatyw
dry summers [23].

Ground truth data were collected for the largewn(fr0.32 hectare onwards) wetlands in the area by
field surveys in 2004 and 2005 and supplementeld wformation from topographical maps obtained
from the South African Chief Directorate of Surveyrsd Mapping. Most of the vegetation of these
larger water bodies was situated at the edgesdpar®bservation). Band 4, which showed a strong
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contrast between water bodies and other land fegitwas used to define at least 25 training stes f
each land cover type (fresh water, sea, mountaagstypes of vegetation, city, and sand dunes). The
training data were randomly selected from this loiada, while the non-selected data points (50%eof th
database) were used as validation data for theramcuwanalysis. Bands and band ratios with best
optical view of water bodies were visually selecteahanced, and used to create signature filegeThr
supervised classification methods (maximum likeditho minimum distance, and Fisher) were
compared. Unwanted land features with similar carngmilar reflectance as freshwater wetlands
(such as rivers, sea, and shadows) were maskeaf eath image, ensuring reliable comparison of all
images. The position of shadow in each image weséed by means of a Digital Elevation Model
(DEM), elevation level of the sun, and sun azimattthe time of image acquisition.

The user’s, producer’s, overall accuracy, and Kappiex of Agreement (KIA) for wetland
classification were computed on the validation d@fassification accuracy assessments determine the
degree of correspondence between the classifiedlspiand the reality (ground truth) (for more
information on each of these measures, see [16p.classification method with highest accuracy and
best visual results was used for all analyses.nBated wetlands smaller than two pixels were not
taken into account in further analyses, as chamceirfaccurate classification was high due to
interference with other land features. The smatestctable wetlands thus had a surface area ot abo
0.16 hectare. All classifications and accuracyysed were performed in IDRISI Andes [24].

The number of classified isolated open water wedaand their corresponding surface area were
determined by standard techniques. Any relation waslysed between the number of detected
wetlands and the cumulative rainfall respectivelserothree, six and twelve months before image
acquisition (Spearman Rank correlation, Statisti¢25]). The average Euclidean distance from each
wetland to the nearest wetland as well as therdisthetween each pixel and the nearest wetland were
obtained. The number and surface area of tempaady permanent wetlands in 2000-2001 were
determined through a series of image manipulatibogeveal the temporary wetlands in the area, the
summer image, normally containing only permanerntames, was subtracted from the winter image,
containing temporary and permanent wetlands. Thiplpsry of permanent wetlands is often dry in
summer. To prevent misclassification of these penip-pixels as individual temporary wetlands, a
buffer of 85 m (about three pixels) surrounding he@ermanent wetland was masked out of the
temporary wetland delineation. A field survey iretlvinter of 2005 provided an estimate of the
number of wetlands in the study area that were lsmahd larger than the resolution of Landsat TM
(about 0.081 hectare). These analyses were comtinctBRISI Andes [24] and ArcGIS 9.2 [26].

2.2 Radar wetland detection

The radar image used is a C-band (5.3 GHz) En¥idaainced Synthetic Aperture Radar (ASAR)
HH-polarised image, acquired on June 26 in 200% $wath operation mode employed during
acquisition was 12, characterised by an incidenggearanging between 19.2° and 26.7°. The spatial
resolution of the ASAR image is 30 m both in azimahd range direction. However, the pixel spacing
is12.5mby12.5m.

