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Abstract: The aim of this study was to develop a physical activity advisory system supporting the
correct implementation of sport exercises using inertial sensors and machine learning algorithms.
Specifically, three mobile sensors (tags), six stationary anchors and a system‑controlling server (gate‑
way) were employed for 15 scenarios of the series of subsequent activities, namely squats, pull‑ups
and dips. The proposed solution consists of two modules: an activity recognition module (ARM)
and a repetition‑counting module (RCM). The former is responsible for extracting the series of sub‑
sequent activities (so‑called scenario), and the latter determines the number of repetitions of a given
activity in a single series. Data used in this study contained 488 three defined sport activity oc‑
currences. Data processing was conducted to enhance performance, including an overlapping and
non‑overlapping window, raw and normalized data, a convolutional neural network (CNN) with
an additional post‑processing block (PPB) and repetition counting. The developed system achieved
satisfactory accuracy: CNN + PPB: non‑overlapping window and raw data, 0.88; non‑overlapping
window and normalized data, 0.78; overlapping window and raw data, 0.92; overlapping window
and normalized data, 0.87. For repetition counting, the achieved accuracieswere 0.93 and 0.97within
an error of ±1 and ±2 repetitions, respectively. The archived results indicate that the proposed sys‑
tem could be a helpful tool to support the correct implementation of sport exercises and could be
successfully implemented in further work in the form of web application detecting the user’s sport
activity.

Keywords: mobile sensors (tags); anchors; fitness tracking; personal training; sport activities; sport
activity advisory system; convolutional neural network (CNN); post‑processing block (PPB);
repetition counting

1. Introduction
The effects of constantly changing lifestyles are leading to new challenges and poten‑

tials in daily life. Thus, the use of digital technologies is increasingly gaining importance in
the fields of physiotherapy, fitness and health care in monitoring human activities in free
training without additional supervision. The focus here on the research side is the usage
of progressive sensor technologies based on multisensors in combination with machine
learning (ML) tools for accurate sport activity recognition, as well as to improve comput‑
ing power in order to build useful and practical tools [1].

For sport activity recording, the following wearables can be distinguished: chromatic
smart glasses (for activity tracking for fitness purposes), smart watches (mostly integrated
with headphones) and smart bands (for tracking the fitness of the user) [2]. Naturally,
the accuracy of the measurements is a main issue; therefore, such devices can be comple‑
mented by new sensors. Inertial sensors have been widely applied in the study of human
activity recognition (HAR), as well as in the context of sport activities. The authors of [3]
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analyzed the usage of inertial sensors in sport. It was found that further development is
needed to support the so‑called standardization of data collection and analysis procedures
for physical activities [4] and to find a balance between the accuracy and practicability of
the proposed solution. Moreover, although detecting the user’s activity and environment
is beneficial, it is not yet sufficient to provide personalized advice for a specific type of
sport.

Therefore, the goal of this research is to use inertia‑based sensing analysis to provide
sport activity recognition based on the example sport exercises of squats, pull‑ups and dips
and build a tool supporting training without a personal trainer through system feedback.
It is known that applying artificial intelligence (AI) enables a system to support the automa‑
tion of activities such as identification of correctly/incorrectly performed sport activities [5].
According to the statement that AI methods can help in training monitoring and training
schedule optimization [6], in previous work [7], a critical analysis of the literature on this
topic was performed from the point of view of convolutional neural network (CNNs) and
of CNNs combined with classifiers for HAR applications in sports. In this work, we pro‑
vide an overview of current solutions that support some feedback features for the correct
performance of sports exercises with inertial sensors and CNNs (Table 1).

Table 1. A review of currently available solutions supporting the performance of sport exercises.

Physical Activity
Advisory System

Applied Wearables for
Activity Recording Type of Sport Applied AI Achieved

Accuracy Ref.

Gym physical
exercise

recognition system

Single chest‑mounted
triaxial accelerometer

Six muscle groups,
gym exercise

Long short‑term memory
(LSTM) neural networks

Non‑overlapping
dataset: 0.57–0.81;
overlapping dataset:

0.74–0.91

[8]

System for weight
training

An inertial
measurement unit

(IMU), an accelerometer
and three force sensors

Weightlifting

Nearest neighbor (KNN),
decision tree (DT),

random forest (RF) and
repetition counting

KNN: 0.97; DT: 0.99;
SVM: 0.98;
RF: 100;

repetition counting:
0.96

[9]

Recognizing gym
workouts

A micro‑watt‑level
power consumption

human body
capacitance based

sensor

Seven gym
workouts Repetition counting 0.91 [10]

