Sensors 2008 8, 2774-2791

SENS0r'S

ISSN 1424-8220
© 2008 by MDPI
www.mdpi.org/sensors

Full Research Paper

Relative Radiometric Normalization and Atmospheric
Correction of a SPOT 5 Time Series

Mahmoud El Hajj *, Agnés Bégué&, Bruno Lafrance 3, Olivier Hagolle *, Gérard Dedieu® and
Matthieu Rumeau 2

1 Cemagref, UMR TETIS, Remote Sensing Centre mguadoc Roussillon, 500 rue JF Breton,
34093 Montpellier Cedex 5, France; E-mail: mahmelindyjj@teledetection.fr

2 Cirad, UMR TETIS, Remote Sensing Centre in Laupe Roussillon, 500 rue JF Breton, 34093
Montpellier Cedex 5, France ; E-mails: agnes.bege&@etection.fr;
matthieu.rumeau@laposte.net

3 Ceshio/CNES, 18 avenue E. Belin 31401 Toulowsse< 9, France ; E-mails:
olivier.hagolle@cnes.fr; gerard.dedieu@cesbio.énes.

4 CS-SlI, Parc de la Plaine, Rue de Brindejondvimdinais, BP 5872, 31506 Toulouse Cedex 5,
France ; E-mail: bruno.lafrance@c-s.fr

* Author to whom correspondence should be addre€sadail: mahmoud.elhajj@teledetection.fr

Received: 17 December 2008 / Accepted: 17 April 2008 / Published: 18 April 2008

Abstract: Multi-temporal images acquired at high spatial amthporal resolution are an
important tool for detecting change and analyzingnds, especially in agricultural
applications. However, to insure a reliable uséhef kind of data, a rigorous radiometric
normalization step is required. Normalization cae &ddressed by performing an
atmospheric correction of each image in the timeseThe main problem is the difficulty
of obtaining an atmospheric characterization atvargacquisition date. In this paper, we
investigate whether relative radiometric normal@atcan substitute for atmospheric
correction. We develop an automatic method fortingdaradiometric normalization based
on calculating linear regressions between unnomedland reference images. Regressions
are obtained using the reflectances of automajisallected invariant targets. We compare
this method with an atmospheric correction methbdt tuses the 6S model. The
performances of both methods are compared usinigdges from of a SPOT 5 time series
acquired over Reunion Island. Results obtainedaf@et of manually selected invariant
targets show excellent agreement between the twbaae in all spectral bands: values of
the coefficient of determination (r?) exceed 0.980d bias magnitude values are less than
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2.65. There is also a strong correlation betweemalized NDVI values of sugarcane
fields (r2 = 0.959). Despite a relative error of. @26 between values, very comparable
NDVI patterns are observed.

Keywords: Radiometric normalization; Atmospheric correctid®POT 5; Time series;
Sugarcane.

1. Introduction

Time series of remotely sensed imagery acquirddght spatial and temporal resolution provide a
potentially ideal source for detecting change amdlhaing trends [1-3]. The dynamics of the
radiometric signals and the vegetation indices paeticularly interesting for crop monitoring,
especially for mapping cropping operations (sowihgrvest, irrigation, etc.), for detecting growth
anomalies, and for predicting yield.

Since multi-temporal images are often acquired Ifferént sensors under variable atmospheric
conditions, solar illumination and view angles, ioaetric normalization is required to remove
radiometric distortions and make the images conipar&ffects of artifacts, surface directionalityda
atmosphere can be corrected in an absolute oatveeivay.

Several operational algorithms for absolute radimimesorrection (atmospheric correction) have
been developed, including Modtran2, 5S, SMAC (base8S) and 6S [4-7]. The major issue of these
codes is how to retrieve the Top Of Canopy (TO@gectance from the Top Of Atmosphere (TOA)
reflectance, which is derived from the radiance snead by the sensor. For this, information about
both the sensor spectral profile and the atmosphedperties at the acquisition time is required to
estimate atmospheric scattering and absorptionctsffeOther methods based on Dark Object
Subtraction (DOS) have also been developed [8th@lse methods avoid the need for atmospheric
measurements but require radiative transfer carlesake absolute radiometric correction.