In a first pre-processing stage, the raw ASAR imags calibrated following the method described
by ESA [27]. After calibration, the image was cagistered with the Landsat ETM+ image of June
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2002, using a simple two-dimensional linear regogspolynomial. The RMSE for the georeferencing
was 3.8 pixels, corresponding with 47.5 m on groudndthermore, to reduce the speckle noise, which
is inherent to radar data, the Enhanced Frost filteh a window size of 5 by 5 pixels was appli@8{
29]. A last pre-processing step was a two-leveldmotup region merging segmentation, performed in
eCognition 3.0 [30]. This algorithm requires thieput parameters: scale, colour/shape weights, and
smoothness/compactness weights. The scale paraimatatirectly related to the outcome segment
size. In this study, the segmentation was perfororetivo hierarchic scale levels. A first coarseelev
was derived with a large scale parameter of 4this level, segments were able to fit very large
objects in entirety. Yet, most small objects likany temporary wetlands were merged with dryland
objects in single segments. Within this first le\vakecond segmentation level was created on 8ig ba
of a finer scale, equal to 25. In this refined legenall wetlands were still preserved. Both leweis
later be used for the statement of threshold aitésr classification. The other parameters were
optimised during a trial and error study on simedatradar imagery. For this study, the optimal
colour/shape weighting, which addresses the reatifluences of spectral information versus outcome
segment shapes, is equal to 0.9/0.1. This resukegments with a narrow spectral value, which may
be of irregular shape. The smoothness/compactrassibuites to the jaggedness of the outcome
segments and was also set as 0.9/0.1, allowingesggrto comprise the natural outlines of features.
Image segments were classified as wetland andmdhg means of simple threshold criteria on
segment value and segment shape-index, defindteljyerimeter over area. The shape-index threshold
aims at excluding large dryland objects with simibeckscatter values as open water and highly
irregular shapes from the wetland classificatiarghsas airports, sand dune areas and rivers. In the
small scale level, such large objects are ofterexl by several adjacent segments with a reduced
shape-index instead of one large jagged segmemt avihigh shape-index. Therefore, the shape
threshold is established on the large scale |&elthe other hand, the threshold on segment value i
applied on the small scale level, as in this lewalst small wetlands are formed by individual
segments, through which their spectral informatmnmtent is preserved. Both thresholds were
optimised on simulated imagery by iteratively irasmg the threshold values and computing the KIA.
The optimal threshold on segment value equals 8Ll8B, whereas the most adequate shape-index
threshold equals 2.2. This shape-index agreestivmatural shape of most wetlands in the Western
Cape, being of circular or ellipse shape, and ttheracterised by a small index. However, linear
wetland features that are probably caused by tmestaaction of roads may disappear using this
technique. Yet, the removal of sand dunes and igfimm the classification output was thought¢o b
of more importance than the preservation of somesali wetland features along roads.

2.3 Comparison of optical with radar classification

The classification result on the Envisat ASAR imafdune 2005 is compared by means of a cross-
classification table with the result on the Lands@dge of June 2002, as this Landsat image of winte
2002 is the most recent one. Because of steegd melitne South of the study area, which severely
hampers radar image interpretation, the comparsbonly be performed on a mainly flat sub-area in
the North. There was a relatively small differemcéhe amount of rainfall in the months preceding t
image acquisition in 2002 (Landsat) and 2005 (EatyisThe cumulative rainfall three and six months
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before image acquisition in 2002 was respectivélyy hm and 207 mm; for 2005 this was respectively
196 mm and 223 mm. According to the landownerdiéndrea, no large changes in the positioning of
the wetlands occurred from 2002 to 2005.

3. Results
3.1 Classification on optical imagery

The maximum likelihood classification method had thighest mean overall accuracy and user’s
accuracy for wetland detection, although the d#ifee with the Fisher and minimum distance methods
was small (Table 1). Fisher classification methad la slightly higher producer’'s accuracy and
categorical KIA than the maximum likelihood clagsation method (Table 1). The accuracy for
wetland detection by the maximum likelihood metheas high for all seven Landsat images, with a
user’s, producer’s and overall accuracy, and caiegoKappa Index of Agreement for wetland
detection higher than 0.91.

Table 1. Accuracy analysis of wetlands classified by maximiikelihood (MaxLike),
minimum distance (MinDist), and Fisher classifioatimethods. Mean values for all
classified images are presented.

Maxlike MinDist Fisher

User’s accuracy 0.943 0.912 0.942
Producer’s accuracy 0.970 0.969 0.983
Overall accuracy 0.999 0.998 0.998
Categorical KIA 0.970 0.967 0.986

Images taken in summer revealed on average lesandst(0.09 per km?) than those taken in winter
(0.23 per km?; Figure 1). The number of winter aedtls fluctuated in time. For the wetlands detected
in the summer images, no correlations were detegtddcumulative rainfall respectively over three,
six and twelve months before image acquisition éman Rank correlation: p > 0.05). Similar results
account for the winter images. Most wetlands weetected in winter 2002, when rainfall was
relatively high (Figure 1). Visual interpretatioh dassified images revealed the positioning of ynan
wetlands along roads in the winter images of 208@ @002, and to a lesser extent in 1999
(respectively about 9%, 7% and 4% of the detecteitwds).

