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Abstract: Data-driven fault diagnosis has received significant attention in the era of big data. Most
data-driven methods have been developed under the assumption that both training and test data
come from identical data distributions. However, in real-world industrial scenarios, data distri-
bution often changes due to varying operating conditions, leading to a degradation of diagnostic
performance. Although several domain adaptation methods have shown their feasibility, existing
methods have overlooked metadata from the manufacturing process and treated all domains uni-
formly. To address these limitations, this article proposes a weighted domain adaptation method
using a graph-structured dataset representation. Our framework involves encoding a collection
of datasets into the proposed graph structure, which captures relations between datasets based on
metadata and raw data simultaneously. Then, transferability scores of candidate source datasets for a
target are estimated using the constructed graph and a graph embedding model. Finally, the fault
diagnosis model is established with a voting ensemble of the base classifiers trained on candidate
source datasets and their estimated transferability scores. For validation, two case studies on rotor
machinery, specifically tool wear and bearing fault detection, were conducted. The experimental
results demonstrate the effectiveness and superiority of the proposed method over other existing
domain adaptation methods.

Keywords: machinery fault diagnosis; data analytics; domain adaptation; dataset representation;
varying operating condition; unseen domain

1. Introduction

Fault diagnosis of rotor machinery is a significant task for improving process efficiency
and reducing machine downtime in the manufacturing industry [1,2]. Particularly, the
high cost of machinery necessitates intelligent fault diagnosis to ensure the expected
functionality and performance throughout its lifespan [3]. Consequently, research on
this topic has rapidly grown in recent years, paralleling the advancements of industrial
machinery in terms of scale and complexity.

With the rapid progress of sensor technology and monitoring equipment, various
data types can be collected during the manufacturing process. Based on this, the recent
research on machinery fault diagnosis has mainly focused on data-driven methods, which
can more effectively extract the crucial features of machinery faults [4]. Machine-learning
methods such as support vector regression (SVR) and random forests (RFs) have shown
successful performances in tool wear detection [5,6]. Lately, deep-learning methods such as
auto-encoder and long short-term memory (LSTM) have outperformed machine-learning
methods because they can capture complex features from a huge amount of sensor data [7].

While researchers have achieved considerable success in data-driven fault diagno-
sis, these methods require that the training data and the test data come from the same
probability distribution [8,9]. Unfortunately, this requirement is not usually guaranteed
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in real-world industrial applications. For instance, machining processes under different
operational conditions, such as the feed rate and the cutting depth, will not meet this
requirement [10]. Since these operational parameters (e.g., cutting speed, feed rate, and
rotor speed) determine data distributions of machinery data, a diagnostic model trained
only on source data often performs poorly on the target domain.

Because of this issue, abundant training and test datasets must be collected under
each separate operating condition to train a favorable model. However, because of the data
collection costs, it is unrealistic to collect such large datasets [11] simultaneously for training
the data-driven model. In scenarios where the machinery operates under a new and unseen
operating condition, fault data are not available before a fault occurs. Consequently, the
performance of conventional data-driven methods may be degraded when dealing with
insufficient data about frequently changing operational conditions.

Various domain adaptation (DA) methods have demonstrated their efficacy in ad-
dressing the challenges posed by varying operating conditions in fault diagnosis. The
DA method aims to transfer knowledge from a source domain (i.e., a label-sufficient
dataset) into a target domain (i.e., a label-insufficient dataset) by exploring a domain-
invariant feature space or reweighting datasets. It focuses on minimizing the data dis-
tribution discrepancy between the source and target domain so that a model trained on
the source dataset can generalize better to the target dataset. DA has also been widely
adopted by the manufacturing industry, particularly for fault diagnosis under varying
operating conditions.

These DA methods for fault diagnosis have shown their feasibility in dealing with
varying operating conditions. However, existing DA methods tend to treat all domains
equally and align them all perfectly [12]. Several works [13–15] attempted to demonstrate
that the domain weighting schemes used on different source domains could enhance the
generalizing ability to the target domain and ensemble models can handle the weights
dynamically for the target [16,17]. Nevertheless, these methods typically overlook the
inherent topological structures among different domains, focusing solely on one-to-one
domain similarity.

Moreover, most existing DA methods primarily concentrate on quantifying data
distribution distances between two domains, disregarding the valuable metadata related
to manufacturing operations, resulting in a training procedure that lacks consideration
for the characteristics of manufacturing processes. In contrast to fields like computer
vision or natural language processing, industrial machinery operates under the control
of automated control systems or operators. Consequently, the setting values of operating
parameters are typically managed and stored as metadata with the datasets. Although
recent studies [12,18] have shown that leveraging the metadata could improve the domain
adaptation, this approach remains relatively unexplored in the field of fault diagnosis.

To deal with the aforementioned challenges, a weighted domain adaptation using a
graph-structured dataset representation is proposed. The graph-structured dataset rep-
resentation contains a new domain feature that considers both metadata and collected
data to represent the characteristics of the manufacturing process. Then, we estimate the
transferability of candidate source datasets using the constructed graph, its topological
structure, and graph embedding model. Estimated weights for the target domain are
then allocated based on this transferability estimation, and these weights are employed to
establish a voting ensemble model. The main contributions of this article are summarized
as follows.

• A domain adaptation method for machinery fault diagnosis is developed to address
varying operating conditions. It focuses on a more realistic scenario where fault data
from the target domain (i.e., unseen operating conditions) is unavailable during the
training phase, and multiple source datasets are present. Consequently, the method
aims to effectively transfer knowledge from multiple sources to enhance the fault diag-
nosis model’s performance for the target domain through the weighting of candidate
source datasets.