In order to eliminate the need for both radiatixensfer codes and atmospheric optical properties
that are difficult to acquire particularly for hasic satellite data, many investigators have resbto
relative radiometric normalization. Proposed meth@dl proceed under the assumption that the
relationship between the TOA radiances recordetivat different times from regions of constant
reflectance is spatially homogeneous and can bexrjppated by a linear function. The normalization
process can then be reduced to a linear regresaloulation for each spectral band [11-17]. Themmai
difficulty of relative normalization methods is deatining the landscape features whose reflectances
are nearly constant over time.

It is effective to manually select invariant tagetisually urban features, as presented by [17] and
[15], but this approach is time-consuming and caelsult in subjective radiometric normalization.
[18] developed a procedure that automatically $ale@riant pixels using scattergrams of the near-
infrared data from images to normalize. This praceds effective [19], but it is only applicable to
images acquired under similar solar illuminatiorometries and similar phenological conditions.
Another method to automatically determine invaripixels was presented by [20]; the Multivariate
Alteration Detection (MAD) method they proposed sugeaditional canonical correlation analysis
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(CCA) to find linear combinations between two greugf variables (i.e., the spectral bands of the
subject and reference images) ordered by corralapiosimilarity between pairs. The main drawbacks
of this method are the noisy aspect of the MAD atas, the long computing time, and the need for
huge computing resources when applied to imagdshigih spatial resolution. More recent extensions
of this method were developed to improve its penfmmces but the time and resource consumption
problem remains [21, 22]. Based on the foregoingrd is a need to develop and evaluate autonomous,
fast and objective radiometric normalization methttht are able to deal with multi-temporal images
acquired under different atmospheric and geometmaitions and in different seasons.

In this paper, we propose a novel automatic metloodrelative radiometric normalization of
SPOT 5 time series. This method is based on linegressions derived from the reflectances of
automatically selected invariant targets (IT). W& agresent an atmospheric correction method that
uses the 6S (Second Simulation of the Satellitegbion the Solar Spectrum) model [7] and serves as
comparison reference. The performances of the twthods are compared. Furthermore, since the
SPOT 5 time series will be used for sugarcane oropitoring, we assess the impact of each method
on sugarcane field spectral properties.

2. Material and Methods
2.1. Sudy area

The study site is Reunion Island. It is a smallitery (ca. 2512 krf) located in the Indian Ocean
(21°7' to 19°40' S, 55°13' to 61°13' E), north-ealsMadagascar (Figure 1). As it is located in a
tropical zone, the year is divided into two seas@anBot rainy season from November to April and a
cool dry season from May to October. The islandighly mountainous. There are smooth slopes in
the coastal zones, which steepen quickly towardcémdre of the island. The centre is made of three
cirques, which give very sharp relief.

Sugarcane is the main crop in Reunion Island. Itullivated along the coast over 26,500 ha
(Source: DDAF 2004). Most of the growers are snuddlars, and the average size of a sugarcane field
is about 0.8 ha. In the wet north-eastern parthefisland, sugarcane is rainfed, while in the drier
south-western part, it is irrigated.

Figure 1. The location of Reunion Island in the Indian Ocean
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2.2. Data set

The data set used in this study consists of 18 Sptages over Reunion Island (Figure 2). Both
Spot 5 instruments HRG1 and HRG2 acquire radiatioriour spectral bands with high spatial
resolution: 10 m in the Green, Red and Near Infea-NIR) bands (B1, B2 and B3 respectively), and
20 m in the Short Wave Infra-Red (SWIR) band (B4y(re 3).