In general many small and only few large wetlandsendetected in both summer and winter images
(Figure 2). On average 68% of summer wetlands &% @f winter wetlands were smaller than one
hectare. More small wetlands were detected in wihi@n in summer (Figure 2). The ground survey in
winter 2005 revealed that about 73% of the wetlgmdsch were mostly temporary) in the study area
could not be detected, since they were smaller thanesolution of the Landsat imagery (0.081 ha).
Another 15% of wetlands observed in the field cedean area of about one pixel. Due to a high
chance of misclassification they were excluded fritms study. Consequently, only about 12% of
wetlands present in the study area could be detbégtéandsat classifications.
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Figure 1. Number of delineated wetlands per km2. Sun syminalgate images taken
during summer. Diamonds indicate the cumulative @maoof
months before the date of image acquisition (mnmjyea
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Figure 2. Fraction of detected wetlands belonging to diffiérsize classes (in ha) in
summer and in winter, with indication of the stambddeviation.
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The average distance between each wetland andetirest neighbouring wetland was 763 m in
summer (standard deviation: 126 m) and 441 m intenvifstandard deviation: 114 m). The mean
Euclidean distance from each pixel to the nearesiawd was larger in summer images (average 4305
m) than in winter images (average 1748 m), whichissalised in Figure 3 for the winter of 2000 and
summer of 2001. Wetlands were not evenly distritdateer the study region (Figure 3).

In 2000-2001, on average 0.17 temporary wetlandkimé were delineated, while less permanent
wetlands were found (0.09 per km?). Temporary wmeldawere smaller (average 0.39 ha) than
permanent ones (average 1.29 ha; size in winter).
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Figure 3. Visualisation of the distance of each pixel to tlearest wetland in the winter
of 2000 (left) and in the summer of 2001 (rightght shading = long distance, dark
shading = short distance to the nearest wetland.

July 2000 < February 2001 ; '

3.2 Comparison of optical with radar classification

The classification result on the Envisat ASAR imafdune 2005 is compared with the result of the
Landsat ETM+ image of June 2002 by means of a aiassification table (Table 2) and cross-
classification image, of which three informativesets are illustrated in Figure 4. Figure 5 shows a
frequency distribution of detected wetlands in tiort of wetland size class (ha) for both the Landsa
and Envisat classification.

Table 2. Cross-classification table of the maximum likeblloLandsat classification of
June 2002 (rows) and the Envisat classificationdufie 2005 (columns), presenting
numbers of pixels classified as wetland and drylamdoth classifications.

Radar
Wetland Dryland Total
_ Wetland 1478 2858 4336
Optical
Dryland 1421 2641810 2643231
Total 2899 2644668 2647567

As indicated in Table 2, more wetland pixels areedied on the Landsat image (4336) than on the
Envisat image (2899). The frequency distributioig@fe 5) clearly shows that almost no wetlands
smaller than 0.5 ha can be detected on the Enwsagery. For wetland classes from 1.5 ha onwards,
the results on ETM+ and ASAR HH imagery are veryilgir.
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Figure 4. Details from the cross-classification of the mapum likelihood Landsat
ETM+ classification of June 2002 and the EnvisatARSclassification of June 2005.
The left part shows a region in the East of thelytarea containing few small to
medium-sized wetlands; the center inset illustratassification results over a vast area
with medium-sized to large wetlands, located in ¢bater of the study area; the right
part covers a very large salt pan near the Atladast.
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Figure 5. Number of detected wetlands in the study area @@ed¢omparison (see
materials and methods), as a function of wetlard slass (ha) for the Envisat ASAR
image of June 2005 and the Landsat ETM+ image roé 2002.
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4. Discussion

This study revealed that basic remote sensing igeobs can be used as a tool to acquire
ecologically relevant information on temporary g&tmanent open water wetlands that are larger than
the resolution of the classified images.