Sensors 2024, 24, 188 3 of 22

• We propose the use of a graph structure to capture intricate relations among domains
in the context of fault diagnosis. Within this graph structure, we introduce a novel
domain feature that simultaneously considers metadata and collected data. This
comprehensive representation enhances our understanding of the varying operating
conditions and their effects.

• Building upon the graph structure, we present a transferability score estimation
method specifically designed for multi-source domain adaptation in fault diagnosis
under varying operating conditions. This method accurately quantifies the effective-
ness of source domains for the target domain.

• The experimental results on both the tool wear detection and the bearing fault detec-
tion demonstrate the effectiveness and superiority of the proposed method over the
baseline domain adaptation methods.

The remainder of the article is organized as follows. Section 2 provides a detailed
description of the theoretical background related to this research. Section 3 offers a compre-
hensive explanation of the proposed method in detail. In Section 4, experimental results and
the effectiveness of the proposed framework are discussed. Finally, Section 5 summarizes
the key findings and presents further research topics with limitation analysis.

2. Theoretical Background

This article is related to several research areas in data-driven fault diagnosis, including
domain adaptation, weighted domain adaptation, and transferability estimation. This
section introduces previous literature that is relevant to this research.

2.1. Domain Adaptation

Domain adaptation aims to mitigate the data discrepancy problem by aligning the
source and target domains (e.g., unseen operating conditions), thus enhancing the diagnosis
model’s generalization ability. This approach has emerged as a promising solution to
address the challenge of varying operating conditions in fault diagnosis.

Before delving into the details of DA, we introduce essential notations and definitions
derived from survey works [19,20]. A domain is defined as a distribution D, represented
as D = {X, P(X)}, where X denotes the input feature and P(X) denotes a marginal
probability distribution. Given a specific domain D, a task T consists of a label space Y
and an objective function f (.), which often be represented as a conditional probability
distribution P(Y|X). Domain adaptation is a subset of transfer learning settings, where the
task remains constant, but the domains vary.

DA methods can be categorized based on their approach to transferring knowledge
from source to target domains. A comprehensive review by Singhal et al. [19] classified DA
methods into three categories: feature-based and two data-based DA methods. Feature-
based DA methods aim to learn a domain-invariant feature representation by minimizing
data distribution discrepancies between domains. For example, the feature extractor
learns a common feature representation for both domains using distance measures like
maximum mean discrepancy [21]. Ganin et al. [22] proposed the domain-adversarial neural
network (DANN) that employs adversarial training to learn features that are agnostic to
variations across different domains (i.e., source and target data) in the input data. Building
on the DANN algorithm, Tzeng et al. [23] introduced adversarial discriminative domain
adaptation (ADDA), which utilizes the DANN algorithm in a two-stage process, first
training on labeled source data and then adapting the model to an unlabeled target domain
through adversarial alignment of feature distributions.

In contrast to the feature-based approach, data-based methods aim to minimize specific
distances between data distributions by assigning weights or selecting a subset of the source
dataset for the target. Based on the distance, the model for the target domain only learns
similar datasets to the target dataset. These methods determine the importance of source
data for the target data based on distance metrics such as MMD or Kullback–Leibler (KL)
divergence. Furthermore, Dai et al. [24] proposed TradaBoost, which is based on a reverse-
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boosting strategy where the importance of poorly predicted source data decreases at each
boosting iteration.

While feature-based approaches, focusing on the role of trained models and their
layers, have dominated the research area, recent attempts have highlighted the crucial role
of the source dataset as well [25,26]. Likewise, several studies have shown that identifying
source data can be as important as increasing the size of the source dataset. However, these
distance metrics require labeled data for the target domain to accurately compute distances,
making them challenging to implement in real industrial scenarios.

2.2. Transferability Score Estimation

Transferability score estimation is the task of quantifying the extent to which knowl-
edge acquired from one task or domain can be effectively transferred to another, even when
sufficient labeled data for the target domain is lacking. This concept plays a pivotal role
in data-based domain adaptation, as accurate transferability estimations help establish
relationships between domains and aid in the selection of suitable source datasets for a
given target task. As a result, transferability estimation stands as an essential tool for
weighting training datasets in domain adaptation, ultimately maximizing the accuracy of
the target task [27].

The primary objective of transferability score estimation is to develop a score or metric
that evaluates the effectiveness of domain adaptation methods in transferring knowledge
from the source domain to the target domain, even in the absence of massive, labeled
data. This evaluation enables the efficient assessment of domain adaptation algorithm
performance across various source datasets prior to their execution.

Several works have shown the benefit of improving the accuracy of fault diagnosis by
selecting high-transferability datasets. For instance, Bao et al. [28] introduced the H-score,
a metric that measures the discriminative ability of the source model’s features for the
target task by considering both intra-class variance and inter-class variances. Tran et al. [29]
proposed the negative conditional entropy (NCE) score, derived from the empirical joint
distribution of actual labels and predicted labels from the source model. Nguyen et al. [30]
presented the log expected empirical prediction (LEEP) score, which replaces the source
label with the average log likelihood generated by the pre-trained model. Extensions
of the LEEP score, such as those utilizing Gaussian mixture models [31], aim to provide
more accurate source labels. While NCE and LEEP scores are simple and practical, the
estimation measure relies on the pre-trained model and its output. In an effort to generalize
these measures, LogME [32] computes the logarithm of the maximum evidence based
on extracted features without requiring the pre-trained model. These measures have
demonstrated successful results in fields such as computer vision and speech recognition.

2.3. Domain Adaptation for Machinery Fault Diagnosis

The application of domain adaptation methods in machinery fault diagnosis has
gained attention in recent years. For instance, Wen et al. [33] employed a distance measure
of data distributions called maximum mean difference (MMD) to reduce the discrepancy
between features from an auto-encoder model. On the other hand, X. Li et al. [34] utilized
multi-kernel MMD, an advanced version of MMD, to align different multi-layer networks
for bearing fault diagnosis.