Figure 2. Example of image of KALIDEOS-ISLE REUNION databas$ealse color
composite (Red: band-4; Green: band-3; Blue: bgnaFihe SPOT 5 image acquired
on May 13", 2004.

meters

Figure 3. SPOT 5 spectral bands and gaseous transmissiorenimspheric model
US62 with a water vapor amount of 1.424 g’amd ozone amount 0.344 cm.atm. (B1
= Green band; B2 = Red band; B3 = NIR band; B4 4WYand).
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The images belong to the KALIDEOS-ISLE REUNION d=tse set up by the CNER3, 24]. All
images are ortho-rectified and co-registered tdithi# coordinate system (zone 40 South) with a root
mean square error less than 0.5 pixels per imag@eTlL shows the characteristics of the imagelsan t
time series, as well as the atmospheric data esthhat the acquisition dates. The geometric
conditions of acquisition and the atmospheric congms vary significantly between images.

A cloud mask was available for each image, a abageh saturation mask that defines the positions
of pixels that are saturated in at least one ofdhe spectral bands. A Digital Elevation Model (RE
was provided by the IGN (BD TOPat 25 m resolution to determine the elevatioeath pixel. A
map of sugarcane-cultivated fields was also aviglab

Table 1. Characteristics of the imaging and atmospheriditmms of the time series.
Imaging (geometric) parameters stem from image dadéa Atmospheric parameter
estimation is described in Section 2.5.

Dates SPOT5 | Incidence| Solar Phase | Pressur€ | HyOam® | Ozon€ | tsso
Instrument | anglé | elevatior® | angle’ (mbar) (g.cm?) | (cm.atm)
(in degree)| (in degree) | (in degree)
(Right = -)
01/10/2003 HRG 2 -04.65 64.10 21.28 1014 2.783 0.264 0,538
02/26/2003 HRG 1 -11.94 58.54 22.07 1013 5.469 0.259 0322
04/24/2003 HRG 1 -04.39 48.02 40.23 1017 4.24 0.253 0.p46
05/04/2003 HRG 1 10.90 46.80 47.99 1015 2.649 0.252 0262
07/21/2003 HRG 1 10.58 41.20 53.13 1022 2.332 0.263 0J112
08/21/2003 HRG 1 18.17 48.90 51.00 1024 2.151 0.2Y2 0273
09/01/2003 HRG 1 -04.42 50.63 37.31 1026 1.954 0.2Y6 0277
10/08/2003 HRG 1 -25.95 60.40 19.75 1018 2.671 0.297 0432
12/19/2003 HRG 1 -02.90 67.20 19.90 1017 3.093 0.2Y2 0357
03/17/2004 HRG 2 -19.10 54.2 25.24 1014 2.76[1 0.2%5 0.[176
04/11/2004 HRG 1 +17.95 52.45 48.41 1014 4.793 0.2b2 0.26
05/13/2004 HRG 1 -11.80 42.90 43.86 1018 1.986 0.246 0,22
06/18/2004 HRG 2 +03.25 39.10 51.95 1024 2.357 0.287 011
07/09/2004 HRG 1 -04.73 38.83 49.70 1020 2.674 0.242 0221
08/19/2004 HRG 1 +17.96 48.50 51.24 1027 2.126 0.254 0J197
10/26/2004 HRG 2 +03.30 67.90 24.94 1018 2.946 0.2Y5 0)329
11/06/2004 HRG 1 -19.16 66.63 09.07 1021 2.541 0.286 0351
12/07/2004 HRG 1 -12.28 66.65 11.19 1021 1.962 0.2Y6 0,355

! Centre National d’Etudes Spatiales (France)

2 The angle defined by the direction of the sateHind the vertical to the surface.

® The angle defined by the direction of the sun edhorizon.