In the optical study, the maximum likelihood cldissition procedure had the highest overall and
user’s accuracy for detection of open water wesandhile the Fisher classification method had a
slightly higher producer’s accuracy and categori#l. Since the maximum likelihood procedure is
one of the most commonly used supervised classditanethods for wetlands [5] and since its
accuracy is comparable to that of other procedutesas used for all further analyses. The high
accuracy of the classifications indicates that dasmote sensing techniques are sufficient to tetec
open water wetlands on Landsat imagery, due tdistmctive spectral characteristics of open water.
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Logically, more wetlands were classified in thenyaseason (winter images; on average 0.23 per
km?2) than in the dry season (summer images; onageef.09 per km?2). On average, 68% of the
detected summer wetlands and 79% of the winterawddl were smaller than one ha. The distance to
the nearest detectable wetland was larger in surfoneaverage 763 m) than in winter (on average 441
m). These seasonal differences most probably résath the many temporary wetlands that are
flooded in the area during winter. In comparisoipéomanent wetlands, more, but on average smaller,
temporary wetlands were detected in 2000-2001. KMewesome permanent wetlands that were too
small to detect during summer could probably bectarger and detectable in winter. The occurrence
of these wetlands may therefore be misinterpreped@sely contribute to this apparent higher numbe
of temporary wetlands. To evaluate these deviatibigh spatial resolution satellite imagery or akri
photographs are indispensable.

The number of wetlands fluctuated over time (1982002). There was however no significant
relation between rainfall pattern and the amounwetlands detected in the winter or summer images.
Probably the differences in rainfall pattern aret terge enough to significantly influence the
occurrence of the larger, detectable wetlands.h@rother hand, for the very small temporary wettand
that were undetectable by Landsat, relatively lalifferences in their amount and size occur between
years (personal observation in the field), probaklated to precipitation patterns. In the wintér o
2000 and 2002, a higher number of wetlands wasteteThe construction of roads on embankments
probably created these additional wetlands, simagalinterpretation of the classified images résea
their linear positioning alongside roads. Othertdex; such as temperature and groundwater
fluctuations, could also have influenced the amaidintetlands over the investigated years.

Classification on the Envisat image by means aofghold criteria on segment value and segment
shape-index also appeared to be a simple andHfiaigard method for the delineation of open water
bodies in the Western Cape. However, results rhistl that considerably less small wetlands were
detected in Envisat imagery compared to Landsagi@mya The major cause for the underestimation of
wetland occurrence in the radar scene is the @it of spatially averaging noise suppression
techniques as filtering and segmentation. Thisatem be revealed from the left part of Figure 4ereh
the two larger wetlands at the top right are detkcin both images, whereas all smaller wetlantiseat
bottom left are only discerned on ETM+ imagery.daarwetlands are thus accurately detected on both
optical and radar images, while small wetlandsrerte As a consequence, small wetlands, which are
often temporarily inundated, are no longer distisgable and calculations of ecological parameters
must hence be interpreted with care. Cross-claasifin results (Table 2) reveal that a higher numbe
of wetland pixels are detected with Landsat (43Bé&j with Envisat (2899), probably due to the loss
of many small wetlands during Envisat image proogss

Only a relatively small amount of wetland pixelsreveletected by both radar and optical image
classifications (Table 2). This low number is prolyacaused by severe displacements. Since a radar
device measures distances from ground targetetoattar antenna, variations in topography can cause
features to be shifted. Features lying at highewér) elevation will be located more (less) neaigea
on the image, which is not corrected for duringrgéerencing. Moreover, optical images may present
a complete reverse shift. An increase in the elenaif a feature causes its position on the imadeet
displaced radially outward from the principal poiatshift referred to as ‘relief displacement’ [18]
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specific example of such displacement is showménright part of Figure 4, covering a large sah pa
near the Atlantic coast. For this wetland, contegr®23 pixels (i.e. the average area of the weténd
sensed with Landsat and Envisat), only 244 pixelrewdetected in common. Due to these
displacements, the direct use of classificationsath optical and radar imagery in one study mest b
cautiously interpreted.

In addition, also the comparison between the diaatibns of Landsat and Envisat images has to be
interpreted with care due to the time lag betwéenimage acquisitions (2002-2005). In this timenspa
several wetlands may have been created or lostordo to landowners, however, there were no
large changes in land use in that period. PosséMyer wetlands were water logged on the 2002
Landsat image compared to the 2005 Envisat imagee shere was less precipitation in the first six
months preceding the 2002 image acquisition.