Currently, the predominant approach in this research area has been feature-based
methods, such as adversarial learning, which focuses on the role of the trained model and
its layers. However, recent attempts have emerged, concentrating on the identification
and removal of irrelevant source domains, which has been shown to enhance the domain
adaptation performance [15]. For example, Mo et al. proposed a novel sparsity measure
by improving the optimization process of invariant risk minimization for machinery fault
diagnosis tasks [35]. Furthermore, several studies [36,37] have incorporated weighting
mechanisms into adversarial learning. For instance, Han et al. [38] integrated a domain
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weighting mechanism into an adversarial domain adaptive network to assign weights to
each sample from multiple source domains.

In these contexts, various novel transferability score estimation measures also have
been proposed. Given that most industrial machinery datasets consist of time-series data
while existing methods primarily focus on image or text data, adaptations are necessary. To
tackle this challenge, Ye and Dai [39] incorporated dynamic time warping, which quantifies
the distance between time series and the traditional transferability estimation, Jensen–
Shannon (JS) distance. Bang [40] proposed a novel measure called expected knowledge gain,
which calculates the relatedness between two manufacturing processes using metadata.
This approach leverages descriptions of the manufacturing process and its significance to
select source datasets for the target.

However, despite the successes achieved by these methods in enhancing domain
adaptation under varying operating conditions, most of them have primarily focused on
quantifying the distance between data distributions without fully incorporating metadata
related to manufacturing operations during the training phase. Furthermore, these methods
often consider only one-to-one distances and overlook the intricate relationships between
datasets, including the possibility of negative transfer.

3. Proposed Method

In the proposed framework (refer to Figure 1), our initial step involves converting a
collection of datasets into a graph-structured representation. Then, we proceed to estimate
the transferability scores of candidate source datasets by leveraging the topological struc-
tures of the constructed graph and a graph embedding model. Following the transferability
estimation, we allocate weights for the target domain based on these estimates. These
weights are subsequently employed in the establishment of a voting ensemble model. The
details of each stage are described in the following sections.
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3.1. Graph-Structured Dataset Representation

This stage aims to establish a unified structure that is capable of representing a collec-
tion of source datasets, capturing diverse domain features and their inter-relations. This
unified structure can then be utilized to estimate transferability scores of source domains
for the target domain. To achieve this unified structure, we employ a graph comprising
nodes and edges. A concept of this stage named the ‘Graph-structured Dataset Represen-
tation’, is illustrated in Figure 2. In this context, each node corresponds to each domain,
while an edge between two nodes refers to a relation between two different domains. The
primary contribution of this article centers on the method used to define nodes and quantify
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edges in a manner tailored to the requirements of machinery fault diagnosis under varying
operating conditions.
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3.1.1. Measuring Transferability Scores between Source Domains

This subsection focuses on constructing the representation for estimating transferabil-
ity scores between domains. In this context, the transferability from domain DS

p to domain
DS

q is defined as the effectiveness of domain DS
p in improving fault diagnostic performance

under domain DS
q . This is quantified by assessing the accuracy of the diagnostic model

transferred from domain DS
p to domain DS

q . This transferability can be quantified using the
following mathematical expression:

TF(p, q) = TF
(
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p , DS

q

)
= Score

(
ϕ
(

DS
p

)
, DS

q

)
(1)

Here, ϕ
(

DS
p

)
represents a model trained on the dataset collected under domain P.
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(

ϕ
(

DS
p

)
, DS

q

)
denotes the performance score of the trained model ϕ

(
DS

p

)
on dataset

DS
q . This formula aims to quantify the effectiveness of domain DS

p in achieving the objective
related to domain Q.

Initially, the actual transferability scores between source datasets, which include
labeled fault data, are assessed. This process involves training a fault detection model using
a commonly employed classification algorithm, the random forest algorithm. Subsequently,
the model’s performance is evaluated using an accuracy score.

Understanding the relations of transferability scores between source domains will be
helpful in allocating the weight of the corresponding source domains for the target domain.
Consequently, the measured transferability scores between source domains play a crucial
role in constructing the graph structure.

3.1.2. Extracting Domain Features for Nodes

First, we will introduce the method for characterizing features within each domain
that can be effectively used to quantify the transferability between different domains. In
the context of the multi-source DA setting, where a combination of datasets can compose a
source dataset for the target, candidate source datasets encompass all possible combinations
of source datasets. Consequently, a combination of source datasets is encoded as a node
in the graph. For example, with seven source datasets originating from seven distinct
domains, the resulting graph comprises 127 nodes (computed as 27 − 1). Subsequently,
domain features will be extracted from each of these nodes.

The focus here lies in the identification of a new domain feature that exhibits effective-
ness in DA for fault diagnosis under varying operating conditions. Variations in machinery
operating conditions significantly influence the correlations between process variables.
For instance, in rotor machinery, higher motor speeds can lead to increased vibrations,
thus altering the correlation between vibration and acceleration. These fluctuations in
correlation become crucial factors contributing to the degradation of diagnostic model per-



Sensors 2024, 24, 188 7 of 22

formance when operating conditions change. Therefore, each domain is characterized by
the associations between operating parameters and process variables. The distance between
different associations within a domain constitutes the elements of the edge features.