* The angle defined by the projections of the suedtion and the satellite direction on the horiabptane.
®> Atmospheric pressure

® Water vapor amount

" Ozone amount

8 Aerosol optical thickness at 550 nm
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2.3. Calculation of TOA reflectance

The images are delivered as raw numerical couras dhe simply equalized (corrected for the
individual behavior of each pixel detector) andreoted for digital dynamic stretching. Thus, thstfi
step in the radiometric correction process was dmpute the reflectances at the Top Of the
Atmosphere (TOA) for each image. This phase taksaccount a) the calibration parameters for the
acquisition date, which are absolute coefficiemd the analog gain values, b) the solar zenitheangl
and c) the normalized solar irradiance. In ordeolitain physical measurements independent of the
radiometer characteristics, we converted the nuralecounts to radiances. The radianéeoh at the
TOA is linked to the measured counlt By the following relation:

xk

LS on = 1
TOA Akam ( )

where:
» A is the absolute calibration coefficient for bana&timated for the date of image acquisition.
This coefficient was provided by the CNES [25] &ach image, and takes into account sensor

degradation over time.
. Gp Is the analog gain of the on-board amplifier fand k [25].
k
L7oa was then normalized by the exo-atmospheric salddent flux in order to obtain the surface

k
TOA reflectanceProa . This was calculated by:

k — ZT'LISI'OA
Proan = 2
% EX .cosf,(d,/d)’ @)
where:
k
« Es is the mean exo-atmospheric solar irradiance &héand provided by the 6S radiative

transfer code [7].
* &is the solar zenith angle that stems from auyildata.
* do/d is the ratio of the Sun-Earth distance at theustitpn date to the mean Sun-Earth
distance, calculated for the acquisition date Byrgle ephemerid equation from 6S code [7].
To consider the effects of surface slope, 836 eq. 2 was replaced by:

Bs =cos@s)[Eos@,) +sin(E) [Sin@,) [Eos@s - ¢,) 3)
where 4, is the surface zenith angle (slopgy,is the solar azimuth angle agd the surface azimuth
angle (aspect).

2.4. Relative radiometric normalization

We developed a simplified method for relative radédric normalization of TOA images. This
method does not require atmospheric data and atseimpiniformly minimize the effects of changing
atmospheric and solar conditions relative to aregfee image. The process is based on calculating
linear regressions between images to be normalaretl a reference one. Three main steps are
identified: the choice of a reference image, theaiant targets (IT) selection, and the calculatién
the linear regressions.
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2.4.1. Reference image

One of the images of the time series must be chasenreference to which all other scenes will be
related. This image must be the least cloud-comtated, time-wise adequate for the application, and
must have a good spectral dynamic range. The referenage that we chose for our normalization is
that acquired on May 132004 (Figure 2).

2.4.2. Automatic selection of IT

We developed an automatic technique for IT selactilecause we wanted to make the selection
process objective and obtain a sufficient numbdi afovering a large spectral range.

The flowchart of the automatic IT selection teclugdgs shown in Figure 4. For each image in the
time series, we first calculate a multi-band défece image (MDI) by a pixel-based subtraction from
the reference image. Then we apply to each MDIt @fseasks in order to discard as many changing
pixels as possible. By using cloud and saturatiasks, we flag pixels related to cloud and/or aédct
by radiometric saturation. After this, we flag theaximum number of pixels related to changing
vegetation areas using available agricultural méps;agricultural map available for this study only
defines the sugarcane-cultivated fields which dgartstmore than 60% of cultivated areas in Reunion
Island. Next, since we are not interested in havinm the ocean, we use the land boundaries tp fla
ocean pixels. We then select IT for each date usiadnistograms of unflagged pixels in the four MDI
bands.

The histogram shape of each MDI band depends otypes of changes that happen between the
unnormalized image date and the reference datén §aectral band is sensitive to different sorts of
change, therefore a land cover change could cawssgndicant modification of pixel values in one
spectral band but not in the others. In all MDI égnthe pixels with relatively slight changes viié
clustered around the modes of the histograms. M@ians that the majority of unflagged pixels are
considered targets with no or nearly no change. difierence values corresponding to these pixels
differ from zero because of the change in imagiogditions from one date to another. The centre of
these clusters does not necessarily correspondistogham-band mean positions because the
frequencies of changes with equal magnitudes affdreit signs are unequal. The rest of the
histogram belongs to pixels with real land chandémse pixels may have been affected by different
imaging conditions, but their effect compared tal hange is negligible.