Fitness activity
recognition

Microphone integrated
into a smartphone

Body weight
exercises, bicycles,
toe touches and

squats

Support vector machines
(SVMs) and convolutional
neural networks (CNNs)

0.88 for bicycles,
0.97 for toe touches
and 0.9 for squats

[11]

Exercises in
CrossFit

recognition

Smart watches in
communication with

each other over
Bluetooth low‑energy

(BLE)

10 CrossFit
exercises

Classifiers of a series of
2D convolutions and two
fully connected layers, as

well as
repetition counting

0.99;
repetition counting:

0.91
[12]

Shoulder
physiotherapy

exercise
recognition

Six‑axis inertial sensor Seven shoulder
exercises

K‑nearest neighbor
(k‑NN), random forest
(RF), support vector
machine (SVM) and

convolutional recurrent
neural network (CRNN)

Classification
algorithms: 0.94;
CRNN algorithm:

0.99

[13]
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Table 1. Cont.

Physical Activity
Advisory System

Applied Wearables for
Activity Recording Type of Sport Applied AI Achieved

Accuracy Ref.

Static and
dynamic activity

recognition

Two radio devices
(waist‑ and ankle‑worn)
based on measurements

of variations in the
received signal strength

Static (standing,
sitting and lying)
and dynamic

activities (walking,
running and
dancing)

K‑nearest neighbor
(k‑NN), support vector
machine (SVM) and a
combination thereof

0.99 [14]

Daily activity
recognition

Recorded with smart
watch and smart phone

Six
non‑hand‑oriented

activities

Convolutional neural
networks (CNNs), long
short‑term memory

(LSTM) and combinations
thereof

Hybrid LSTM: 0.99 [15]

Magnetic‑
induction‑based
human activity
recognition

Wireless system based
on magnetic induction

Walking and
knocking

Deep recurrent neural
networks (DRNNs)

0.88
(synthetically

generated motion
dataset)

[16]

Sport activity
recognition

IMU attached to the
chest

Walking, jogging,
sprinting and
jumping

Decision trees (DT),
discriminant analysis,
support vector machine
(SVM) and k‑nearest
neighbor (k‑NN)

Cubic SVM: 0.91 [17]

Badminton
activity

recognition

Accelerometer/gyroscope
sensors attached to the
wrist, upper arm and

racket grip

Seven different
strokes and two
movement types

Convolutional neural
networks (CNNs) and

Deep CNNs

CNN: 0.99 (with
accelerometer and
gyroscope data)

[18]

Beach volleyball
activity

recognition

Three‑axis acceleration
sensor worn on the
dominant hand

Ten action classes
in beach volleyball

Deep convolutional
neural networks

(DCNNs)
DCNN: 0.83 [19]

Motion activity
recognition based
on Wi‑Fi signal

analysis

Two laptops equipped
with three

omnidirectional
antennae and analysis

of channel‑state
information

Nine motion
activities (e.g.,
walking, paper
toss and hand

clap)

Decision tree (DT),
convolutional neural
networks (CNNs) and
long short‑term memory

(LSTM)

DT: 0.94 [20]

Activity
recognition in real

time

Textile‑based capacitive
sensors implemented as

knee braces

Walking, standing,
running and
squatting

Support vector machine
(SVM), decision tree (DT),

k‑nearest neighbor
(k‑NN) and random forest

(RF)

RF: 0.83 [21]

Table tennis
activity

recognition

Six‑axis accelerome‑
ter/gyroscope attached

to the arm

Five typical table
tennis strokes

Support vector machine
(SVM) and k‑nearest
neighbor (k‑NN)

SVM: 0.96 [22]

Activity
recognition with
additional photo‑
plethysmographic

signals

Accelerometer and PPG
sensor data

Walking, running,
cycling (with high

and low
resistance)

Bayesian classifier 0.78 [23]

Activity
recognition

Heart‑rate‑monitoring
wrist band equipped

with a triaxial
accelerometer

Home‑specific
activities (sitting,

standing,
household

activities and
stationary cycling)

Support vector machine
(SVM) and random forest

(RF)

SVM: 0.85;
RF: 0.89 [24]
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Table 1. Cont.

Physical Activity
Advisory System

Applied Wearables for
Activity Recording Type of Sport Applied AI Achieved

Accuracy Ref.