As a result, we propose the correlation structure as a novel domain feature for each
node. The correlation structure encompasses associations between operating parameters
from metadata and process variables from collected data. The extraction of these asso-
ciations involves the computation of the Kendall rank correlation coefficient from [41],
which is a statistical measure used to assess the strength of association between two sets of
data. This non-parametric measure evaluates the similarity in ranking or the concordance
of the order of observations between two variables without regard to the magnitude of
difference between the variables. The formula for the correlation coefficient for a set of n
paired observations ( PV1, PV2) is calculated as follows:

Co f f (PV1, PV2) =
Number o f concordant pairs − Number o f discordant pairs

Total number o f pairs
(

n × n−1
2

) (2)

Here, concordant pairs refer to pairs where the order of variables is the same, signifying
a consistent ranking. On the other hand, discordant pairs are those where the order of
variables differs, indicating an inconsistent ranking. It is worth noting that tied observations,
where two pairs have identical values, are considered in the calculation of the Kendall rank
correlation coefficient. Each computed correlation coefficient contributes to the construction
of a comprehensive correlation structure, which is typically represented as a matrix.

To refine this matrix, it was determined that correlations with an absolute correlation
coefficient less than 0.5 held insignificant correlation, and the corresponding values in
the matrix were replaced with 0. An illustrative example of the correlation structure is
presented in Figure 3.
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Moreover, we incorporated the use of raw data collected from each domain as an
additional domain feature. By calculating various distances between these raw data, we
quantified the relationships between domains.
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3.1.3. Constructing an Adjacency Matrix for Edges

This subsection aims to generate a matrix that contains distances between each pair of
distinct nodes (i.e., domains) based on the domain features. These distances serve as the
basis for connecting two nodes through an edge. Each such edge is represented as a multi-
dimensional vector that signifies the relationships between the two nodes (refer to Figure 4).
Typically, these relationships rely on distance measures between data distributions obtained
from collected data. Examples of such measures include information divergence, MMD, JS
divergence, and optimal transport (OT) [42]. In this study, we opted for JS divergence and
MMD as our data-distribution similarity metric due to their ease of computation and wide
applicability. However, since JS divergence does not account for temporal dependencies
in time series data, we additionally incorporated dynamic time warping (DTW) as a
distance measure for pairs of time series datasets. The specifics of this distance measure are
expounded upon in the following phases.
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JS distance EJS(S, T) between two data distributions (S and T) is a commonly used
metric for quantifying dissimilarity. This distance measure is based on KL divergence, a
fundamental concept in information theory. KL divergence quantifies the additional infor-
mation required to encode data from distribution S using a code optimized for distribution
T, as opposed to encoding it with a code optimized for distribution S itself. The JS distance
combines KL divergence with an averaging step to ensure symmetry and measure overall
dissimilarity in a balanced manner. Mathematically, JS distance can be calculated using the
following expression:

KL(S||T) = ∑[S(x) ∗ loglog (S(x)/T(x))] (3)

EJS(S, T) = (KL(M||T) + KL(M||S))/2 (4)

MMD distance EMMD(S, T) is a statistical measure used to quantify the dissimilarity
between probability distributions. It is commonly employed in various machine learning
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and statistical tasks, including domain adaptation and kernel methods. The mathematical
expression for the MMD distance between two distributions, S and Q, is as follows:

EMMD(S, T) = || 1
n

n

∑
i=1

∅(xi)−
1
m

m

∑
j=1

∅(yi)||2H (5)

In the equation, n and m are the respective numbers of samples drawn from each
distribution. xi and yi are the individual data points sampled from the distributions. ∅()
is a feature map that transforms data into a higher-dimensional space. ||.|| represents the
norm in the reproducing kernel Hilbert space.

DTW distance is a distance measure used to quantify the dissimilarity between pairs
of time series data. Time series data frequently exhibit variations in length, posing a
unique challenge when measuring dissimilarity between such datasets. To address these
challenges, Sakoe and Chiba [43] introduced the DTW distance, which calculates the
distance by optimally matching similar data points between time series. To apply the
measure in the dataset similarity, each signal {si}N

i=1 in datasets is divided into an equal

number K of segments, each with varying lengths denoted as WindowS
q = {si}

j+ceil (N/K)
i=q .

Then, we calculate DTW distances between time series windows in domain S and domain
T. Subsequently, we calculate DTW distances between time series windows in domain S
and domain T. The final DTW distance between the two domains is computed using the
following mathematical expression:

EDTW(S, T) =
∑ ∑ DTW

(
WindowS

q , WindowT
r

)
K × K

(6)

The time complexity of calculating DTW distance between two time series depends
on several factors, including the lengths of the time series and the specific algorithmic
optimizations used. In its basic form, DTW has a time complexity of O

(
N2), where N is

the length of the time series. This quadratic time complexity arises because, in the worst
case, every point in one time series is compared with every point in the other time series.
In situations where time consumption is high due to a long length of time series, several
approximate or fast DTW algorithms can be applied to reduce the time complexity to linear
or near-linear time, O(N).

To measure the distance ECORR(S, T) between two correlation structures, we em-
ployed cosine similarity between the correlation structures of different domains. This
similarity metric quantifies the cosine of the angle between two matrices treated as vectors.
The calculation for the correlation structure distance can be expressed mathematically
as follows:

ECORR(S, T) = S × T/ (||S|| × ||T||) (7)

3.1.4. Constructing a Graph-Structured Datasets Representation

In this subsection, a graph structure is proposed based on the extracted domain
features and quantified relations between domains. Since a graph is composed of nodes
and edges, its structure varies depending on how these nodes and edges are defined. In
this research, two different graph structures are proposed.

In this graph structure, measured transferability scores are converted into node fea-
tures (refer to Figure 5). Specifically, for the node of DS

p , there are a total of N measured
transferability scores between other nodes. The array of N measured transferability scores
is converted into a node feature of the node representing DS

p . Edge features consist of a
multi-dimensional vector signifying the four quantified relations between the two nodes.
The concept of the graph structure is illustrated in the figure. However, in the case of the
target domain, the node feature of the target domain is missing since there are no labeled
fault data during the training phase, and performance scores remain unknown. These
missing values will be estimated in the next subsection.
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3.2. Transferability Scores Estimation from the Constructed Graph

This subsection aims to estimate the transferability between the target domain and
candidate source domains. Since there is sufficient labeled data in the target domain,
the transferability between the target domain and other domains remains unknown in
the constructed graph. This estimation leverages the constructed graph with a graph
embedding model named GraphSAGE (Graph Sampling and Aggregation) proposed
in [44].

