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Abstract: Based on the well-known role of peritumour characterization in cancer imaging to improve
the early diagnosis and timeliness of clinical decisions, this study innovated a state-of-the-art approach
for peritumour analysis, mainly relying on extending tumour segmentation by a predefined fixed
size. We present a novel, adaptive method to investigate the zone of transition, bestriding tumour
and peritumour, thought of as an annular-like shaped area, and detected by analysing gradient
variations along tumour edges. For method validation, we applied it on two datasets (hepatocellular
carcinoma and locally advanced rectal cancer) imaged by different modalities and exploited the zone
of transition regions as well as the peritumour ones derived by adopting the literature approach for
building predictive models. To measure the zone of transition’s benefits, we compared the predictivity
of models relying on both “standard” and novel peritumour regions. The main comparison metrics
were informedness, specificity and sensitivity. As regards hepatocellular carcinoma, having circular
and regular shape, all models showed similar performance (informedness = 0.69, sensitivity = 84%,
specificity = 85%). As regards locally advanced rectal cancer, with jagged contours, the zone of
transition led to the best informedness of 0.68 (sensitivity = 89%, specificity = 79%). The zone of
transition advantages include detecting the peritumour adaptively, even when not visually noticeable,
and minimizing the risk (higher in the literature approach) of including adjacent diverse structures,
which was clearly highlighted during image gradient analysis.

Keywords: machine learning; peritumour; tumour; hepatocellular carcinoma; rectal cancer

1. Introduction

Recent advances in computer science and engineering have increased the availability
of high-performance computing resources and have favoured a widespread use of machine
learning (ML) techniques in medical image analysis to complement the traditional visual-
based assessment of images with quantitative measurements of image latent properties,
the so-called radiomics features [1]. In this approach, imaging features are exploited by
classification models for the early prediction of disease, prognosis, and response to ther-
apy [2], with the aim of improving the accuracy of clinical decisions and facilitating timely
clinical actions [3]. In particular, many applications of ML techniques refer to oncology,
aiming at disclosing tissue properties to support precision medicine in the fight against
cancer [4]. In this regard, although quantitative radiomics analysis is primarily focused
on the visually detected tumour boundary, several recent works have dealt also with the
peritumour area, the site where the tissue changes start earlier, and whose role is known
to be crucial in determining the tumour behaviour in terms of progression and response
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to therapy [5]. In fact, the extent of the peritumour region, which may have an influence
on diversity of tumour aspects, is not known a priori. In addition, the peritumour is often
not visually detectable by radiologists because the inflammatory tissue, characterizing
the transition between tumour and normal parenchyma, makes the radiological imaging
findings misleading [5]. The works in the literature propose an extensive array of solutions
for peritumour detection and analysis, relying on a priori-defined analytical choices [6]
and sometimes even on manual intervention [7], but never exploiting adaptive strategies.
However, while these approaches can work with single, particular cases of application, they
are very far from representing a methodological approach. In fact, the complexity of clinical
issues cannot be faced with end-to-end solutions but instead require robust methodologies
to be parametrized for diverse tumour sites and imaging modalities.

In this study, we developed an adaptive method to automatically detect the transition
region bestriding tumour and peritumour, exploiting local image contrast variations that
were tested on two different tumour types, the hepatocellular carcinoma (HCC), imaged
by contrast-enhanced computed tomography (CT), and locally advanced rectal cancer
(LARC), investigated through magnetic resonance imaging (MRI). In the former case study,
we addressed the early diagnosis of HCC nodules with microvascular invasion (MVI), a
consolidated predictor of HCC recurrence after curative treatments [8]; in the latter, the
early prediction of LARCs responding to neoadjuvant chemo-radiotherapy (nCRT) was
adopted [9]. To this end, we developed ML models based on explainable imaging features,
and the results were compared with those achieved by exploiting a common representative
nonadaptive approach [10].

The paper is organized as follows. Section 2 discusses the state-of-the-art the solutions
proposed for the analysis of peritumour regions. Section 3 presents the method we con-
ceived, the dataset used, and the methodology adopted to develop the predictive models.
Section 4 reports the experimental results. Further discussion is provided in Section 5,
while Section 6 draws conclusions and provides some indications for future work.

2. Literature Review

A great number of works exist on integrating the quantitative analysis of the tumour
core with that of the surrounding regions for many solid tumour type
(e.g., lung [11–16], liver [10,17–20], rectum [7], tongue [21], brain [22,23], breast [6,24,25],
cervix [26], oesophagus [27]). In addition, almost all of these address two imaging modali-
ties only, CT [6] and MRI [26], which can offer the highest imaging resolutions. The bulk
of these studies have analysed the peritumour area by extending the original tumour
segmentation by variable and prefixed extents and excluding the tumour core. Of course,
this approach relies on a clear separation between the tumour and peritumour, which is
not feasible from a clinical point of view because the inflammation around the tumour
is responsible for a stepwise transition between tumour and normal tissue. In addition,
the peritumour segmentations achieved through single [13,14,17,25,28] or multiple mea-
sures [6,12,15,16,21,26] also fail across multiple tumour types. such as for lung peritumour
parenchyma, analysed from 2.5 mm [16] to 20 mm [15] from the tumour margins. This
is also relevant to HCC peritumour analysis aimed at MVI prediction using MRI imag-
ing [18], performed at 10 mm [18] or even 20 mm [17] of the radius from tumour borders.
As a consequence, such a variability prevents any methodological comparison between
these works. Some other studies have even exploited the manual segmentation of the
peritumour [7,20,22,23,27] in cases where the inflammatory tissue is (apparently) easily
distinguishable from the normal one through the grey level (GL) scale. Nevertheless,
this approach is prone to all weaknesses of manual segmentation, remaining limited to
the specific application and lacking in any generalizability. There are a few studies that
have focused on the lung [11] and liver [10,19] that have addressed the transition zone
between the tumour and peritumour regions [10,11,19] where changes have occurred and
thus have more clinical relevance than do analyses derived from the peritumour alone.
What these works have in common is a strategy for analysing the so-called tumour rim
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(hereinafter, tRIM), stemming from the morphological segmentation of the original tumour
ROIs, achieved by subtracting its erosion from dilation, both achieved with a variable size
of the structuring element (SE), such as 2 mm [10,19] or 3 mm [11]. In fact, the tRIM arises
from binary masks of tumour ROIs, independently from any GL value in the tumour and
surrounding tissue. Besides being prone to including adjacent structures of a different
nature, it is unlikely that the underlying region could have a strong relation with the
physical transition zone, where GL shades are of utmost importance for its detection.