Field hockey
activity

recognition

Two IMUs worn on the
chest and waist

Six field hockey
activities

Cubic support vector
machine (SVM) 0.91 [25]

Fitness activity
recognition Thermal vision sensor

Push‑ups, sit‑ups,
jumping jacks,

squats and planks

Convolutional neural
networks (CNNs) for
feature extraction and

long short‑term memory
(LSTM) for final
classification

0.98 [26]

Walking activity
recognition

A heterogeneous sensor
system: leg‑worn IMU
and finger‑tip‑based

pulse sensors

Walking activity
and leg‑swing
activities

Deep convolutional
neural network (DCNN) 0.97 [27]

Recognition of the
physical activities

of children

Three‑axis
accelerometer modules

around the waist

Slow/fast walking,
slow/fast running,
walking up/down
stairs, jumping

rope, standing up
and sitting down

Convolutional neural
network (CNN) 0.81 [28]

Hand‑oriented
activity

recognition

Triaxial accelerometer
data and triaxial

gyroscope

Jogging and
walking (public

benchmark dataset
called WISDM)

Convolutional neural
network (CNN) and long

short‑term memory
(LSTM)

0.96 [29]

Daily life activity
recognition

Two‑axis smart phone
accelerometer sensor

Jogging and
walking (public

benchmark dataset
called WISDM)

Multilayer perceptron
(MLP) classifier 0.93 [30]

Table 1 presents examples of physical activity advisory systems found in the currently
literature in order to enrich the discussionwith a rapid overviewof themain outcomeof the
presented systemswith respect to the analyzed state of the art. In particular, Table 1 reports
information on the related works about (a) the approach to advising on the realization
of physical activity, (b) the adoption of wearables for activity recording, (c) the applied
AI methods, and (d) the exploitation of the type of sport and the achieved accuracy. To
the best of our knowledge and as already highlighted in the state‑of‑the‑art analysis, no
existing studies have developed a system supporting the correct implementation of sport
exercises, namely squats, pull‑ups and dips, using mobile sensors (tags) and stationary
anchors in combinationwith a system‑controlling server (gateway) and for data processing,
i.e., a convolutional neural network (CNN) classifier with an additional post‑processing
block (PPB) and repetition counting. The authors of [31] suggested that research in the
area of applications of AI in HAR in the context of the sport activities should focus on
heterogeneous sensor fusion, combining expert knowledgewith a combination of different
AI methods to improve the accuracy of activity recognition systems. In previous research
on sports activity detection using CNNs, only homogeneous signals with a certain type
of activity were considered. According to the suggestion of the authors of [31] and to
distinguish this work from previous studies, we applied CNN classifiers for the analysis
of ongoing registered signals and for the classification of heterogeneous activity signals.
In summary, the key contributions of this paper are as follows:
• Employment of threemobile sensors (tags), six stationary anchors and a system‑contr‑

olling server (gateway) for 15 scenarios of the series of subsequent activities, namely
squats, pull‑ups and dips, as wearables for activity recording;
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• Building a model supporting the identification of correctly performed activities of
sport exercises, namely squats, pull‑ups and dips, based on the data of 488 sport ac‑
tivities using a convolutional neural network (CNN) classifierwith an additional post‑
processing block (PPB) and repetition counting;

• Design of an activity recognition module (ARM) and repetition‑counting module
(RCM) as the integral parts of the proposed advisory system;

• Achievement of satisfactory accuracy of the proposed system: CNN + PPB: non‑overl‑
apping window and raw data, 0.88; non‑overlapping window and normalized data,
0.78; overlapping window and raw data, 0.92; overlapping window and normalized
data, 0.87. For repetition counting, the achieved accuracies were 0.93 and 0.97 within
an error of ±1 and ±2 repetitions, respectively, indicating that the proposed system
is a helpful tool to support the correct implementation of sport exercises.
The remainder of this paper is organized as follows. In Section 2, we present an

overview of our proposed advisory system for sport activities, namely squats, pull‑ups
and dips, as well as the process of data acquisition and analysis. In Section 3, we explores
the experimental results and present the activity recognitionmodule (ARM) and repetition‑
countingmodule (RCM) as the integral parts of the proposed advisory system. In Section 4,
we discuss the achieved results, as well as directions for further works.