The GraphSAGE model is well-suited for tasks involving graphs, especially when
dealing with missing or incomplete node features. The key component of the model is
the neighbor aggregation function, which operates by collecting information or attributes
from these neighboring nodes and then aggregating or combining this information in some
way to generate a summary or representation for the focal node. This function allows the
model to capture the local neighborhood information of each node, which is then used to
generate its embedding. This helps the model learn representations that encode the graph’s
structure and relationships effectively.

The detailed training process for this model can be outlined as follows.

• Input preparation: The input to the model is the constructed graph itself, represented
by its edge features (i.e., quantified edge features) and node features (i.e., measured
transferability score). The target node with missing node features is not included in
the training phase.

• Sampling neighbors: For each node in the graph, a fixed-size neighborhood is sampled.
This is performed to efficiently handle graphs with nodes that have varying degrees
of connectivity.

• Aggregating features: The key idea of the model is to learn a function that aggregates
features from a node’s local neighborhood. Several aggregation functions can be used,
such as mean, LSTM, pooling, etc. This function is learned during the training process.
In this article, fully connected neural networks are leveraged for the aggregation
functions (refer to Figure 6).

• Generating embeddings: The aggregated features are then combined with the features
of adjacent nodes to generate the target node’s embedding. The dimension of this
embedding is designed to be identical to the node feature.

• Loss calculation: The loss is calculated based on a generated embedding and a ground-
truth label of the node. Specifically, a mean-squared error function is leveraged for the
loss calculation.

• Backpropagation and optimization: The computed loss is backpropagated through the
network, leading to the adjustment of parameters in the aggregating function using
optimization techniques such as the Adam optimizer. Training occurs over multiple
iterations (epochs), with each iteration dedicated to enhancing the model’s ability to
minimize the loss.
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After training, the trained model estimates the missing node values of the target node
by using existing graph features and edge features between the target node and others. The
model will leverage the learned node representations, which have been enriched by the
edge features, to make these predictions.

The performance of the graph embedding model is influenced by two critical pa-
rameters: the number of neighbors selected for aggregation and the depth and structure
of the aggregation process. Consequently, it is imperative to optimize these parameters,
potentially employing techniques like grid search.

Furthermore, it is important to emphasize that these parameters are intricately linked
to the overall time complexity of the model. Additionally, the size of the graph is the
main factor of the time complexity. Therefore, it is also important to select the appropriate
number of neighbors, a choice that should be tailored to the specific size and characteristics
of the graph. Alternatively, exploring optimization techniques, such as graph partitioning,
holds the potential to alleviate the computational burden associated with the practical
implementation of GraphSAGE.

3.3. Two-Stage Weighting Strategy for Domain Adaptation

This subsection is focused on the development of a voting ensemble model using
candidate source datasets and their corresponding estimated transferability for the tar-
get domain. Instead of constructing a single model, our approach involves establishing
a voting ensemble model that combines the results of multiple models based on their
assigned weights.

Here is a step-by-step breakdown of the process.

• Developing base classifiers with instance weighting: We start by generating a diverse
pool of trained models using the candidate source datasets. This involves developing
individual fault diagnostic models, each trained on a specific candidate source dataset.
To build these models, we employ a classification algorithm combined with a domain
adaptation method to ensure the robustness of each individual model in the ensemble.
Specifically, we leverage the random forest algorithm as the classification algorithm
and TrAdaBoost [27] as an instance weighting mechanism. The detailed process is
explained in Algorithm 1.
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Algorithm 1 Procedure of developing base classifiers with the instance weighting

Input: A source dataset DS
i = [(xk, yk)]

Ni
k=1, A target dataset DT = {(xk, 0)}NT

k=1, A classification
algorithm h(.).

For each iteration p (up to a pre-defined P):
1: Initialize weight uniformly.
2: Train a classifier hp(.) using the current weights.
3: Calculate weighted error.

ep = ∑Ni+NT

k=1 (wi)× I
(
yk, hp(xk)

)
/∑Ni+NT

k=1 (wi)

4 : Compute classifier weight. βp =
(
1 − ep

)
/ep

5: Update weight
- For misclassified source domain instances: wT

k = wT
k × β−1

p

- For misclassified target domain instances: wS
k = wS

k × βp
6: Iterating K process

Output: The final classifier WCi. WCi= ∑P
p=1 (log

(
β−1

p

)
×hp(x))

After K iterations, the final model is a combination of the K classifiers.

• Domain weighting with allocated weights: The next step is to assign weights to each
candidate source dataset for the voting ensemble model. These weights are determined
based on the estimated transferability scores assigned to each candidate source dataset
concerning a particular target dataset. Higher estimated transferability scores result
in larger weight values. To ensure that the sum of all weights equals 1, the weights
are adjusted accordingly. Additionally, a threshold (estimated transferability of 0) is
introduced to refine the selection of source datasets for the ensemble, allowing only
the best-performing source datasets to contribute.

• Building an ensemble model: The final predicted value of the ensemble model for a
target domain is computed by multiplying each node’s final weight by its predicted
values from the trained model with the domain adaptation method. These weighted
predictions are then summed to obtain the ensemble’s prediction for the target domain.
The detailed process is explained in Algorithm 2.

Algorithm 2 Domain weighting with allocated weights

Input: A set of base classifiers {WCi}M
i=1, A set of estimated transferability scores [TF(i, T)]Mi=1. A

test dataset {xk}T
k=1

1: Normalize the weights so that they sum up to 1.