3. Materials and Methods
3.1. Study Population

This study is based on two different, single-centre, retrospective datasets acquired
from the Radiology Unit of the IRCCS Polyclinic Sant’Orsola-Malpighi, University of
Bologna, Bologna, Italy.

The first dataset includes 117 patients with HCC imaged by contrast-enhanced CT,
who underwent surgery [29] (hereinafter, HCC-CT dataset). The enrolled patients fulfilled
the following criteria: (a) preoperative CT performed in our Radiology Unit within three
months before surgical resection, (b) HCC imaging diagnosis reached according to EASL
guidelines [30], (c) nodule dimension ≤ 3 cm, and (d) hepatic resection indicated according
to the criteria described in [31]. In summary, 12 patients who received previous treatments,
24 who underwent preoperative imaging performed outside our radiology unit, and 3 who
underwent inadequate imaging studies were excluded. Finally, the analysis was performed
on 78 patients comprising 89 distinct HCC nodules, 32 of which were diagnosed with a
positive MVI status (MVI+) and 57 with a negative MVI status (MVI−). The protocol’s
requirements for contrast-enhanced CT met the criteria recommended by the EASL guide-
lines [30]. More details on patients’ characteristics and the technical specifications of the
CT examinations can be found in [32].

The second dataset consists of 91 patients with LARC who underwent MRI for pri-
mary staging (hereinafter, LARC-MRI dataset). The enrolled patients met the following
criteria: (a) diagnosis of LARC at our institution performed through (b) pretreatment
MRI for primary staging and (c) treatment with long-course nCRT followed by (d) total
mesorectum excision (TME). At the time of TME, the histopathological reports provided the
tumour regression grade (TRG) according to the TRG staging system of the American Joint
Committee on Cancer (AJCC) [33]. Then, 7 patients without available TRG information in
the pathological report, 11 patients who did not undergo CRT, 24 patients with surgical
resection performed outside our institution, and 3 patients who underwent MRI with
incomplete staging or imaging artefacts were excluded. Finally, the analysis was carried
out on 46 patients, 18 of whom had TRG 0 and TRG 1 (TRG [0–1]) — namely responders
(R) — and 28 with TRG 2 and TRG 3 (TRG [2–3]), namely nonresponders (NR). More details
on patients’ characteristics and technical specifications of MRI examinations can be found
in [9].

3.2. Study Workflow

Figure 1 shows the block diagram summarizing the workflow adopted for this study,
starting from the HCC and LARC datasets (Figure 1a). The workflow is composed of four
macro steps, each described in the following sections and included tumour segmentation
(Figure 1b, Section 3.3), ZoT and tRIM detections (Figure 1c, Sections 3.4 and 3.5), feature
generation (Figure 1d, Section 3.6.1), and HCC and LARC studies (Figure 1e), Section 3.6.2,
which were Section 3.6.3 carried out by exploiting features generated from ZoT and tRIM,
respectively.
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Figure 1. Block diagram showing the main steps of the study’s workflow: input data (a) undergo
manual tumour segmentation (b), that is the starting point for both ZoT and tRIM detection (c); then,
features are generated from both ZoT and tRIM regions (d) and used for predictive purposes in
HCC-CT and LARC-MRI studies (e).

3.3. Tumour Segmentation

Manual segmentation of tumour ROIs was performed by two experienced radiologists
in consensus [34]. Regarding the HCC-CT dataset, for each patient slice, HCC ROIs were
drawn on both arterial- and delayed-phase CT images, along the visible lesion’s boundaries,
in order to include approximately the entire lesion volume. More details can be found in
our previous work [29]. As regards the LARC-MRI dataset, tumour ROIs were outlined
slice by slice on a T2-weighted (T2w) series on the 3 mm-thickness axial plane, with
the intestinal lumen being excluded [9]. For both datasets, tumour segmentation was
performed using ImageJ software (https://imagej.nih.gov/ij/, R1.53d, accessed on 20
March 2022), a freeware and open-source software developed by the National Institutes of
Health (NIH). When performing tumour segmentation, radiologists were always blinded
to the histopathological reports.