2. Materials and Methods
2.1. Overview of the System

The task of the advisory system considered in this paper is to supervise the correct‑
ness of the implementation of the training plan previously selected by the exercising per‑
son. The subjects perform the defined exercises (namely three activities: dips, pull‑ups,
and squats and breaks) in the developed research unit (Figure 1). The subjects wear three
inertial measurement units (IMUs) on their chest, hand and foot. Therefore, the dataset
includes three activities: dips and pull‑ups with squats and breaks in between, with data
collected in real time during exercises performed by eight participants. The recorded quan‑
tities include the axial size acceleration, rotation rate, magnetic field strength, the absolute
position of the IMUs in the room, Euler angles, quaternions and pressure. A total of 20mea‑
sured quantities per IMU were received with a recording rate of 30 Hz. The maximum
recording rate of the system is 100 Hz per tag, but performance problems occurred during
data acquisition. The authors of [32] also showed that satisfactory classification of human
activities can be achieved with sampling rates as low as 15 Hz. As in further work, the
fusion of camera and sensor data is investigated, a 30 Hz recording rate was considered
suitable. To develop a system supporting the identification of correctly performed activ‑
ities of sport exercises, namely squats, pull‑ups and dips, a validation module (VM) has
to be designed. The proposed module consists of two main subsystems: an activity recog‑
nition module (ARM), which is responsible for extracting the series of subsequent sport
activities, and a repetition‑counting module (RCM), which determines the number of rep‑
etitions of a given activity in single series. Such an approach allows for the assessment of
the activity compliance of the exercising person according to the previously established
protocol (i.e., compliance with the scenario and the assumed number of repetitions). In
our solution, the data are collected in real time, but in the presented solution, the posture
of the exerciser is not detected. The purpose of the present research is to build a smart
phone application acting as personal trainer, so this aspect was not taken into account in
the advisory system presented in this paper.
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Figure 1. Schematic representation of the advisory system supporting the correct implementation of
sport exercises, namely squats, pull‑ups and dips.

Considering the originality of this work, an overview of the proposed advisory sys‑
tem supporting the correct implementation of sport exercises, namely squats, pull‑ups and
dips, is presented in Figure 1.

It is known that the methodology of modelling of the advisory system should be in‑
tegrated with the use of scenario methods [33]. Therefore, our developed advisory sys‑
tem (Figure 1) includes: (1) data collection based on three mobile sensors (tags), six sta‑
tionary anchors and a system‑controlling server (gateway) during live sports exercise ses‑
sions (i.e., squats, pull‑ups and dips); (2) 15 scenarios of the series of subsequent activities,
namely squats, pull‑ups and dips; (3) sport activity recognition using a convolutional neu‑
ral network (CNN) with an additional post‑processing block (PPB); (4) determination of
the number of repetitions of a given activity; and (5) support for the correct implementa‑
tion of sport exercises with the addition of new data.

2.2. Data Acquisition
A measurement system consisting of three mobile sensors (tags), six stationary an‑

chors and a system‑controlling server (gateway) developed by Pozyx was used to collect
the data. The anchors are connected to the gateway via a patch cable, and the tags com‑
municate via an ultra‑wide band with the anchors distributed throughout the room. In
addition to transmitting the inertial measurement variables, the system also determines
the absolute position of the tags based on trilateration. This feature is particularly useful
for monitoring several spatially distributed training stations. The data recorded by the
tags are passed through the anchor lines to the gateway, which makes them available in
the local network via MQTT. The recording and preprocessing of the MQTT data stream
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was achieved with MATLAB R2020b. Preprocessing consists of linear interpolation of the
data when the transmission rate falls below 30 Hz and temporal synchronization of the
three recorded sensor data streams. After preprocessing, the recorded data are available
in an N × M matrix, where N corresponds to the number of samples and M represents
the number of measured variables. During real‑time data collection, the three exercises
were performed by the subjects in several sequences, and one or more exercises could be
performed within a sequence. The number of repetitions and the length of the pauses be‑
tween individual sports exercises were carried out at the individual discretion of the test
subjects. The subjects could also decide whether to perform all three exercises or only a
selection thereof.

2.3. Dataset Analysis
The exercises were carried out in accordance with the protocols specifying the scenar‑

ios (i.e., sequences of activities) and the length of series of each activity (i.e., number of
repetitions). It should be noted that the protocols were developed based on the activities
performed sport by test persons. The exercises were carried out according to the sporting
abilities of the test persons, and the order in which the exercises were completed was also
decided by the test persons. The participants realized 78 protocols according to 15 scenar‑
ios with the number of activity repetitions ranging between 2 and 15. The used scenarios
and the number of protocols are summarized in Table 2.

Table 2. The used scenarios and the number of protocols.