Wi =
TF(i, T)

∑M
k=1 TF(k, T)

2: Obtain predictions on kth sample by the base classifier i.

yi
k = predict(WCi, xk)

3: Get the predicted values by each classifier {TMi}M
i=1

ŷk = ∑M
i=1 yi

k ∗ Wi

Output: Final predictions on the test dataset
{

ŷk
}T

k=1.

The visual representation provided in Figure 7 illustrates how the voting ensem-
ble model operates, leveraging the weights from various source datasets to make accu-
rate predictions for the target domain. This ensemble approach enhances the robustness
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and performance of the domain adaptation process in fault diagnosis under varying
operating conditions.
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4. Experimental Results and Discussion

In this section, we conduct two case studies on rotor machinery fault diagnosis under
varying operating conditions to validate the effectiveness and superiority of the proposed
framework. Each case study is based on real-world public datasets.

4.1. SMART Dataset
4.1.1. Description of Dataset

The SMART dataset was collected from a real CNC milling machine that is part of the
system-level manufacturing and automation research testbed (SMART) at the University
of Michigan [45]. The testbed provided a milling machine dataset collected from a CNC
milling machine under varying feed rates, clamping pressures, and tool conditions (as
illustrated in Figure 8). In the CNC milling machine, feed rate refers to the relative velocity
of the cutting tool along the workpiece, and clamping pressure refers to the pressure used
to hold the workpiece. Depending on the characteristics of the workpiece or expected part
quality, the setting values of those operating parameters may vary. In the context of this
research, datasets collected under different feed rates and clamping pressures are defined
as domains A to F, respectively (as detailed in Table 1).

Table 1. Operational conditions of each domain. Feed rate refers relative velocity of the cutting tool
along the workpiece. Clamping pressure refers to pressure used to hold the workpiece in the vise.

Domain
Operating Conditions

Feed Rate (mm/s) Clamping Pressure (bar)

A 6 4.0

B 3 2.5

C 3 3.0

D 3 4.0

E 6 3.0

F 20 3.0

G 20 4.0

During one such manufacturing operation, time series datasets were collected from
each of the four motors (X, Y, Z, S) in the machine, where S is the spindle. A total of seven
datasets were collected for each motor, resulting in a comprehensive dataset consisting
of 44 variables. These datasets were sampled at a rate of 10 Hz. The time series datasets
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included the motor’s actual position, actual velocity, actual acceleration, command position,
command velocity, command acceleration, current feedback, DC bus voltage, output
current, output voltage, and output power.
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wear-detection-in-cnc-mill, accessed on 3 April 2023.

4.1.2. Experiment Setup

Firstly, one domain was chosen from the available seven datasets named A to G,
designated as the target domain. Subsequently, all remaining datasets, excluding the
chosen target, were employed as candidate source datasets for training the tool wear
detection model with the DA method. Notably, we assumed that the target operating
condition represented an unseen operating condition, thus restricting the involvement of
solely normal (unworn tool) data from the target dataset during the training phase.

Leveraging these datasets, we proceeded to develop the tool wear detection model,
employing various domain adaptation methods. Subsequently, we evaluated the model’s
accuracy in predicting the target dataset. Performance assessment of the tool wear detection
models was carried out employing widely recognized metrics, including accuracy scores
and area under the ROC curve (AUC) scores, both of which are established for evaluating
classification models.

We conducted a comparative analysis of the proposed method against several baseline
methods. We began by selecting a naïve method that does not utilize any DA method and
instead learns from the source dataset, assigning uniform weights to all collected data. The
difference in accuracy from the “Traditional ML” serves as an indicator of the performance
improvement through the application of the DA method.

• Traditional machine learning (ML): To provide a reference point, we implemented
the “Traditional ML” baseline method, where equal weight was apportioned to each
domain. This method exclusively relies on the source data for training the diagnostic
model, devoid of any DA method.

The proposed method was also compared to the widely used DA methods from data-
based and feature-based approaches. The selected feature-based baseline methods include:

www.denfordata.com/bb/viewforum.php?f=48
www.kaggle.com/datasets/shasun/tool-wear-detection-in-cnc-mill
www.kaggle.com/datasets/shasun/tool-wear-detection-in-cnc-mill
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• Domain-adversarial neural network (DANN) [22]: Employing adversarial training to
learn features that are agnostic to variations across different domains (i.e., source and
target data) in the input data.

• Adversarial discriminative domain adaptation (ADDA) [23]: Utilizing a DANN algo-
rithm in a two-stage process by initially training on labeled source data and subse-
quently adapting the model to an unlabeled target domain using adversarial alignment
of feature distributions.

In addition to the feature-based methods, we also considered data-based methods as
baseline methods, which consist of:

• Kernel mean matching (KMM) [46]: Reweighting source data to minimize the MMD
distance between domains by solving quadratic optimization problems.

• Kullback–Leibler importance estimation procedure (KLIEP) [47]: Estimating weighted
importance by minimizing the KL divergence distance between domains. It assigns
higher weights to the data that are more important for learning the target distribution.

• TrAdaBoost: Allocating weights based on a reverse boosting strategy where the weight
of source data poorly predicted is decreased at each iteration.

To ensure a fair comparison among the above DA methods, all the methods were
implemented with the same loss function (=mean squared error), learning rate (=0.001),
and optimizer (=Adam). A one-class classifier, specifically the RandomForestClassifier,
served as the backbone model for all DA methods. In testing, the classifier showed a
98.89% accuracy score under the traditional setting of an identical distribution, providing
its capability for tool wear detection tasks. Furthermore, for methods necessitating a
domain discriminator, a fully connected network structured with layers of 200-100-2 was
employed. This network architecture facilitated the domain discrimination required by
these specific methods in the comparative evaluation. By employing these standardized
settings and model choices, the comparative evaluation of the DA methods was conducted
on an equitable footing, enabling an unbiased assessment of their respective performances.