3.4. A Method to Detect the Zone of Transition

The ZoT [35] between the tumour core and peritumour area can be thought as an
annular-like-shaped area surrounding tumour, where tissue characteristics maintain the
highest uncertainty. We previously exploited the concept of ZoT in a clinical work [29],
employing an exploratory method and highlighting the potential benefits of the ZoT
analysis in the clinical management of early-stage HCC. The goal of this work was to
provide a detailed methodology to define the ZoT extent after detecting the ZoT’s outer
and inner borders. To this aim, we built a pipeline to deeply analyse the magnitude of
variations along the directions of the tumour border’s gradient.

Figure 2 depicts the four main steps of the procedure, whose inputs are the ROIs
segmented on the GL slices for (Figure 2a) LARC and (Figure 2b) HCC (during the arterial
phase). The first step consists of the morphological edge detection performed on the tumour
ROI through a square 3 × 3 SE for (c) LARC and (d) HCC. The second step is the gradient
profile analysis that is performed on the gradient magnitude (GM) image achieved through
a 3 × 3 Sobel kernel (e,f)). In practice, (g) a thin, 2-pixel width, 15 mm-long stripe is centred
perpendicularly on each pixel of the tumour border and at ±45◦ to cope with the digital
representation of the border. In particular, 15 mm is a heuristic parameter determined
after evaluating tumour ROIs to the maximum extent expected for contrast variations
alongside the ROI edge. Hence, 15 mm was chosen as being sufficiently long to include
the widest contrast variations along the tumour border and as being sufficiently short
to reduce the computational burden. The example in Figure 2e,f was performed with
15 × 2-pixel stripe (i.e., by hypothesizing that 1 pixel measures 1 mm), where the small
coloured dots represent the set of displacements exploited in our analysis. For denoising
purposes, each couple is averaged to finally achieve a 1-pixel width stripe (h), whose
gradient profile is depicted in Figure 2i. As expected, the gradient profile is bell-shaped,
with its maximum value at the edge pixel (the cyan dot in (i)). Indeed, on the left and the
right sides, they show either a sudden change in slope (e.g., “a corner”, the red dot) or
even a local minimum (the orange dot), depending on whether the outer and inner tumour
regions are (differently) homogeneous or show structural variations, respectively. These

https://imagej.nih.gov/ij/
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two points, the orange and the red ones, represent the extent of the a gradient transition
line; that is, a line-wise ZoT to be detected for each stripe displacement. To improve
the accuracy of minima or corner detection, the gradient profiles are interpolated using
a nonparametric smoothing spline [36], with a step of 0.1. Accordingly, the GM images
are interpolated using the Lanczos interpolation method [37], with the same step size.
Although localizing the minima is trivial, to detect the red points, we exploit the pruning
algorithm proposed by [38] to find the corner point of the L-curve (as one can see, the
rapidly changing slope recalls the L-curve trend). Finally, the detected transition line is
reported as a binary mask (Figure 2j). Sometimes the maximum value of the transition does
not occur in correspondence to the tumour border (i.e., the central pixel of the transition
line). Accordingly, these possible small displacements between the maximum GM and
edge’s pixels are compensated for by shifting, thus keeping as the reference border the
radiologist’s tumour segmentation.

(a) (c) (e) (k)

(b) (d) (f) (l) (n)

1
5

2

mean

(g) (h) (i) (j)

206.00

440.67

675.33

910.00

1144.67

1379.33

1614.00

1848.67

2083.33

2318.00

(m)
139.00

393.00

647.00

901.00

1155.00

1409.00

1663.00

1917.00

2171.00

2425.00

(n)

gradient transition line

10 mm

10 mm

INPUT
TUMOUR ROI 1DETECTION

EDGE 2ANALYSIS
GRADIENT 3THICKENING

MASK 4DETECTED ZoT
OUTPUT

Figure 2. Four-step procedure developed for ZoT detection. The process begins with the segmented
tumour ROIs, which stand for the input, shown in (a), for LARC and (b) HCC. The first step is the
morphological edge detection (c,d), which is followed by the gradient profile analysis (e,f). In this
way, more details are depicted in (g–j) for a representative edge pixel, analysed along its gradient
direction with an assumed rectangular kernel, for instance of 15 × 2 pixels in size. Then, this steps
yield binary masks of pixel-based gradient transition zones, which are thickened in the fourth step
(k,l). Finally, the last step is the ZoT detection, arising from the computation of the density maps on
the previous masks and their automatic segmentation, which ultimately provides the ZoT’s outer
and inner borders (m,n).

After the stripes are processed, the outcome is a sparse ZoT in the terms of a binary
mask. The third step of the pipeline is the mask thickening, realized through a morphologi-
cal dilation with a 9-pixel-width square SE, whose result is depicted in Figure 2k for LARC
and (l) for HCC.
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Finally, the binary masks are fed to the fourth stage to compute the density maps [39],
as shown in the pseudo-colours in Figure 2m,n. The automatic segmentation of the density
maps, performed by exploiting the active contouring of Chan–Vese algorithm [40], allows
for the defining of the black borders shown in the same figure, where they have been
linearly rescaled at the original resolution. This concludes the procedure and produces the
definite ZoT.

The entire pipeline was implemented in the Matlab® environment (R2019b v.9.7, The
MathWorks, Natick, MA, USA).