Scenario Number of Protocols

dips 1
pull‑ups 2
squats 7

dips, squats 3
pull‑ups, squats 1
squats, dips 1
squats, squats 5

dips, pull‑ups, squats 5
dips, squats, pull‑ups 4
pull‑ups, dips, squats 28
pull‑ups, squats, dips 1
squats, dips, pull‑ups 4
squats, pull‑ups, dips 2
squats, squats, squats 13

pull‑ups, dips, squats, squats 1

An example of raw acceleration signals from the sensor placed on chest of a partici‑
pant registered while performing a protocol realized in accordance with the scenario com‑
prising the pull‑ups, five dips and five squats is presented in Figure 2.
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The raw signals collected during realizations of 78 protocols were split into parts con‑
taining one type of activity (break, dip, pull‑up, squat). In further considerations, each of
the parts obtained in this way is referred to as a single occurrence of the activity. The dis‑
tribution of collected data is presented in Tables 3 and 4 and Figure 3 (in all cases, time is
expressed as the number of samples). The number of activity occurrences and the statistics
of time duration in all scenarios within the protocols are shown in Table 3. The minimum
and maximum number of repetitions and statistics of time duration of one activity repeti‑
tion are presented in Table 4. In Figure 3, box‑and‑whisker plots show the distribution of
total time and time per repetition based on the obtained dataset. Such analysis allows for
determination of ranges of duration (expressed as the number of samples) for the occur‑
rence of each activity, as well as the duration of one repetition. The parameters calculated
in thiswaywere used to tune theARMandRCMmodules of the advisory systemdescribed
in detail in Section 3.

Table 3. The number of activity occurrences and the statistics of duration.

Activity Number of
Occurrences

Duration in Number of Samples

Min Avg Max

breaks 283 63 382 1844
dips 50 135 297 768

pull‑ups 48 91 249 765
squats 107 157 474 956

Total 488 63 380 1844

Table 4. The number of repetitions and the statistics of the duration of one activity repetition.

Activity
Repetitions Duration in Number of Samples

Min Max Min Avg Max

dips 2 12 48 79 171
pull‑ups 1 14 55 90 220
squats 2 15 33 68 130

Total 1 15 33 76 220

Figure 3. (a) Distribution of total time; (b) distribution of time per repetition of a given activity.

As shown in the Tables 3 and 4, dataset is unbalanced because the distribution of activ‑
ities is unequal, and the number of series of squats is approximately equal to the number
of remaining activities (i.e., dips and pull‑ups). A similar relationship can be observed in
the duration of series (i.e., the number of registered samples); however, in this case, the
differences are not so clear. The length of series (i.e., the number of repetitions) is similar
for all activities and varies between 1 and 15. It takes the least amount of time to complete
one squat, and the longest time is needed to complete one pull‑up.
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3. Results
As mentioned in the previous section, the proposed validation module (VM) that is a

part of the designed advisory system (Figure 1) consists of two main subsystems. The first
(ARM) is based on a CNN classifier and is responsible for the extraction of the scenario (the
series of subsequent activities) performed by the exercising person. The second subsystem
(RCM) uses information from the ARM and raw signals from sensors to determine the
number of repetitions of a given activity. The scheme of the designed module is shown
in Figure 4, and a detailed description of both subsystems is presented in the following
subsections.

Figure 4. The scheme of the validation module.

In order to design the ARM unit, a low‑computational‑cost CNN classifier based on
our previous work is proposed. Owing to the nature of the task, in this work, the classifier
was modified to process a live signal; moreover, it was supplemented with an additional
post‑processing block (PPB), enabling correct identification of the performed scenario. The
second unit of the system (RCM) uses the known technique of finding peaks; however, the
proposed approach to preprocessing of raw signals and tuning the parameters of the RCM
block based on statistics of registered protocols is an original concept of the authors.

3.1. Activity Recognition Module
In order to design the ARM (Figure 4), an approach involving the use of a convolu‑

tional neural network (CNN) is proposed. The concept of this module is based on the
results of our previous research on human activity recognition (HAR). In our previous
work [7], a solution utilizing the technique known as image recognition [1,3] was proposed.
The main goal of this work was to find a classifier structure demanding the lowest possi‑
ble computational effort for the forward pass able to solve the HAR problem. A series
of experiments involving a CNN with different hyperparameters allowed us to choose a
classifier with one convolutional layer, five filters and a 7 × 1 kernel size. In [34], further
research was conducted on decreasing computational effort by identification of significant
sensor signals leading to input signal reduction. The studies focused on two issues: se‑
lecting the signals of greatest importance and sensor location. To evaluate the significance
of the signals, an approach based on a comparison of the energy of signals transformed
by a convolutional layer was used. In order to select sensor locations, the effectiveness
of CNN classifiers for different sensor configurations was analyzed. As follows from the
obtained results, the HAR problem can be satisfactorily solved using two acceleration sen‑
sors placed on the chest and the hand, which allowed for a reduction in the original set
of 60 inputs to a set of only 6 signals. The results achieved in cited works constituted the
basis for the studies presented in this paper. Finally, the classifier used in the experiments
presented below is composed of one convolutional layer, five filters, a 7 × 1 kernel size,
a ReLU activation function, a downsampling layer and a max pooling‑type, flattened and
dense output layer. The classifier input consists of 50 samples obtained from 6 acceleration
signals from sensors placed on the chest and hand. The general structure of the employed
CNN classifier is presented in Figure 5, and its parameters are listed in Table 5.
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Figure 5. The general structure of the CNN classifier.

