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Abstract: Sensor systems are not always equipped with the ability to track targets. 
Sudden maneuvers of a target can have a great impact on the sensor system, which will 
increase the miss rate and rate of false target detection. The use of the generic particle 
filter (PF) algorithm is well known for target tracking, but it can not overcome the 
degeneracy of particles and cumulation of estimation errors. In this paper, we propose an 
improved PF algorithm called PF-RBF. This algorithm uses the radial-basis function 
network (RBFN) in the sampling step for dynamically constructing the process model 
from observations and updating the value of each particle. With the RBFN sampling step, 
PF-RBF can give an accurate proposal distribution and maintain the convergence of a 
sensor system. Simulation results verify that PF-RBF performs better than the Unscented 
Kalman Filter (UKF), PF and Unscented Particle Filter (UPF) in both robustness and 
accuracy whether the observation model used for the sensor system is linear or nonlinear. 
Moreover, the intrinsic property of PF-RBF determines that, when the particle number 
exceeds a certain amount, the execution time of PF-RBF is less than UPF. This makes 
PF-RBF a better candidate for the sensor systems which need many particles for target 
tracking. 
 
Keywords: Particle filter, radial-basis function network, target tracking, sensor system 

 



Sensors 2007, 7                            
 

145

1. Introduction 
 
For surveillance, a sensor system is installed to search for targets and provide reliable detection 

within the given region. The sensor system can measure the range and bearing of the targets, but it can 
not track them. In spite of the recent advances in sensor technology, there are no devices that can 
detect the manned maneuvers of a tracked target in surveillance and guidance systems [1]. Filtering is 
used for estimating and tracking the state of a target as a set of observations becomes available online 
[2]. When a target moves, acceleration may be unexpected, varying over time and follow an unknown 
profile, which has great impact on the sensor system. Even a short-term acceleration will cause an 
error in the measurement sequence and result in divergence, if compensations are not used in time.  

For implementing target tracking in a sensor system, the extended Kalman filter (EKF) was 
introduced [3], but because EKF only uses the first order terms of the Taylor series expansion of  
nonlinear functions, it often introduces large errors in the estimated statistics of the posterior 
distributions of the states. This is especially evident when the models are highly nonlinear and the 
local linearity assumption breaks down [2]. In these cases the Unscented Kalman filter (UKF) [4] with 
true nonlinear models was proposed. Unlike EKF, UKF uses true nonlinear models and instead 
approximates the distribution of the state random variable. In UKF, the state distribution is still 
represented by a Gaussian random variable, but it is specified using a minimal set of deterministically 
chosen sample points. These sample points completely capture the true mean and covariance of the 
Gaussian random variable, and when propagated through the true nonlinear system, captures the 
posterior mean and covariance accurately to the 2nd order for any nonlinearity, with errors only 
introduced in the 3rd and higher orders. However, UKF is limited in that it does not apply to general 
non-Gaussian distributions [2]. Then generic PF [5] was presented for handling multimodal probability 
density functions [6] and solving nonlinear non-Gaussian problems [7], which are widely adopted in 
maneuvering target tracking [15,16,17,18]. However, degeneracy will limit the ability of generic PF to 
search for lower minima in other regions of the error surface [2]. If the process noise increases, the 
estimation error will accumulate, which will lead to the divergence of the sensor system [1]. To solve 
this problem, the improved particle filters have always used various methods to propagate the mean 
and covariance of the Gaussian approximation to the state distribution, such as unscented particle filter 
(UPF) which resulted from using a UKF and Markov chain Monte Carlo (MCMC) step within a 
particle filter framework, but they also increased the execution time sharply [2]. They are 
computationally intensive and difficult to implement in real time in a sensor system. 

This paper proposes a PF-RBF algorithm for target tracking in sensor systems. It is an improved PF 
algorithm which uses the radial-basis function network (RBFN) in sampling. According to the 
observations, PF-RBF uses RBFN to approximate the moving trajectory, construct the process model, 
perform sampling and decrease the cumulated effect of errors. We compare PF-RBF with UKF, PF and 
UPF. The results show that PF-RBF can track targets effectively, especially when the observation 
model of the sensor system is nonlinear, and it also displays good real time performance. 