3.5. tRIM: The Alternative to ZoT

The most popular approach to semi-automatically select the zone of transition between
tumour and peritumour is represented by tRIM. Usually, it considers rings of a different
extent, overlapping the tumour margin, generated via common morphological operations
starting from the tumour ROI. In particular, these rings have a different inner and outer
radial distance from the tumour border. In all studies, the lengths of these radii is always
defined a priori, trying single or multiple values, with not any semantic reference with
the underlying tissue structures. To perform a fair comparison between ZoT and tRIM,
we need to have the two annular regions as much similar as possible. Since our method
defines the ZoT ROI adaptively, only tRIM ROI can be changed. Accordingly, we have
conducted a set of preliminary tests with different pairs of inner and outer radii for tRIM,
for each slice, comparing each corresponding annular region with ZoT’s. At the end, we
have chosen the pair for which the two regions most frequently match, that is 6 mm and
3 mm as outer and inner radius for HCC-CT, and 3 mm for both radii for LARC-MRI.

3.6. ML Models

To assess the benefits of using ZoT instead of tRIM in answering the two clinical
questions considered via the datasets , we have a pool of imaging features from ZoT and
tRIM as well as from the tumour core and investigated their relevance in the early prediction
of a MVI+ status for HCC and for the treatment efficacy in LARC. To this purpose, we
carried out different studies, involving many ML models aimed at assessing, separately, the
contributions of the ROIs’ shape; that is, ZoT, tRIM, and tumour. Furthermore, since ZoT
ROIs are derived from GM, we thought that GM images could also yield useful information
and, as such, they were also used to generate “explainable” features referring to ZoT and
tRIM. To favour the interpretability of results, the developed ML models used features in a
low dimensional space.

For the HCC-CT dataset, we conducted four different studies (hereinafter, HCC[1–4])
investigating, both the arterial and venous CT phases and the role of the transition zone
using tRIM (HCC[1,2]) or ZoT (HCC[3,4]) ROIs, which were consistently combined with
the analysis of tumour ROIs. In particular, the analysis was performed on GM images
in HCC[1,3] studies and on the GL series in HCC[2,3]. As regards the LARC-MRI dataset,
its limited size allows for the exploring of the discriminative power of the single features
only, rather than their combinations. Therefore, we carried out five studies (hereinafter,
LARC[1–5]), referring to either tRIM (LARC[1,2]), ZoT (LARC[3,4]), or tumour (LARC5)
ROIs. Similarly to the HCC studies, we analysed GM in LARC[1,3] and the GL images in
LARC[2,4,5].

For all image processing procedures, the implementation environment for ML models
and statistical analyses was Matlab®.

3.6.1. Feature Generation

Twelve statistical descriptors were considered for first-order feature generation: Shan-
non’s entropy (E), mean (µ), standard deviation (σ), median (M), median absolute deviation
(MAD), skewness (S), kurtosis (K), uniformity (U), interquartile range (IQR), coefficient
of variation (CV), mean (µ90th), and the median (M90th) of the last decile. The first ten
were computed slice by slice to achieve as many parametric maps as possible via the local
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approach proposed in [41]. Subsequently, all twelve were used for generating single-value
features from these maps, thus producing 120 features in total. When tumour ROIs were
used, all these features arose from the original GL images only. As mentioned above,
when ZoT and tRIM were used, the ten local maps were also computed on the GM series,
yielding 240 features each for ZoT and tRIM. In addition, for both ZoT and tRIM, the twelve
descriptors were also computed on both the original GL and GM series, thus yielding 132
features each. Figure 3 summarizes the features considered for HCC[1−4] and LARC[1−5]
studies.

HCC1

HCC2

HCC3

HCC4

LARC1 LARC2 LARC3 LARC4 LARC5

tRIM
GL
132

tRIM
GM
132

ZoT
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132
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Figure 3. Summary of features considered for the HCC[1–4] and LARC[1–5] studies. Each grey box
indicates the ROI considered for feature generation (tRIM, ZoT, or tumour) and image type; that is,
the gradient magnitude (GM) or grey level (GL). Two more grey boxes refer to volume features and
RCS measurements. Each coloured path highlights the pool of imaging features analysed by each
study.

As regards HCC[1–4], each study referred to a pool of 762 imaging features; these were
(i) 264 arising from tRIM or ZoT (i.e., 132 features each) for the arterial and venous phases;
(ii) 240 stemming from tumour ROIs (i.e., 120 features for each CT phase); (iii) 6 features,
measuring the volume (mm3) of the ROIs of the ZoT, tRIM, and tumour in the arterial and
venous phases, respectively (i.e., 4 features), along with their ratio (i.e., 2 features); and
(iv) 252 features originating from the comparison between the arterial and venous phases
(Figure 3). Specifically, these latter 252 features referred to the signed relative change (RCS)
between the two phases and has been formulated as in Equations (1)–(3):

RCS =
| fA − fV |

f̄
· sgn f (1)

f̄ = |mean( fA, fV)| (2)

sgn f =

{
+1 if ( fA − fV) ≥ 0
−1 if ( fA − fV) < 0

(3)

where f is a generic feature; fA and fV are the values of each single feature on arterial
and venous phases, respectively; f̄ is the absolute mean between fA and fV (Equation (2));
and sgn f is the sign function.