Table 5. Parameters of the CNN classifier.

Layer Layer Type Output Shape Number of
Parameters

1. Convolution (5 filters,
7 × 1 kernel, ReLU) (44, 6, 5) 5 × (7 + 1)

2. Max pooling (22, 6, 5) 0
3. Flatten (660) 0
4. Dense (softmax) (4) 4 × (660 + 1)

Total parameters 2684

An important problem that had to be taken into account in the studies presented in
this paper was the need to use a classifier for analysis of a live stream of data. In [7,34],
the focus was on activity detection, and the input data of the CNN classifier contained
only homogeneous signals covering one type of activity in both the training and testing
phases. In contrast, in the presented work, the application of a CNN classifier for analysis
of ongoing registered signals was considered, so the CNNhad to also properly classify het‑
erogenous activity signals. For this reason, two approaches for training the classifier were
implemented and compared. In both cases, in order to prepare input data, the sliding‑
window method was used. In this technique, signals from sensors were sliced in the time
domain to form 2D windows including 50 successive samples from 6 acceleration signals.
In the first case, a non‑overlapping window with homogenous signals presented in [34]
was used; in the second case, a successive window overlap was used that can contain het‑
erogenous activity signals. Additionally, in both cases, the classifierwas trained and tested
using raw and normalized signals.

The number of input data points (windows) used in training and testing phases is pre‑
sented in Table 6. In the case of the overlapping window approach, the overlap of half the
window size (25 samples) was used, and the number of windows including homogenous
and heterogenous samples is presented separately. Based on assumption, each exercise
scenario includes breaks between two activities, and according to Table 3, the duration
the shortest break is equal to 63 samples, so heterogenous windows contain only single
activities and breaks. For this reason, such data are treated as corresponding activities.
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Table 6. The number of input data points used in the training and testing phases for both approaches.

Activity Non‑Overlapping
Window

Overlapping Window

Homogenous Data Heterogenous Data

breaks 2024 3812 ‑
dips 273 493 192

pull‑ups 215 384 189
squats 956 1810 423

Total 3468 7303

All experiments presented in this work were performed using algorithms implement‑
ed in Python 3.7.12. To create CNN classifiers with the structure shown in Figure 5, Tensor‑
Flow and Keras libraries in (version 2.7.0) were utilized. The code was run in the Google
Colab environment with GPU support. In all experiments, datasets were split in a ratio
of 70:15:15 between training, validation and test sets, respectively. The validation set with
the early stopping approach was used to avoid classifier overtraining. In the case of the
dataset created using the overlapping window method, the desired responses of the clas‑
sifier were determined based on the percentage of samples corresponding to the activi‑
ties registered within the window (i.e., for heterogenous data outputs less than 1). As
a result of the training process based on the dataset created using the overlapping and
non‑overlapping windowmethods and raw and normalized data, four classifiers were ob‑
tained: C1 (non‑overlapping window, raw data), C2 (non‑overlapping window, normal‑
ized data), C3 (overlapping window, raw data) and C4 (overlapping window, normalized
data). The accuracies of training and testing phases for these classifiers are presented in
Table 7.

Table 7. The accuracies of training and testing phases for obtained classifiers.

Phase
Non‑Overlapping Window Overlapping Window

Raw Data
Classifier C1

Normalized Data
Classifier C2

Raw Data
Classifier C3

Normalized Data
Classifier C4

training 0.98 0.94 0.95 0.92
testing 0.93 0.94 0.90 0.92

In all cases, the obtained results are satisfactory; however, the classifiers based on
datasets created using a non‑overlappingwindow achieve better accuracy in both the train‑
ing and testing phases. Additionally, the accuracies obtained for normalized data are ap‑
proximately equal (to the second decimal place) in contrast to raw data, which achieve
significantly worse testing accuracy. The results presented in Table 7 allow for assessment
of the quality of obtained classifiers, but they do not allow for the assessment of the effec‑
tiveness of classifiers operating as ARM, which should process the live stream of data.