For each date, histograms in the four MDI bandsshiited so that the difference values assigned to
the majorities (modes) are brought back to zemalBj, pixels in each MDI with near null values in
all four bands are considered IT. The “near nukpression was translated by 7% of the standard
deviation around the histogram mode. This threskialde was chosen after several tests; it allows th
selection of an optimal number of IT. We are nata@ned about selecting biased invariant targets as
we use selection criteria in all four bands sim#tausly. The selected invariant targets represent a
average of 0.044 % (10928 pixels) of the islances>and include a wide diversity of features: sxel
of large buildings, bare soils, roads, dense feresticanic lava, lakes, etc.
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2.4.3. Regression coefficient calculations

For selected IT, we extract mean reflectance valoethe four spectral bands from the TOA
images. Using these values, we established limggessions for each band of the form:

y=ax+b 4)
wherey is the reference image ardhe other images in turn. The regressions werne dipplied to the

images to perform relative radiometric normalizatidBy applying this method we obtained a
corrected time series with relatively normalizedAl @flectances.

2.4.4. Manual selection of IT for validating the@matic selection technique

In order to validate the technique of automatics€lection, we built up a set of manually selected
IT (MSIT). This was done by photo-interpretatiorsed on area knowledge. The MSIT set consists of
70 features of dimensions 20 m x 20 m spread dwverwthole island surface. It comprises large
buildings, dense forests, volcanic lavas, baressaitport tracks, and more. MSIT were chosen 40 as
cover a large spectral range in each of the fo@BP spectral bands.

First, we assessed the temporal stability of thdTM& evaluating for each the standard deviation
of its reflectances over all the TOA images. Theametandard deviation values of the MSIT
reflectances were less than 4% in the four bamf)esset was considered acceptable.

A subsetM of the MSIT was used to establish for each dateew set of linear regressions
according to eq. 4, where, as beforés the reference image (acquired on Ma¥,12004) andk the
other images in turn. This set of regressions dad dbtained by the automatic selection technique
were used to separately normalize the reflectaotése targets in another sub®ebf the MSIT. The
goal is, as mentioned before, to assess the wabflithe automatically selected IT. Results arensho
in section 3.1, based on linear regression anafysisthe evaluation of the RMSE (root mean square
error) and the bias given by:

RMSE :\/%Z(pMan = Pa)’ ()

: 1
Bias =" (Puw ~Pos) (6)
wheren is the number of MSIT i, and p,,,, and p,, are the relatively normalized reflectances of
the MSIT obtained by the automatic and manual Selesets, respectively.

2.5. Atmospheric correction

The reflectance at the top of canopy (TOC) (thaugdoreflectance) is calculated using simulations
of the 6S atmospheric correction model [7]. Thislepredicts the satellite signal from 0.25 to 4.0
micrometers assuming a cloud-free atmosphere. Bhméiometric correction scheme requires a) the
atmospheric pressure, which is correlated to théeontar scattering radiance, b) the gas amounts
(water vapor, carbon dioxide, oxygen and ozone) danospheric transmittance due molecule
absorption and c) the aerosols characteristic® (#yy concentration).
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Figure 4. Flowchart of the automatic selection techniquérlof
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2.5.1. Atmospheric data

Gas amount and atmospheric pressure

SPOT 5 spectral bands are variably “affected” Inyaspheric gas absorption and scattering (Figure
3). Stratospheric ozone absorption, with a maxinamound 0.6 pm and extending from approximately
0.4 to 0.8 um, affects bands B1 and B2. Oxygengntssstrong absorption at 0.69 um and 0.763 pm,
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and affects band B2 and a little band B3. Wateovgpesents an absorption spectrum above 0.6 um
with more or less important absorption lines, aradmy affects band B3 and, to a lesser extend, band
B2. The spectral sensitivity of band B4 to gaseshsorptions (carbonic gas, methane or water vapor)
is very weak. For stable gas, such as oxygen, narlgas and methane, the simulations use a standard
vertical profile. This profile is obtained by modg862 included in the 6S code. For more fluctuating
gas, daily values are necessary. The water vapouminintegrated over the atmospheric column, is
obtained from meteorological information. We usedBY¥ (National Center for Environment
Prediction) models to determine this parameterpttemne amount is accessible from satetldga such

as TOMS and TOAST.