The remainder of this paper is organized as follows: target motion and observation model of sensor 
systems are introduced in section 2. The proposed PF-RBF algorithm is presented in section 3. The 
experimental results are described in section 4. Finally, the conclusions are given in section 5. 
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2. Target Motion and Observation Model of Sensor Systems 
 

In a sensor system, the measurement sequences are in polar or Cartesian coordinates, but the target 
dynamics are best described in Cartesian coordinates, so we assume that measurement sequences 
described in Cartesian coordinates are available. The target tracking is always formulated as a dynamic 
state space model. The general state space model can be broken down into a state transition and state 
measurement model: 

( ) ( )1,               ,k k k k k kx f x u y h x r−= =                                                     (1) 

where k  is the time index. The state variable kx  which refers to the position and velocity of the target 
is propagated by the process model f  over time. The observation model h  is used to map the state 
variable kx  to the corresponding observation ky ; ku  and kr  are the process noise and the observation 
noise respectively. It is assumed that ku  and kr  are white Gaussian noise with zero means and 
uncorrelated with each other. 

It is always assumed that the states follow a first order Markov process and the observations are 
assumed to be independent given the states 

( )1: 1k kp x x −                                                                        (2) 

( )k kp y x                                                                         (3) 

In target tracking, the posterior density ( )1:k kp x y , where { }1: 1 2, , ,k ky y y y= " , constitutes the 
complete solution to the sequential estimation problem [2]. So the estimation accuracy of posterior 
density is used as the metric in tracking. Because of the measured data and computational loading, 
most sensor systems use a position and velocity two-state process model [2], a maneuver-driving input 
model [1, 8] or use two process models and switch between them in the system [9]. However, these 
models are only appropriate for one of two situations, the presence or absence of target maneuvers. For 
robust target tracking, a dynamic process model should be constructed. 
 
3. Principle of the PF-RBF Algorithm 

 
The generic PF algorithm is a sequential importance sampling method which is based on Monte 

Carlo simulation and Bayesian sampling estimation theories. Various PFs all contain three important 
steps: sampling current value of each particle, evaluation of the recursive important weights and 
resampling. Recent research has focused almost exclusively on the weighting and resampling for 
improving the tracking accuracy [10], [11], while PF-RBF algorithm focuses on the sampling step. 
 
3.1. Generic Particle Filter 

 
In Bayesian sampling estimation theory, the posterior density ( )1:k kp x y  can be inferred from prior 

density ( )1: 1k kp x y −  

( ) ( ) ( )
( )

1: 1
1:

1: 1

k k k k
k k

k k

p y x p x y
p x y

p y y
−

−

=                                                     (4) 

where 
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( ) ( ) ( )1: 1 1: 1 dk k k k k k kp y y p y x p x y x− −= ∫                                             (5) 

and 
( ) ( ) ( )1: 1 1 1 1: 1 1dk k k k k k kp x y p x x p x y x− − − − −= ∫                                     (6) 

Then PF uses the Monte Carlo simulation method to approximate the posterior density by N 
particles with the associated weight 

( ) ( )1 1: 1 1 1 1
1

N
i i

k k k k k
i

p x y x xω δ− − − − −
=

≈ −∑                                                 (7) 

For solving the difficulty of sampling from the posterior density function, the sequential 
importance sampling method is used, which samples from a known, easy-to-sample, proposal 
distribution ( )0: 1:k kq x y , where 0:kx  is the historical state variables and 1:ky  is the corresponding 

observation. 
The recursive estimate for the importance weights of particle i can be derived as follows: 

( ) ( )
( )

1
1

0: 1 1:,
k k k ki i

k k
k k k

p y x p x x
q x x y

ω ω −
−

−

=                                                 (8) 

Then the estimated state can be approximated by 

1

ˆ
N

i i
k k k

i
x xω

=

≈∑                                                                (9) 

 
3.2. Trajectory Approximation with RBFN  

 
Radial basis functions are a special class of function. Their responses decrease (or increase) 

monotonically with the distance from a central point [12]. Centre, distance scale and precise shape of 
the radial function are parameters of the model, all fixed if it is linear [19]. In principle, they could be 
employed in any sort of linear or nonlinear model and single-layer or multi-layer network. RBFN is a 
three-layer feed-forward neural network which is embedded with several radial-basis functions. Such a 
network is characterized by an input layer, a single layer of nonlinear processing neurons, and an 
output layer. The output of RBFN [19] is calculated as:  