4.1.3. Accuracy Comparison

In this subsection, a comprehensive comparison was conducted among six different
domain adaptation (DA) methods applied specifically to the task of tool wear detection.
The primary objective of this evaluation was to assess the effectiveness of each DA method
in comparison to the method without any DA, serving as the baseline represented by the
“Traditional ML” method. The performance improvements achieved by each DA method
relative to this baseline were measured and depicted.

Performance improvement, in this context, refers to how much the performance of a
DA method is improved compared to the method without any DA. Therefore, the Y-axis
of each bar graph in Figure 9 represents these performance improvements, where the
values for the “Traditional ML” method are all zero, as it serves as the baseline. The X-axis
represents the various target domains. For a more comprehensive breakdown of the results,
Table 2 offers a detailed account of AUC scores, while Table 3 provides an in-depth analysis
of accuracy scores. These tables provide a comprehensive evaluation of the performance
metrics, augmenting the insights garnered from Figure 9.

The experimental results, as shown in Figure 9, indicate that the proposed method
outperformed the other DA methods, achieving the highest area under the ROC curve
(AUC) scores across all target domains. Notably, in the target domains F and G, the
proposed method exhibited substantial improvements in AUC scores of 0.635 and 0.454,
respectively. These domains operated at a feed rate of 20 mm/s, while other domains used
a feed rate of 3 or 6 mm/s. The change in feed rate significantly impacted the performance
in these two domains, but the proposed method effectively mitigated this discrepancy by
allocating weights to each candidate source dataset.
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Table 2. The AUC score results of tool wear detection of the proposed model and baseline models by
the target domain (an average of five repetitions). The method shortcut refers to (TrAB = TrAdaBoost),
(T-ML = Traditional machine learning without domain adaptation). The proposed method performs
best overall.

Target Domain
Performance Improvement in AUC Score

T-ML (w/o DA) DANN ADDA KMM KLIEP TrAB Proposed

A 0.000 −0.475 −0.520 −0.057 −0.082 0.001 0.007

B 0.000 −0.433 −0.432 −0.013 −0.002 0.002 0.041

C 0.000 −0.385 −0.440 −0.155 −0.074 0.010 0.060

D 0.000 −0.413 −0.414 −0.057 −0.164 0.023 0.043

E 0.000 −0.382 −0.356 −0.096 −0.034 0.021 0.131

F 0.000 0.236 0.092 0.100 0.099 0.253 0.635

G 0.000 0.093 0.103 −0.019 −0.034 0.333 0.454

Table 3. The accuracy score results of tool wear detection of the proposed model and baseline models
by the target domain (an average of five repetitions).

Target
Domain

Performance Improvement in the Accuracy Score

T-ML (w/o DA) DANN ADDA KMM KLIEP TrAB Proposed

A 0 −0.472 −0.522 −0.058 −0.084 0.001 0.002

B 0 −0.433 −0.457 −0.010 0.000 0.002 0.002

C 0 −0.377 −0.451 −0.145 −0.070 0.011 0.018

D 0 −0.408 −0.409 −0.055 −0.162 0.023 0.030

E 0 −0.368 −0.363 −0.086 −0.034 0.023 0.093

F 0 0.053 −0.102 0.053 0.053 0.133 0.253

G 0 0.137 0.142 −0.015 −0.043 0.397 0.462

In contrast to the other domains, the performance improvement in domain A is not
statistically significant. This is likely due to the fact that the traditional machine learning
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method achieved an AUC score of 0.991 when applied to domain A. This suggests that,
in the context of domain A, a detection model with sufficient performance can be learned
even by utilizing existing data without employing DA methods.

While the TrAdaBoost method also showed performance improvements in all target
domains, the observed results were inferior to those of the proposed method. This suggests
that the combination of the proposed transferability estimation with the voting ensemble
approach significantly enhanced the model’s ability for domain adaptation, establishing
the superiority of this approach for tool wear detection under varying operating conditions.

Conversely, the feature-based DA methods demonstrated relatively lower performance
improvements and, in some cases, even performed worse than the method without DA
(the “Traditional ML” method). The feature-based methods tended to underperform due to
their indiscriminate training with all source datasets, allowing potentially harmful datasets
to negatively influence the fault diagnosis model in most of the target domains.

4.2. PU Bearing Dataset

In this subsection, we aim to demonstrate the generalizability of the proposed frame-
work to a wide range of machinery fault diagnoses. To achieve this, we validated the
framework for the bearing fault diagnosis under the same experimental setup.

4.2.1. Description of Dataset

The PU bearing datasets were collected from the test rig, which is part of the bearing
data center at Paderborn University [48]. The test rig of the PU bearing datasets is depicted
in Figure 10. The bearings were operated under four different operating conditions, as
shown in Table 4. Each of the statuses was tested in four different operating conditions.
The operating parameters were the load torque of the drive train, the rotational speed of the
drive system, and the radial force on the test bearing. All three operating parameters and
their setting values were constant during each measurement. During each measurement,
vibration data were collected using accelerometers with a sampling frequency of 64 KHz
over a duration of four seconds.
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Figure 11 shows the data distribution of two different domains and its negative effect
on the fault diagnosis performance. The scatter plot visualizes datasets from two different
domains using the t-distributed stochastic neighboring embedding (t-SNE) algorithm, a
dimensionality reduction method. Instances from dataset C, collected under domain C,
are represented by orange points, while those from dataset A are depicted in blue. The
red lines represent the decision boundary of the classifier model that was trained from the
whole dataset C and only normal data in dataset A.
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Table 4. Operational conditions of each domain.