The molecular radiance, resulting from light saatig by molecules, prevails for short wavelength
bands (B1 and B2). Molecular radiance depends emmblecular optical thickness. This latter is well
known for standard atmospheric pressure (1013 nma) must balanced by the real pressure
corresponding to the SPOT 5 acquisition date. Aphesc pressure is also accessible from NCEP.

Aerosol characteristics

Tropospheric aerosols are the most difficult atrhesigc components to characterize. The
atmospheric correction code requires the aerosidadghickness at 550 nm and a description of the
particle type to derive their spectral properties.

As Reunion Island is located in the Indian Ocetis strongly influenced by oceanic conditions.
Both L3 Standard Mapped Image of SeaWIFs produetssured over sea surrounding the island, and
meteorological information from NCEP models, gilie tequired information to characterize aerosols.
SeaWIFs products give the aerosol optical thickriess wavelength of 865 nm, while NCEP data
provide the relative humidity of air. Assuming aritime model for aerosols, we used the Shettle and
Fenn model [26] to calculate the optical thicknas§50 nm from the relative humidity of the air and
the optical thickness at 865 nm.

Ground elevation correction

Due to its volcanic origin, the topography of Reumisland is strongly heterogeneous with high
slopes and an elevation from sea level to more 3380 m over only 2500 KmSince the atmospheric
optical thickness fits the relief, ground elevatiotust be taken into account in the atmospheric
correction process.

As atmospheric parameters are specified for a gitndez., their values/ must be adjusted for
the simulated elevatiorsms The concentrations of atmospheric componenta@jtested by using scale
heightH applied to their vertical profiles:

V(z)=V(z, )Dex{— 5 j )

The elevation correctioN(z) (eq. 7) is applied to atmospheric pressure, abmsccal thickness
and total amount of water vapor integrated overvbsgical column. The atmospheric pressure is
correlated to the molecular density with a scalighteof 8 km. Water vapor and aerosols are mostly
concentrated in the low troposphere. Although tipeofiles are strongly variable, we can roughly
approximate them by assuming an exponential deer@asoncentration with a scale height of 2 km.
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2.5.2. Calculation of TOC reflectance

TOC reflectance is deduced, pixel by pixel, by canmy measured reflectance at TOA to 6S
simulations for a range of TOC reflectance usingngetric and atmospheric conditions corresponding
to each SPOT 5 acquisition.

The principle is based on calculating Look-Up Tab{€UTs) that give couples of TOC and
corresponding TOA reflectances (one table by spebtind). The 6S code has been adapted to allow
internal loops over the different TOC reflectaneesl, therefore, to easily calculate one LUT by
spectral band. TOC reflectance varies from bladugd with null reflectance to bright surface with
reflectance of 0.8, with a predefined step of 0fxrbm calculated TOA reflectance, we perform an
interpolation in the LUTs to obtain the TOC reflmate corresponding to the measured TOA
reflectance for each pixel of the image.

In order to take elevation into account, we usedMEM that gives the real elevatiarfor each
pixel. From 6S LUTs simulated for elevationsandz.; surroundingz, new LUTs (TOC reflectance /
TOA reflectance) are calculated for altitudeby linear interpolation. Once these new LUTs are
available for the current pixel of altitudewe use it to inverse the TOC reflectance corredjpm to
the measured TOA reflectance.