( )2
1

M

j j j
j

y z cτ φ
=

= −∑                                                       (10) 

where z  is an input vector, jφ  is a basis function, 
2
⋅  denotes the Euclidean norm, jτ  is the weight in 

the output layer, M is the number of neurons in the hidden layer, and jc  is the center of RBF in the 
input vector space. The functional form of jφ is always assumed as follows: 

( ) ( )2 2exp /z zφ σ= −                                                      (11) 

Figure 1 illustrates the shape of function ( )zφ  with 1σ = . 
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Figure 1. The shape of function ( )zφ  with 1σ = . 
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RBFNs present good approximation properties. The RBFN family is broad enough to uniformly 
approximate any continuous function on a compact set. For any continuous input-output function ( )f z  

there is an RBFN with a set of centers { } 1

M
i i

t
=

 and a common width 0σ >  such that the input-output 
mapping function ( )F z  realized by the RBFN is close to ( )f z  in the pL  norm, [ ]1,p∈ ∞  [12]. Here the 

input-output mapping is represented by 

( )
1

M
i

i
i

z tF z Gτ
σ=

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑                                                        (12) 

where 0σ > , j Rω ∈ , and G  is an continuous integrable bounded function in a subset 0mR R∈ and  

( )
0

d 0mR
G z z ≠∫                                                             (13) 

Because the trajectory of target is a typical continuous function, RBFN can approximate it and 
construct the dynamic process model for state estimation in PF algorithm well. In PF-RBF, we use 
previous observations and current prediction to train RBFN; the details will be discussed below. 

 
3.3. Improved PF Algorithm Combined with RBFN 

 
The process model of the generic PF algorithm always uses a single motion model which is static 

and cannot offer a dynamic and consistent approximation of state variables for target tracking [1,2,8]. 
The improved PF algorithm based on an interacting multi-model (IMM) filter [13] can solve it, which 
allows for several modes combined with a weighted estimate [14], but the state variable must be 
estimated and updated in each time step for each model separately, so the execution time will increase 
sharply. 

The objective of our algorithm is to perform a robust and accurate approximation of state variables 
and decrease the execution time. Our algorithm contains five steps: (1) constructing RBFN based on 
previous observations 0: 1ky −  and current prediction kx  for approximating the trajectory of target. It 
should be noted that the observations 0: 1ky −  do not equal to the states of target, which just have 
relationship to the state variable 0: 1kx −  according to the observation model h. So, for training the RBFN, 
the state variable 0: 1kx −  should be inferred from observations 0: 1ky − . Because of the observation noise, 
we can only get the approximate state variable 0: 1kx −  instead of 0: 1kx − ; (2) sampling new value of each 
particle based on RBFN; (3) evaluating the recursive importance weights; (4) resampling; (5) output. 
The pseudo-code for our algorithm is outlined in Algorithm 1: 
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Algorithm 1. 

Algorithm 1 
1. Initialization: 0k =  

For 1, ,i N= "  
 0 0~ sample( ( ))ix p x / draw the states from the prior 

2. For 1,2,k = "  
    (a) Constructing RBFN 

 Use the previous observations 0: 1ky −  to infer the previous approximate state variable 0: 1kx − ; 
 Predict the current state by kinematic theory with the given time interval T: 

2
1 1 10.5k k k kx x v T a T− − −= + +                                                    (14)

1 2
1

k k
k

x xv
T

− −
−

−
=                                                                (15)

1 3 2
1 1 2

2k k k
k k k

x x xa v v
T

− − −
− − −

+ −
= − =                                             (16)

 Construct RBFN with the previous real state of target 0: 1kx −  and current state prediction kx . 
    (b) Sampling 
         For 1, ,i N= "  

 Sample ( )0: 1 1:ˆ ~ ,i i
k k k kx q x x y− by the constructed RBFN 

( )0: 1 2
1

ˆ ˆ
M

i i
k j j k j

j
x x cτ φ −

=

= −∑  

    (c) Evaluating 
          For 1, ,i N= "  

 Evaluate the recursive importance weights by (8) 
For 1, ,i N= "  
 Normalize the importance weights 

1

i
i k
k N j

kj

ωω
ω

=

=
∑

�                                                               (17)

    (d) Resampling 
 Multiply / suppress samples ˆ i

kx  with high / low importance weights i
kω� , respectively, to obtain 

N random samples 0:
i

kx  approximately distributed according to ( )0: 1:
i

k kp x y . 