Finally, in the LARC studies, a set of 132 features were considered for LARC[1–4],
originating from the tRIM and ZoT analysis performed on the GM or GL series, respectively,
as were a set of 120 features for LARC5, referring to tumour analysis (Figure 3).
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3.6.2. HCC-CT Studies
Feature Selection

After preliminary discriminative analyses with 3-dim features and after considering
the size of the original HCC-CT dataset, we decided to exploit a 4-dim space. The fea-
ture selection step was performed after data normalization through the linear scaling of
each single feature between the first and the third quartiles of the distribution and data
standardization. First, a subset of the most relevant imaging features were preliminary
selected through the least absolute shrinkage and selection operator (LASSO) method,
which exploited 5-fold cross-validation (CV) on the entire dataset and weighed each sample
by its prior probability. To derive the most discriminative subset made of k = 4 features (i.e.,
a quadruple) only, all possible quadruples given by the Binomial coefficient (n

k), where n is
the number of features initially returned by LASSO, were considered. Then, those quadru-
ples where at least one couple had a linear correlation coefficient ρ ≥ 0.3 were discarded,
and the remaining ones were used by a support vector machine (SVM) to determine the
different separating hyperplanes. The discrimination achieved by each hyperplane was
tested for statistical significance (α = 10−3) through the Wilcoxon rank-sum test with Holm–
Bonferroni correction. Finally, of the resulting significant quadruples, the one yielding the
highest informedness (I) of the receiver operating characteristic (ROC) curve was selected.

SVM Classifiers

First, the quadruple selected for each study (HCC[1–4]) was augmented to increase
the statistical significance of the training and validation subsets used to set up the SVM
classifier. To this aim, the univariate kernel density estimation (KDE) of each single fea-
ture was considered, and the Latin hypercube sampling (LHS) method [42] was used for
data oversampling through 105 runs, with the correlation of oversampled variables being
controlled for. Then, the optimal LHS solution was searched to minimize the correlation
difference between the original and oversampled variables through a properly developed
cost function (more details in [29]). Finally, the oversampled HCC-CT dataset consisted
of 169 samples—62 MVI+ and 107 MVI−—thus preserving the proportion of positive and
negative instances in the original dataset. Table 1 is the dataset description and includes
the original and oversampled datasets.

Table 1. HCC dataset description.

Study Population Number of Samples

True-positive class MVI+
True-negative class MVI−
Initial dataset 89 (32 MVI+, 57 MVI−)
Oversampled dataset (OD) 169 (62 MVI+, 107 MVI−)
OD training set 117 (43 MVI+, 74 MVI−)
OD test set 52 (19 MVI+, 33 MVI−)

One SVM classifier was developed for each study, where MVI+ and MVI− instances
were considered as true positive (TP) and true negative (TN), respectively. The entire
dataset was partitioned into a training and holdout test set. The training set of 117 samples
(43 MVI+ and 74 MVI−) was extracted according to the method proposed by [43], which we
used in [41], which allows for the preserving of the representativeness of the entire dataset
within both training and test sets. According to this method, an SVM is initially applied
on the entire dataset to find the support vectors, which are split into three classes based
on their SVM margin (SVMm). That is, for each sample, SVMm > 1 if correctly classified,
and SVMm < 0 if misclassified, while 0 ≤ SVMm ≤ 1 if it falls within the decision surface.
Subsequently, the samples were randomly assigned to the training set by preserving the
proportion of each class within the entire dataset. Accordingly, the test set, consisting of the
leftover 52 samples, had the same proportion. SVM hyperparameter tuning was carried
out by exploiting 100 runs of 3 fold-CV, where each fold had 39 samples, 14 MVI+ and 25
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MVI−, randomly assigned. Because of the class unbalancing, the prior probability of MVI+
and MVI− samples was used to weigh the SVM misclassification cost. For each run, the
SVM hyperparameters, linear scale γ, and misclassification cost C were estimated using the
built-in MatLab Bayesian optimization algorithm [44], and the predicted probability and
label of each sample was estimated using a binomial logit function. The ROC curve was
built, and its area under the curve (AUC) was used to assess the performance of each CV
run. Hence, from each run, the model selection was performed in two steps: (i) the models
having an AUC in training folds lower than that in the test folds were discarded since
most are prone to overfitting, and (ii) the models with the highest AUC on the training
folds were kept. Then, the surviving models (100 at most) were trained on the three folds
together, and the ultimate model was selected as the one yielding the highest I and AUC.
Finally, it was externally validated on the holdout set.

Comparison among Studies

The ROC curves of the four SVM classifiers arising from the studies HCC[1–4] were
compared to determine whether (i) the features generated from ZoT improve the prediction
of MVI+ HCC nodules with respect to the standard tRIM and (ii) whether the analysis of GM
images is more informative than is the analysis of the original GL series. First, the statistical
significance of each classifier was tested by Wilcoxon rank-sum test at α = 10−3 and
represented through box plots. In addition, different metrics were considered, including
AUC, the number of false-positive (FP) errors, the number of false-negative (FN) errors,
accuracy (ACC), and especially I, which provides the balance at the Youden cutoff between
sensitivity (SN) and specificity (SP). To assess the clinical utility of the developed SVM
classifiers, the negative and positive predictive values (NPV and PPV, respectively), and
the diagnostic odds ratio (DOR) were also measured.

3.6.3. LARC-MRI Studies

A univariate statistical analysis was performed on each of the five studies (LARC[1–5])
to identify the most discriminant feature in predicting R patients (considered as TP) through
the Wilcoxon rank-sum test, with α = 0.05 as the level of significance being used along with
Holm–Bonferroni correction. Median and IQR values of the features selected in each study
were compared between the two groups of R and NR patients and are also represented
through box plots. The ROC curves of all single features and their AUCs are reported.
In particular, the I, SN, and SP values were compared. For the sake of clarity, Table 2
summarise the dataset description.