3. Results and Discussion
3.1. Validation of the automatic selection technique of IT

First, we present the results of validation of fheautomatic selection technique. Figure 5 shows
the regressions obtained between the relativelynatized reflectances of MSIT iN (see Section
2.4.4) in the four spectral bands. The correlabetween the normalization resulting from the two IT
selection approaches is very strong: r2 exceed® i0.%ll spectral bands. Moreover, RMSE values
range from 0.843 to 1.205, with a bias typicallyween -0.081 and 0.285 (very small) (RMSE and
bias unit: percent of reflectance). Consequentlg, consider that the proposed automatic selection
technique of IT is successful and is an excellépt@ative to time-consuming manual IT selection.

3.2. Comparison of relative normalization and atmospheric correction performances

The comparison between the relative normalizatiod atmospheric correction methods was
carried out by evaluating the impact of each methodeflectances of MSIT.

For each MSIT, we extracted the mean values of spimerically corrected reflectances (TOC
reflectances) at each date. For each date, wecalsolated the relatively normalized reflectancés o
each MSIT using relatively normalized images oladinising the automatic IT selection technique.
Figure 6 shows the relatively normalized reflecenof MSIT as a function of its TOC reflectances,
for all spectral bands. An excellent correlatioriasnd in all bands: r2 is equal to 0.992, 0.9948G
and 0.960 in B1, B2, B3 and B4, respectively. ThMSIE and bias values are small. The former ranges
from 1.544 to 3.221, and the latter varies betw@etd9 and 1.302.

We were also interested in evaluating the impaaawth method on the temporal behavior of the
MSIT reflectances. For this, we calculated the daad deviation of the profile of each MSIT over the
18 acquisition dates a) before normalization (T@#Aectances), b) after relative normalization, ajhd
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after atmospheric correction (TOC reflectancespl@ & shows the average and maximum values of
the standard deviation obtained at each level arehch band. When looking at the average standard
deviations, we notice that both the relative and #imospheric correction methods smooth the
temporal profiles of MSIT reflectance in the foyestral bands. However, the relative radiometric
normalization better smoothes these profiles, dad decreases the maximum value of the standard
deviations (not the case for atmospheric correftidhis might be due to the fact that the relative
normalization corrects not only a part of atmospheffects but also a part of surface directioyalit
effects. Consequently, we consider that both methreduce the radiometric distortion of the time
series, but that relative normalization correctseiter.

Figure 5. Regressions obtained in each band for the vatidatf the automatic
selection technique of IT: the x-axis corresporal$he normalized values obtained by
automatic selection, and the y-axis to the norredlizalues obtained by manual

selection.
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3.3. Impact on the spectral properties of sugarcane fields

Since the final goal of this project is monitorisggarcane crop using multi-temporal images of
SPOT 5, it was necessary to assess the impactcbfreathod on the NDVI values calculated at the

sugarcane field scale. The NDVI is computed by:

NDVI — Par ~ Prea (8)
IONIR + Iored

where p,,, and p,,, are the reflectances in the NIR band (B3) and Baedl (B2) respectively. The
NDVI temporal profile is actually a very good tdol sugarcane yield prediction and harvest detactio
[27-29].

Figure 6. Comparison between MSIT reflectances correcte@®yTOC reflectance)
and those corrected by relative radiometric normaéitbn.
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Twenty fields were chosen for the comparison. Weutated for each field the mean NDVI values

at each date using relatively normalized imagesTan@ images.
Figure 7 shows the regression obtained betweerrdla¢ively normalized NDVI and the TOC

NDVI values obtained for all dates and fields. hex a strong correlation (r2 = 0.959) between the
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two methods. However, the RMSE and bias valuenanenegligible (RMSE = 0.098, Bias = 0.092).
The relative error was estimated to be 12.66%, lwisdigh.

Table 2. Average and maximum values (over 18 dates) ofthredard deviation (STD)
calculated for the reflectances of manually setbdie (MSIT): before radiometric

normalization (TOA), after relative radiometric naalization, and after atmospheric
correction (TOC).