In real applications, the samples registered by the sensors arrive to ARM in real time
andmust be immediately processed by the classifier. Such a scenario can be interpreted as
a sliding of the overlapping window in the time domain with a step equal to one sample.
An exemplary result of live signal processing by classifier C4 to recognize the scenario in
the protocol shown in Figure 2 is presented in Figure 6. The subsequent plots show output
signals from the classifier corresponding to breaks, dips, pull‑ups and squats. The gray line
shows the raw output signal (probability of activity occurring), the orange line represents
the output signal after conversion to binary classes and the green line describes the scenario
used in the realized protocol. A simple conversion of the output signals to binary classes
is insufficient because there are short periods of time (few subsequent samples) during
which the activities are not correctly recognized and, as a consequence, converted to output
signals containing peaks and gaps.
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In order to eliminate the disadvantages mentioned above, the ARM was expanded
with an additional post‑processing block (PPB) for CNN output signals. As a result of
experimentation, the two‑stage algorithm was chosen. In the first step, each raw output
signal of the CNN was smoothed with a moving average filter (MAF) according to depen‑
dency (1).

ỹi =
1
w

w−1

∑
j=0

yi+j, (1)

where yi and ỹi are the raw and filtered values, respectively, of the CNN output signal cor‑
responding to the i‑th sample, and w is the size of the window used by MAF. The output
signal filtered in this way was converted to binary classes, and such a piecewise constant
signal was processed in order to remove constant segments of insufficient length. For this
reason, in the presented work, the eliminating peaks and gaps (EPG) algorithm was pro‑
posed according to dependency (2):

Yi =

{
v i f ∃j i ∈ Pj

1 − v otherwise
, (2)

where Yi is the output signal processed by EPG, v is equal to 1 or 0 for the EPG used to
remove peaks or gaps, P =

{
P1, . . . , Pj, . . . , Pn

}
is a set of intervals with a constant signal

(1 for removing peaks and 0 for removing gaps) with the lengths exceeding or threshold
number of samples) for removing peaks and gaps, respectively.

In the presented work, parameters of filters described by dependencies (1) and (2)
were assumed based on statistical measures of registered protocols shown in Table 3 as
follows: w = 50, δ1 = 90, δ0 = 60. To prepare a set of intervals (P) a function find_peaks
from scipy.signal of Pythonmodule was used. The result of the CNN output signal shown
in Figure 6 transformed by the PPB filters described above is presented in Figure 7.

As shown in Figure 7, after transformation by PPB using the MAF filter and binariza‑
tion (olive line), most of the peaks and gaps in the output signal of the classifier shown
in Figure 6 are removed. There are only a few peaks and gaps in the dip activity signal
recognized incorrectly as breaks. After the EPG filter is added, the scenario is recognized
correctly (orange line); however, slight shifts in time with respect to the protocol (green
line) can be observed.
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Finally, the accuracies of the considered classifiers and complete ARM unit (CNN +
PPB) in activity recognition (Table 8) and scenario recognition (Table 9) were determined.
The application of a post‑processing block significantly improved the accuracy of both
activity and scenario recognition. It is worth noting that the use of PPB significantly im‑
proved scenario recognition, which is especially important in the case of a system support‑
ing the correct implementation of sport exercises. Based on the presented results, the ARM
with a C3 classifier (overlapping window, raw data) was chosen as the component of the
designed system.

Table 8. The accuracies for single and all activities.

Activity
CNN Classifiers ARM (CNN + PPB)

C1 C2 C3 C4 C1 C2 C3 C4

dips 0.74 0.63 0.79 0.72 0.91 0.67 0.97 0.8
pull‑ups 0.77 0.87 0.78 0.9 0.91 0.93 0.91 0.95
squats 0.9 0.93 0.86 0.92 0.95 0.97 0.94 0.97

Total 0.85 0.86 0.83 0.88 0.94 0.91 0.94 0.93

Table 9. The accuracies for scenario recognition.

CNN Classifiers ARM (CNN + PPB)

C1 C2 C3 C4 C1 C2 C3 C4

0.00 0.13 0.00 0.21 0.88 0.78 0.92 0.87

3.2. Repetition‑Counting Module
The second module of the designed system (Figure 4) has to calculate number of rep‑

etitions for each activity using information about activities provided by the ARM unit and
raw signals registered by sensors. For this reason, in this study, the approach based on
finding peaks in the original signals was used. Owing to the nature of the acquired sig‑
nals (see Figure 2), their direct use for repetition counting led to overestimated results as
a consequence of detecting false peaks. In order to eliminate this problem, preprocessing
of original signals was performed.