Monitoring of wetland characteristics by remote seg can provide important information for
ecological research and for the development of@wasion measures. Little is currently known on the
number, surface area, and distribution patterntemiporary and permanent wetlands in the Western
Cape, despite the importance of such knowledgenfettand ecology and management. In general,
classification of Southern African inland watersswastricted due to the high cost [11]. In accocgan
with our results, Silberbauer and King [31] havéedmined many small wetlands in the same study
area. These authors detected about 0.17 tempandrypermanent wetlands per km? (deducted from
maps), which is slightly less than detected in optical study (about 0.23 wetlands per km?).
Comparing both studies, however, should be donke gate, since the work of Silberbauer and King
[31] was based on 1:50 000 topographical surveysnfiagpn 1953 to 1987. At present, the National
Land Cover project is mapping wetlands and othed leeatures in South Africa (using Landsat 7
ETM+ imagery), creating additional valuable infottioa.

The number of wetlands detected by Landsat or Bhelassification can be important for the study
of the ecology and for the conservation of local amgrating wading birds, which currently occur in
large numbers in the studied area [32] and espedeéd in the larger water bodies (personal
observation). Reduction of numbers of wetlands, deample due to water abstraction or climate
change, may negatively affect several of theseiepesuch as flamingos. The number, surface area,
isolation, and density of wetlands can also infeeesthe metapopulation and metacommunity structure
and the persistence of amphibians and inverteb{8884]. Large branchiopods, which are typical
inhabitants and flag ship species of temporary msater example, can be genetically isolated even
over short distances [35], illustrating the impoda of distance between wetlands for invertebrate
populations. Vanschoenwinkel and co-workers [36thiermore measured that also at (invertebrate)
community level, dissimilarity increased with distea among rock pools. Semlitsch and Bodie [37]
observed that a loss of small wetlands in the AtaG@oastal Plain (U.S.A.) would increase the
distance to the nearest wetland, impeding the eesffacts of amphibians at the metapopulation level

A ground survey in winter 2005 revealed that astié&8% of wetlands present in the area were not
detected by our remote sensing study, due to shedll size. Even more wetlands are missed outen th
Envisat classification. Most of these undetectabkilands were of a temporary nature (personal
observation). All analyses and conclusions in shigly thus apply only to the larger detectableaisal
open water wetlands. Research on the effect ofanetisolation on amphibian communities requires
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very high spatial resolution images, since smalllamels are important habitats for amphibians [37]
and may act as stepping-stones between the langsr[88-39]. In this respect, high spatial resoluti
images, such as IKONOS images for optical studres RADARSAT-I and future RADARSAT-II
imagery for radar purposes, would give spatiallyrendetailed results [14], if we assume that no
further complications arise with the use of thesages. However, these images have a small footprint
and there are no long time series available yetrebher, they are at present expensive and many
images are needed for the detection of small teanpawetlands due to their often short inundation
period. The resolution of Landsat and Envisat figent, on the other hand, for research on habita
important for several water bird species that dbowtzur, or only in very low abundances, in small
wetlands [40]. Satellite imagery can be especiatigful for many studies on habitats of highly mebil
organisms such as water birds, as they requireadatiaa large tract of land [41]. The resolutiortiod
images used to delineate wetlands hence shoulddmet to the size of the studied wetlands.

Despite the usefulness of remote sensing datayakie knowledge of many ecologists on remote
sensing and GIS is still poor, creating the needrfore extensive training. In addition, specialts
needed in order to detect more detailed informatioch as wetland inundation period or different
types of vegetated wetlands from optical or radages. In general, it is important that ecologses
aware of the possibilities and limitations of remaensing techniques. Depending on the study
systems and the resolution of the images used l&ssification, valuable information on wetland
ecosystems can be gathered through cooperatiorebet@mote sensing specialists and ecologists.

5. Conclusions

Basic descriptive data of open water temporary @grnanent wetlands can be generated through
relatively cheap remote sensing imagery and stan@®& techniques, which can be important for
ecological research and hence for the creatioron$@rvation measures. However, since many of the
temporary wetlands are very small in the WestermpeCthe resolution of Landsat or Envisat images is
insufficient to be used as an exhaustive monitotowd from space. Small wetlands (smaller than 1.5
ha) were even more difficult to discern with EnvigeEAR imagery than with Landsat. Very high
accuracy images (like IKONOS or Radarsat I/lIl) vwbprobably yield more detailed results, but the
high cost and the lack of long term time series areresent restricting factors for their use by
biologists. To fully understand wetland ecosystemctioning in a broader context, interdisciplinary
research is of high priority. We therefore stronglycourage the integration of remote sensing and
aquatic ecology, and the expansion of remote sgiksiawledge to more ecologists.
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