Table 2. LARC dataset description.

Study Population Number of Samples

True-positive class Responders (R)
True-negative class Non responder (NR)
Study population 46 (18 R, 28 NR)

4. Results
4.1. Visual Comparison between the ZoT and tRIM ROIs

Figure 4 reports a panel of tRIM and ZoT ROIs for a few representative slices of the
HCC-CT and LARC-MRI datasets.

The tRIM area is located between the two green lines, whilst the ZoT is the area
located between the two red lines. As for the tumour core, it is bounded by the blue line
and highlighted by a shade of blue. From a to d, Figure 4 shows a few slices of MVI+
(a,b) and MVI− (c,d) nodules both in the arterial (b,c) and venous (a,d) phases. Similarly,
Figure 4e–l shows a few LARC slices, both in cases where ROIs have quite regular shapes
and large sizes (e–g) and in cases where ROIs have irregular borders (h–l). In addition, the
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pink arrows in Figure 4h–l point out the key differences between the tRIM and ZoT ROIs,
highlighting the most irregular parts of tumour edges.

P57-S57 (MVI+,V) P43-S15 (MVI+,A) P40-S20 (MVI-,A) P63-S41 (MVI-,V)

(a) (b) (c) (d)

P9-S2 (LARC, NR) P9-S29 (LARC, NR) P15-S7 (LARC, NR) P9-S5 (LARC, NR)

(e) (f) (g) (h)

(i) (j) (k) (l)

P9-S20 (LARC, NR) P9-S31 (LARC, NR) P16-S12 (LARC, R) P50-S13 (LARC, R)

Figure 4. Examples of the ZoT (in red), tRIM (in green), and tumour (the shaded area bounded by
the blue line) ROIs. For each image, the patient identification code (Px) and slice number (Sy) are
indicated, along with the dataset the samples belong to (i.e., HCC or LARC) and their membership
class (MVI+ or MVI− for the HCC dataset; R or NR for the LARC dataset). In addition, the pink
arrows highlight the key differences between the tRIM and ZoT ROIs.

4.2. Diagnosis of MVI in HCC

Table 3 reports the results of the feature selection procedure performed on all studies
HCC[1–4], while Table 4 indicates, for each identification code in Table 3, the corresponding
feature’s name.
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Table 3. Summary of the feature selection performed on all the studies HCC[1–4]. Columns report
from left to right the study’s identifier, the number of features initially selected by LASSO (FS1),
all quadruples (FS2), the uncorrelated quadruples (FS3), the significant quadruples in the Wilcoxon
rank-sum test with Holm-Bonferroni correction (FS4), the finally selected quadruples (through the
single feature identifiers), and their corresponding I.

FS1 FS2 FS3 FS4 Quadruple I

HCC1: tRIM GM 19 3876 1951 26 [F136, F256, F592, F754] 0.67
HCC2: tRIM GL 18 3060 1893 21 [F136, F466, F592, F754] 0.67
HCC3: ZoT GM 16 1820 767 18 [F72, F136, F465, F754] 0.74
HCC4: ZoT GL 13 715 268 40 [F136, F465, F688, F754] 0.70

Table 4. Association between the identifier (ID) and the feature name. In particular, A or V indicate
whether the feature refers to the arterial or venous phases, respectively. If the abbreviation “T” is
reported as the feature that is computed on tumour ROIs; otherwise it originates from tRIM or ZoT
ROIs depending on the study (HCC[1–4]) from which it has been selected.

ID Feature Name

F72 S - E (A)
F136 E - K (T, A)
F256 E - K (V)
F465 K - MAD (T, V)
F466 K - IQR (T, V)
F592 RCS of K − IQR
F688 RCS of µ−IQR (T)
F754 RCS of MAD − K (T)

Regarding the tRIM studies (HCC[1,2]), the feature selection stage yielded 26 and 21
significant quadruples, respectively. In contrast, as regards the studies involving ZoT, 18
and 40 quadruples remained, respectively. The most discriminant quadruples for each
study had the same p ∼ 10−9. Each quadruple in Table 3 has the performance reported in
Tables 5 and 6 in training (117 samples) and testing (52 samples).

Table 5. ROC-related metrics achieved by the SVM classifiers in the training sets for the prediction
of MVI+.

AUC I SN SP TP TN FP FN ACC NPV PPV DOR

HCC1 0.91 0.73 84% 89% 36 66 8 7 87% 90% 82% 42
HCC2 0.91 0.70 86% 84% 37 62 12 6 85% 91% 76% 31
HCC3 0.90 0.74 88% 85% 38 63 11 5 86% 93% 78% 43
HCC4 0.90 0.69 91% 78% 39 58 16 4 83% 94% 71% 35

Table 6. ROC-related metrics achieved by the SVM classifiers in the test sets for the prediction
of MVI+.