    (e) Output  
 Output the estimated state 

1

ˆ ˆ
N

i i
k k k

i
x xω

=

=∑  

 Set 1i i
k k N

ω ω= =� , ˆi i
k kx x=   1, ,i N= "  

 
 
As illustrated in Algorithm 1, in the PF-RBF algorithm, the RBFN is dynamically trained as the 

process model for the sampling step. For approximating the state of the target, we use the previous 
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observations and current prediction based on observations as the samples to train the RBFN. Then, 
each particle uses the estimated state sequence 0: 1ˆ i

kx − as input vectors to sample the new value of the 
state variable ˆ i

kx . Then PF-RBF continues the process of evaluating and normalizing importance 
weights, resampling, and output as generic PF algorithm. 

Because RBFN is trained with the observations and prediction based on observations, it will not be 
impacted by the posterior distribution error of each particle, and can approximate the real trajectory of 
target effectively. With the guidance of RBFN, each particle can estimate the probability distribution 
more effectively and keep the multimodality at the same time. 

Although the computation complexity of RBFN is O(n3) [20], where n is the number of training, at 
each time instant there is only one training process and the time is irrelative with the particle number, 
so the change rate of execution time of PF-RBF should nearly equals to PF. Furthermore, because the 
randomness of the movement of target, we can just adopt the nearest m samples of approximate state 
variable : 1k m kx − −  to train the RBFN, which can significantly reduce the computation complexity. 
 
4. Experimental Results 
 
4.1. Experiment Setup 

 
The estimation improvement obtained by PF-RBF algorithm is illustrated in this section. The UKF 

is more suitable than the EKF for proposal distribution generation within the particle filter framework 
[6], so we only compare the state tracking results of UKF, PF, UPF and PF-RBF. For simplifying and 
generalizing the problem, we just performed one-dimension tracking. Two-dimension tracking can be 
easily derived. The used assumptions and parameters are listed below. 

For simulation, a time-series is generated by the following process model 
2

1 1 1
1
2k k k k kx x v T a T u− − − ′= + + +                                                    (18) 

where 1 1k kx v T− −+ ⋅  presents the state transition model, 2
1

1
2 k ka T u− ′+  presents the process noise, and T is 

the time interval. Here, for simulating the circuity of the maneuvering target, the related factors are 
given by 

( )( )
( )( )

1

1 1

sin 1

cos 1
k

k k

v k

a v k

βπ

βπ βπ
−

− −

= −

= = −�
                                                  (19) 

ku′  is a term of process noise which is drawn from a Gaussian distribution ( )0,0.1N . In target tracking, 
the whole process noise is considered as the degree of maneuvering. 0.04β =  is a scalar parameter.  

For comparing tracking performance, a non-stationary observation model is used as in [2]: 
2

1

2

30
2 30

k k
k

k k

x r k
y

x r k
φ

φ
+ ≤⎧

= ⎨
− + >⎩

                                                       (20) 

with 1 0.2φ =  and 2 0.5φ = . The observation noise, kr  is drawn from a Gaussian distribution 
( )0,0.00001N , which is the same as the parameter proposed by [2]. Given only the noisy 

observations ky , the different filters are used to estimate the underlying clean state sequence kx  for 
1,2, ,60k = … . The experiment is repeated 100 times with random re-initialization for each run. All of 

the particle filters use 10 to 200 particles and residual resampling. The point scaling parameter of UKF 
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is set to 1α = , which is used to control the size of the sigma point distribution and should ideally be a 
small number to avoid sampling non-local effects when the nonlinearities are strong, scaling parameter 
for higher order terms of Taylor series expansion is set to 0β = , which is a non-negative weighting 
term to be used to incorporate knowledge of the higher order moments of the distribution, and sigma 
point selection scaling parameter is set to 2κ = , this parameter is used to guarantee positive semi-
definiteness of the covariance matrix. Three parameters are optimal for the scalar cases, and they are 
also adopted in [2]. The number of the samples of approximate state variable : 1k m kx − −  used for training 
the RBFN is 20. The time interval is 1s. The root-mean-square-errors (RMSEs) of the estimation 
values are acquired for comparison. 
 
4.2. Tracking results 

 
In Figure 2 the estimated results generated from a single run of the different filters are compared, 

where the particle number is 200 in each particle filter. Figure 3 shows the corresponding errors of 
different filters versus the process noises.  