TOA + Atmospheric correction
(TOC)
Bl | B2 | B3 | B4 Bl B2 B3 B4 Bl B2 B3 B4

TOA TOA + Relative normalization

Average
STD 1.34(159|1.80(2.08| 0.88 | 1.10| 1.25 1.25 123 145 1.49 1.98

Maximum
STD 3.43|354|295|4.21| 3.04 | 3.21 2.63 2.59 3.51 3.5( 2.86 4.08

Figure 7. Comparison between NDVI values at the sugarcasle Scale calculated
after atmospheric correction by 6S (TOC NDVI) anfiera relative radiometric
normalization.
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Since relative radiometric normalization is noeimtied to absolutely correct the images but only to
normalize them according to a reference imageag more relevant to compare the relative evolution
(increase or decrease) of NDVI from one date totteero Thus, we compared NDVI slope values
calculated for each couple of consecutive datesafbfields (see Figure 8a). We notice a good
correlation (r2 = 0.898) and low RMSE and bias eal(0.00134 and -0.00028, respectively). Only 4%
of the points were significantly spread along thgression. This means that globally both methods
lead to a very similar behavior of NDVI. Looking neain-depth at each field case, we see that NDVI
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patterns obtained by the two methods are very caabpabut sometime differ in a critical stage o th
crop cycle. Figure 8b shows the temporal profileN@fVI obtained for a sugarcane field using TOA
reflectances, relatively normalized reflectanced aC reflectances. We can see that the relative
normalization smoothes the NDVI profile more thamaspheric correction. For instance, the NDVI
fluctuation that appears in May 2003 on the TOA dne TOC profiles does not appear on the
relatively normalized one. Slight differences algoanoticed in the senescence stage, i.e. the stage
after maximum growth. These differences can leadifferent interpretations of the crop state. For
example, when looking at the TOC NDVI pattern betwdune and October 2004, we conclude that
the sugarcane has dried remarkably because the MBafeases by 0.1, but the 0.04 decrease of the
relatively normalized NDVI does not indicate thanga Since no ground truths are available for
comparison, we cannot conclude one or the otheratWile can say at this stage is that relatively
normalized NDVI patterns obtained by the two methade very comparable, but slight differences
might have an impact on derived crop indicators tieed highly accurate data.

4. Conclusion

In this paper, we addressed the issue of normglitie radiometry of a SPOT 5 time series
acquired over Reunion Island, and introduced aroraatic method for relative radiometric
normalization based on the reflectances of invatangets. Since finding these targets is an ingmbrt
step, we developed and validated an automatic tggaror IT selection. The main advantages of this
method are its implementation simplicity, its ausditity, its applicability to images acquired in
different seasons and the fact that it does nod @ospheric data; however, results depend of the
selected reference image.

We also presented an atmospheric correction metiagéd on the 6S model and described the
retrieval of atmospheric parameters. This methadects absolutely the atmospheric effects on the
radiometry whatever the date and site. Nevertheless difficult to quantify atmospheric data &iet
local scale since atmospheric parameters are gitevided at the global scale. Another important
limitation is the fact that bidirectional reflectaneffects are not corrected.

We compared the performance of both methods ussgf af manually selected invariant targets;
this comparison shows very strong correlation ao@ lerror rates. Both methods reduce the
radiometric distortion of the time series, but ti@knormalization gives better results.

Impact analysis of the methods on the NDVI of sogae fields showed strong correlation between
normalized values, although the observed error vae relatively high. Very comparable NDVI
patterns at the field scale were obtained, buthslggitical differences were observed that might
influence the computation of phenological and pudidun indicators.

In conclusion, we consider that the developed ikedatormalization method can globally be a good
alternative to atmospheric correction when workiwgh high spatial resolution multi-temporal
imagery.



Sensors 2008 8

2789

Figure 8.a) Comparison between NDVI slope values correcte@3 (TOC) and those
corrected by relative normalization (all datesfialds). b) NDVI patterns calculated for

a sugarcane field with TOA reflectances, relativebrmalized reflectances and TOC
reflectances.
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