AUC I SN SP TP TN FP FN ACC NPV PPV DOR

HCC1 0.89 0.69 84% 85% 16 28 5 3 88% 90% 76% 30
HCC2 0.87 0.69 84% 85% 16 28 5 3 88% 90% 76% 30
HCC3 0.89 0.69 84% 85% 16 28 5 3 88% 90% 76% 30
HCC4 0.87 0.63 84% 79% 16 26 7 3 81% 90% 70% 18

In addition, Figure 5 reports the ROC curves in the training (Figure 5a) and test
(Figure 5b) sets, with the Youden cutoff highlighted by black circles. Finally, Figures 6 and
7 show the box plots of all models in both the training and test sets, where all models have
at least p∼10−12 and p∼10−5 in the training and test sets, respectively. Box plots report
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nonoverlapping interquartile ranges, with the median values of single groups differing
more than the 60% between MVI+ and MVI−.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

tRIM GL
tRIM GM

ZoT GM
ZoT GL

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

tRIM GL
tRIM GM

ZoT GM
ZoT GL

TRAINING HOLDOUT

(a) (b)
FPR FPR

T
PR

T
PR

Figure 5. ROC curves of the SVM classifiers arising from the studies HCC[1–4] achieved for the
training (a) and holdout (b) sets, referring to the tRIM or ZoT analysis performed on the gradient
magnitude (GM) or original grey level (GL) images. The outcomes for the training subset were as
follows: tRIM GM: AUC ROC = 0.91 (95% CI 0.85–0.96), tRIM GL: AUC ROC = 0.91 (95% CI 0.84–0.95),
ZoT GM: AUC ROC = 0.90 (95% CI 0.84–0.94), and ZoT GL: AUC ROC = 0.90 (95% CI 0.83–0.94). The
outcomes for the holdout were as follows: tRIM GM: AUC ROC = 0.89 (95% CI 0.77–0.96), tRIM GL:
AUC ROC = 0.87 (95% CI 0.74–0.96), ZoT GM: AUC ROC = 0.89 (95% CI 0.75–0.95), and ZoT GL:
AUC ROC = 0.87 (95% CI 0.75–0.95).
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Figure 6. Box plot of the classification achieved by the SVM models in the training sets for the tRIM
(a,b) and ZoT (c,d) analyses on gradient magnitude (GM) or rgw original grey-level (GL) series. The
p-values for the Wilcoxon rank-sum test are p∼10−14 (a), p∼10−13 (b,d), and p∼10−12 (c).
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Figure 7. Box plot of the classification achieved by SVM models in the holdout sets for tRIM (a,b) and
ZoT (c,d) analyses on gradient magnitude (GM) or original grey-level (GL) series. The p-values of
Wilcoxon rank-sum test are p∼10−6 (a,c) and p∼10−5 (b,d).
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4.3. Detection of TRG [0-1] in LARC

From the three LARC[1,3,5] studies, three single features were selected with
p < 10−4, and their box plots are reported in Figure 8; meanwhile, no significant features
resulted from the tRIM and ZoT analyses of the GL images (i.e., LARC[2,4]).
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Figure 8. Box plot of S−E (a), σ−S (b), and σ−K (c), referring the t tumour, tRIM, and ZoT analyses
for the GM images (LARC[1,3,5] studies) for discriminating the R and NR groups.

Tumour analysis was performed via S−E (Figure 8a), which separated the R and NR
groups with p∼10−5, while the {median, IQR} values were equal to {0.90, 0.80} in R and
to {−0.36, 1.26} in NR. Peritumour analysis was performed through σ−S (Figure 8b) from
tRIM and σ−K (Figure 8c) from ZoT, which both separated the R and NR groups with
p∼10−4. Then, σ−S had a {median, IQR} equal to {−0.54, 1.00} in R and to {0.22, 0.89} in
NR, whilst σ−K had a {median, IQR} equal to {−0.56, 0.39} in R and to {−0.05, 0.76} in NR.

Table 7 reports the discriminative performance between the R and NR groups of
S−E, σ−S, and σ−K, referring to the LARC[1,3,5] studies, respectively; meanwhile, Figure 9
reports the corresponding ROC curves with AUC = 0.86 (95% CI, 0.63–0.92) for S−E,
AUC = 0.81 (95% CI, 0.65–0.91) for σ−S, and AUC = 0.82 (95% CI, 0.63–0.93) for σ−K.

Table 7. ROC-related metrics achieved by S−E, σ−S, and σ−K referring to the tumour, tRIM, and
ZoT analyses (LARC[1,3,5] studies).

AUC I SN SP TP TN FP FN ACC

LARC1 0.86 0.62 89% 72% 13 25 3 5 83%
LARC3 0.81 0.58 83% 75% 15 21 7 3 78%
LARC5 0.82 0.67 89% 79% 16 22 6 2 83%
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tRIM GM
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Figure 9. ROC curves of the most discriminant features between the R and NR groups arising from
the analysis of tumour (blue line), tRIM (orange line), and ZoT (red line) on gradient magnitude (GM)
images, with the Youden cutoff which defines the I value highlighted by black circles. The tumour’s
ROC yielded an AUC = 0.86 (95% CI, 0.63–0.92) and an I = 0.62, tRIM’s ROC an AUC = 0.81 (95% CI,
0.65–0.91) and an I = 0.58, and ZoT’s ROC an AUC = 0.82 (95% CI, 0.63–0.93) and an I = 0.68.
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From tumour analysis, S−E yielded an I = 0.62, corresponding to SN = 72% and
SP = 89%, while σ−S, stemming from the tRIM investigation, had an I = 0.58, which
corresponding to SN = 83% and SP = 75%. In contrast, σ−K, originating from the ZoT,
differentiated the two groups with I = 0.68, corresponding tp SN = 89% and SP = 79%.