 
Figure 2. Plot of estimated results generated from a single run of the different filters 
with non-stationary observation model.  
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As illustrated in Figure 3, the errors generated by all algorithms are strongly correlative with 

process noise, i.e., the tendencies of the errors are coherent with the tendency of the process noise. The 
error of UKF algorithm increases sharply because the estimation error cumulates and results in system 
divergence. Although the errors of estimated states in four algorithms are nearly equal when the 
observation model is linear ( 30k > ), our algorithm stands out by its lower error performance compared 
to the other three algorithms when the observation model is nonlinear ( 30k ≤ ).  
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Figure 3. Errors of different filters versus the process noises in a single run. 
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The RMSEs of PF-RBF are all small whether the observation model is linear or nonlinear. This 

means that the PF-RBF is robust and effective for both linear and nonlinear observation models. When 
a maneuver occurs ( 20 30k< < ), the RMSEs of PF-RBF are still smaller than 0.01, while the RMSEs 
of the other three algorithms increase sharply. This confirms verifies that PF-RBF is also suitable for 
tracking maneuvering targets. 

Then we compared the mean and variance of RMSEs generated by each algorithm with 200 
particles over 100 independent runs. As shown in Table 1, the superior performance of the PF-RBF is 
clearly evident for both linear and nonlinear observation models. 

 
Table 1. Estimated results generated by each algorithm where the mean and variance of 
RMSEs are calculated over 100 independent runs. The particle number is 200. 
 

Mean of RMSEs 
Algorithm 

Nonlinear Linear 
UKF 0.58461 0.0067026 
Generic PF 0.47292 0.1485 
UPF 0.085445 0.0080179 
PF-RBF 0.0187598 0.0066431 
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4.3. Execution time and accuracy 
 
In each PF algorithm, the execution time and accuracy are partially determined by the particle 

number. In this section, we compare the average RMSE and execution time of PF, UPF and PF-RBF. 
The particle number increases from 10 to 200. 

The average RMSE calculated over 100 independent runs, which decreases when the particle 
number increases, are shown in Figure 4, . When the observation model is linear, PF-RBF performs 
best. And for the nonlinear observation model, the average RMSE of PF-RBF is biggest when the 
particle number is 10, but the average RMSE of PF-RBF decreases rapidly and become lowest when 
the particle number is larger than 20. As a whole, PF-RBF has superior performance in target tracking 
and it is robust for both linear and nonlinear observation models. 

 

Figure 4. The average RMSEs of three algorithms calculated over 100 independent 
runs with the linear and non-linear observation model. 
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Figure 5 shows that the execution time of three algorithms for 60 step tracking all increase linearly 

with particle number and UPF takes more time than PF-RBF when the particle number exceeds 50. 
Although PF-RBF includes the RBFN  training step which takes most time, for each time point there is 
only one training process and the time is independent of the particle number, so the rate of change of 
execution time of PF-RBF nearly equals the PF one, and because UPF contains UKF and MCMC steps 
for each particle, the change rate is higher than PF-RBF. As illustrated in Figure 5, the change rate of 
UPF is about 7 times greater than the one of PF-RBF. This makes the PF-RBF a better candidate for 
the scenarios which require many particles. 
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Figure 5. The average execution time of three particle filters for 60 steps tracking over 
100 independent runs. 
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5. Conclusions 

 
In this paper, we focused on target tracking in sensor systems. The PF-RBF algorithm was 

proposed, which trains RBFN to approximate the trajectory of target and constructs dynamic process 
model according to the previous observations and current predictions. The trained RBFN is used to 
perform sampling steps for each particle, instead of the classical process model. With the guidance of 
RBFN, each particle can give an accurate proposal distribution, the cumulated effect of errors can be 
decreased, and the sensor system remains convergent even if the target maneuvers. The target tracking 
experiment results verify that when the observation model is linear, PF-RBF perform better than UKF, 
PF and UPF, and for a nonlinear observation model, PF-RBF is most robust and accurate, except when 
the particle number is less than 20. Moreover, the rate of change of execution time of PF-RBF is about 
seven times less than that of UPF, it this makes the execution time of PF-RBF less than that of UPF 
when the particle number exceeds a certain number, which in this paper is 50. It should be noted that 
the critical particle number thresholds depend on the given problem, and may be different in other 
problems. However, it still implies that PF-RBF is suitable for dealing with sensor systems which need 
many particles for multi-target tracking. 
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