Domain
Operating Conditions

Rotational Speed (rpm) Load Torque (Nm) Radial Force (N)

A 900 0.7 1000

B 1500 0.7 1000

C 1500 0.1 1000

D 1500 0.7 400
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Although the classifier exhibited high performance on domain C, numerous misclassi-
fied points were on domain A. This discrepancy within the PU bearing dataset domains
significantly affected the models’ performance, indicating a discrepancy between the
datasets across domains, thereby impeding accurate fault diagnosis.

4.2.2. Experiments Setup

To implement the domain adaptation methodology, we adopted the experimental
setup as outlined in [49] for the PU bearing dataset scenario. The setup involved the
selection of two distinct real fault datasets, namely KA16 and KI16, as well as a normal
dataset named K001. All datasets were operated under four different operating conditions
denoted as domains A, B, C, and D (see Table 4). Specifically, the K001 dataset was collected
under a normal bearing, the KA16 dataset was collected under the outer fault, and the
KI18 was collected under the inner fault. The datasets and their corresponding operating
conditions are detailed in Table 4. As a result, the task in this experiment is a multi-class
(three-class) classification task under four different operating conditions. To evaluate the
multi-class classification, we utilized the f-1 score instead of the AUC score. The other
experimental setup was identical to Section 4.1.2.
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4.2.3. Accuracy Comparison

Following the completion of Section 4.1, we present the average performance improve-
ments based on five repetitions. Similar to the previous case study, Figure 12 provides a
performance comparison among various domain adaptation (DA) methods in the context
of bearing fault detection across different target domains. Notably, Figure 12 excludes
the results of the “ADDA” method due to its significantly lower performance, making it
challenging to visualize alongside the other methods. Instead, detailed results for all DA
methods are presented in Tables 5 and 6.
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bearing fault detection.

Table 5. The f-1 score results of the bearing fault detection of the proposed model and baseline models
by experiment (an average of five repetitions).

Target Domain

Performance Improvement in the f-1 Score

T-ML
(w/o DA) DANN ADDA KMM KLIEP TrAB Proposed

A 0.000 −0.020 0.029 0.000 0.000 0.000 0.000

B 0.000 −0.005 −0.263 0.000 0.001 0.000 0.002

C 0.000 −0.006 −0.323 0.002 0.000 0.001 0.023

D 0.000 0.001 0.000 0.008 0.004 0.002 0.029

Table 6. The accuracy score results of the bearing fault detection of the proposed model and baseline
models by experiment (an average of five repetitions).

Target Domain

Performance Improvement in the ACC Score

T-ML
(w/o DA) DANN ADDA KMM KLIEP TrAB Proposed

A 0.000 −0.034 −0.040 0.000 0.000 0.000 0.000

B 0.000 −0.006 −0.224 0.000 0.001 0.000 0.002

C 0.000 −0.006 −0.304 0.002 0.000 0.001 0.023

D 0.000 −0.002 0.000 0.007 0.004 0.002 0.023
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As observed in the experimental results from the first case study, the proposed method
consistently outperforms existing DA methods in terms of f-1 scores and accuracy scores
across most target domains. This highlights the effectiveness of the proposed method not
only in the previous task but also in the task of bearing fault detection.

However, it is worth noting that in the case of domain A, all DA methods failed
to enhance diagnostic capability. In our experiments, the traditional machine learning
(ML) method achieved f-1 scores of 0.555, 0.934, 0.941, and 0.773 for the target domains
A, B, C, and D, respectively. Although the performance significantly degraded to 0.555 in
domain A, it seems that the effectiveness of the proposed method was limited due to the
distinct characteristics of failure data in domain A. While no performance improvement was
achieved in domain A, our method showed performance improvements in other domains
B to D. This demonstrated the effectiveness of the proposed method for machinery fault
diagnosis under varying operating conditions.

5. Conclusions

This article presents a weighted domain adaptation method that leverages the graph-
structured representation to achieve robust accuracies under varying operating conditions.
To be specific, the collection of datasets is represented in a graph structure. Subsequently,
estimated weights are assigned to the target domain based on this transferability estimation,
and these weights are utilized to construct a voting ensemble model. The empirical results
from two case studies in rotor machinery fault diagnosis consistently demonstrate that the
proposed method outperforms existing domain adaptation techniques in terms of accuracy.
These findings underscore the effectiveness of the proposed approach for fault diagnosis
under diverse operating conditions.

While our research holds promise, it does come with several limitations that deserve
attention. Firstly, we assume that source datasets are labeled and contain a sufficient
amount of data for training diagnostic models effectively. However, in real-world scenarios,
source datasets may often fall short in terms of both quantity and the availability of labeled
examples. Secondly, domain adaptation may not always guarantee better accuracy by
leveraging given source datasets. For example, if there is only a source dataset that is
harmful to learning a diagnostic model for the target domain, the result may be poor, no
matter how optimal the weight is calculated. In this case, it is necessary to ensure that the
effect of domain adaptation itself will be small. Lastly, our research focuses exclusively on
the classification of faults in machinery fault diagnosis.

As part of future research directions, one potential direction involves the incorporation
of a measure to assess the quality of source datasets themselves when constructing the
dataset graph. Such an evaluation could assist in identifying the suitability of source data
for domain adaptation. To determine the potential effectiveness of domain adaptation, we
suggest initializing all weights to zero when no source dataset surpasses a pre-defined
criterion. Analyzing the pattern of estimated indices could provide valuable insights
into the feasibility of domain adaptation in specific scenarios. Alternatively, we could
explore the calculation of outliers for nodes within the expressed graph as a means to
assess whether domain adaptation is likely to yield beneficial results or not. Broadening the
scope of our approach to encompass regression problems could enable the development
of more comprehensive and versatile fault diagnosis solutions, extending its applicability
beyond classification tasks. These proposed research directions aim to address the identified
limitations and further enhance the practicality and effectiveness of domain adaptation in
a range of real-world scenarios and domains.
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