5. Discussion

The analysis of peritumour has been acknowledged as being of a wide importance to
obtaining useful information regarding the transition between inflammatory and cancer
tissue. So far, the detection of the peritumour area has relied upon two main alternative
approaches: (i) when applicable, the manual segmentation of the peritumour based on
tumour appearance; and (ii) the dilation of the binary tumour segmentation mask using
a prefixed size, disregarding the information retained by the underlying GL images. In
this study, we present the first adaptive method based on image contrast variations to
automatically detect the ZoT boundaries, conceived to work with different tumour tissues
and scanning technologies. The performance of the method was assessed on a CT and an
MRI dataset, the HCC and LARC, respectively, showing a markedly different radiological
appearance. Indeed, while HCCs are nearly circular small nodules with shaded borders,
LARCs have a larger size, with a well-defined anisotropic, jagged shape. Hence, in cases
where nodules have a regular, nearly circular shape (Figure 4a–g), the ZoT adaptive
detection appeared highly similar to that of tRIM, with intersecting edges often overlapping.
Nevertheless, despite their similarity, being anisotropic, the ZoT ROIs included uneven
portions of the peritumour area. This led to some ZoT margins overlapping the tumour
ones. For instance, in Figure 4e, the ZoT includes more peritumour in the lower and the
right sides than in the upper and the left ones, which was caused by a variability in the local
image contrast. The same phenomenon appears in Figure 4f,g. On the other hand, in the
presence of small concavities (Figure 4h–l), tRIM shows its weakness, since its underlying
morphological operations cannot follow the anatomical profiles, as emphasized by the
straight lines, and, even worse, it may include adjacent structures of a different nature that
could yield misleading features.

The ML model was enriched with imaging features generated from the ZoT and
the tRIM ROIs, respectively, and the outcome was compared based on standard clinical
predictive metrics. In the experiments, all ML models automatically selected features from
the ZoT and tRIM, thus confirming the active contribution of the peritumour inclusion in
building the predictive models.

In particular, as regards the diagnosis of MVI in HCC, all selected quadruples referred to
the arterial and venous CT phases, respectively and jointly by means of RCS measurements.
The best discrimination between MVI+ and MVI− of the entire dataset was achieved equally
by the HCC[2,3] studies (with I = 0.74). Both the quadruples of the HCC[2,3] studies contain
F136 and F754, originating, respectively, from the tumour core in the arterial phase or from
the RCS measurement. In addition, one more feature (F466 in HCC2, F465 in HCC3) refers
to the venous phase, while the last feature arises from the analysis of the transition using the
tRIM (F592 in HCC2) or ZoT (F72 in HCC3) ROIs. Globally, the SVM classifiers of all HCC
studies exhibited similar values for all ROC-related metrics as well as comparable trends of
the ROC curves (with the highest I being equal to 0.74 in the training for HCC3 and 0.69 in
the testing for HCC[1–3]). A partial exception is represented by HCC4, which had a slightly
inferior performance in the test set. In fact, HCC nodules, being circular, weaken the benefits
of an adaptive ZoT shape, and the SVM classifiers show a similar behaviour. It is worth
noting that in both the training and validation, all models showed excellent values of NPV.
which is, among the metrics used to assess model performance in clinical settings, the most
relevant one for the MVI prediction because it allows for selecting the patients that mainly
can benefit from surgical treatments, with a very high probability of success. The last remarks
relate to the visual assessment of the box plots of all models in both the training and test sets
(Figures 6 and 7), which demonstrate the excellent separation between the MVI+ and MVI−
groups.
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As regards the detection of the R group in LARC studies, tumour analysis showed–as
expected—the NR group as being more heterogeneous than the R one. This was also
confirmed by the peritumour analysis performed via ZoT, which also yielded lower IQR
values for both groups. It is worth noting that ZoT analysis reverses SN and SP values
with respect to those achieved through tumour analysis. On the one hand, tumour core
analysis yielding a higher SP than SN can be reasonably more effective in detecting NRs, as
they are supposed to be at a late stage of progression [9], thus making their response to
therapy challenging. On the other hand, ZoT analysis, which provided a higher SN than
SP, may perform better in detecting Rs, considered to be at an early disease stage [9], thus
boosting its potential role for identifying the best candidates to nCRT. As a final remark, in
the presence of irregular shapes and profiles, as often occurs in LARC, the adaptive ZoT
ROIs, markedly different from the tRIM ones, yielded by far the best performance.

However, the study is not devoid of limitations. First, the proposed method for ZoT
detection was conceived and implemented in 2D, with the aim of improving the state of
art, whose current solutions work in 2D. However, the 3D extension of the method will be
pursued in future works, which may even include the development of a fully 3D method
for ZoT detection. Second, only the SVM was n used for building the ML models, although
it represents a well-established solution to achieving robust results when working with a
relatively limited sample size.

6. Conclusions

The automated analysis of local image properties allows the ZoT method, in contrast
to that of tRIM, not to rely on a prefixed size for peritumour extent, thus enabling peritu-
mour detection even when the region is not visually detectable and manual segmentation
not applicable. In addition, defining a peritumour region adaptively favours its clinical
interpretability. It should be stressed that the method is compliant with different tumours
and imaging modalities, thus contributing to the standardization of the procedures of ML
applications in medical image analysis.

From a methodological point of view, future works will explore both a simplification of
the entire procedure and alternative implementations of single steps. Finally, from a clinical
point of view, we are planning to perform, in the near future, automatic ZoT detection on
more anatomic districts, which may even include exploiting public datasets; moreover, we
will compare, in a prospective study design, the clinical and biological features of the ZoT
regions within surgical specimens.
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