The preprocessing of raw signals should remove the noise resulting from sensor char‑
acteristics and accidental/unnecessary movements of the exercising person. To solve this
problem, the application of a low‑pass filter to attenuate signals with frequencies higher
than the cutoff frequency was proposed. In this study, the Butterworth filter was chosen.
The significant feature of this filter in eliminating false peaks is a maximally flat frequency
response in the passband and near‑zero response in the stopband. In this application,
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cutoff frequencies result from the time of performing single exercises. They were deter‑
mined individually for each activity based on statistics presented in Table 4 and are listed
in Table 10. The acceleration signals from chest and hand sensors registered during the per‑
formance of dips according to the protocol presented in Figure 2 before and after filtering
are shown in Figure 8.

Table 10. RCM parameters.

Activity

Signals Butterworth
Filter

Find
PeaksChest Hand

X Axis Y Axis Z Axis X Axis Y Axis Z Axis Order Wn * Distance

dips □ □ 2� 2� □ 2� 2 0.05 40
pull‑ups □ 2� 2� □ □ 2� 2 0.04 50
squats □ □ 2� □ □ □ 2 0.06 30

* Wn = fc/(0.5 fs)—normalized cutoff frequency, fc—cutoff frequency, fs—sampling frequency, 2� given signal
is used in RCMmodule, □ given signal is not used in RCMmodule.

Figure 8. Acceleration signals from chest and hand sensors before and after filtering.

In the discussed system, each acceleration sensor provides three signals; nevertheless,
as shown in Figures 2 and 8, some signals do not contain information relevant to repetition
counting (i.e., x‑axis signal from the chest). To eliminate irrelevant signals, a series of ex‑
periments were carried out, and the chosen signals are presented in Table 10. Using data
from sensors preprocessed and selected as described above, the number of repetitions of
each activity was determined by counting the number of peaks of the signals. The parame‑
ters defining the minimum distances between the peaks required for correct performance
of this operation were determined based on the minimum time needed to complete one
repetition (Table 4) and are presented in last column of Table 10. Finally, the number of
repetitions of each activity was determined as the average number of peaks across all pre‑
viously chosen relevant signals.

To assess the effectiveness of the proposed system to supervise the correctness of
the implementation of the training plan, a summary of obtained results is presented in
Tables 11 and 12. Table 11 contains the number of protocols, repetitions and miscounts
grouped by activity. A low total number of miscounts was achieved, calculated as the
total number of miscounts relative to the total number of repetitions (6%; 68/1105). The ac‑
curacies obtained in counting the repetition for each activity are shown in Table 12. Three
types of accuracy were calculated: exact (ratio of correctly detected repetitions to the total
number of repetitions), with errors of ±1 and ±2 repetitions. Accuracies within ±1 and
±2 equal 0.93 and 0.97, respectively, which are satisfactory, especially because they were
determined based on scenario recognition performed by the ARM unit.
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Table 11. Repetition count results.

Activity No. of Protocols Total
Repetition Count

Total
Miscount

dips 51 202 20
pull‑ups 49 144 19
squats 75 759 29

Total 175 1105 68

Table 12. Accuracies of repetition counting.

Activity Exact within ±1 within ±2
dips 0.78 0.90 0.94

pull‑ups 0.67 0.96 0.98
squats 0.77 0.92 0.97

Total 0.75 0.93 0.97

4. Discussion
In this work, an advisory system was developed to evaluate the correctness of the

execution of sports activities (squats, pull‑ups and dips). Each exercise was carried out
according to the sporting abilities of the test persons, and the order in which the exercises
were completed was also decided by the test persons. Based on the results, 15 scenarios
of the series of subsequent activities were developed. Using three mobile sensors and six
stationary anchors in combination with a system‑controlling server (gateway), the data
containing 488 sport activity occurrences were acquired. The proposed solution consists
of two modules: an activity recognition module (ARM) and a repetition‑counting module
(RCM). The ARM, as a combination of a classifier and a post‑processing block, showed
very good performance in the recognition of three sports exercises with pauses in between.
Squats were best‑detected, which can be attributed to the predominant amount of data
from squat intervals. Depending on the activity, classifiers C1 to C4 achieved different
results. This should be investigated again with a more comprehensive dataset. The PPB
block is an important component for the live recognition of sports exercises, especially
when feedback functionalities have to be implemented.

Our results indicate that the developed advisory system can be treated as suitable tool
to support the correct implementation of sport exercises. The developed system (CNN +
PPB) achieved satisfactory accuracy:
• Non‑overlapping window and raw data: 0.88;
• Non‑overlapping window and normalized data: 0.78;
• Overlapping window and raw data: 0.92;
• Overlapping window and normalized data: 0.87.
• Repetition counting: 0.93 within an error of ±1 and 0.97 within an error of ±2.

The research results are comparable to another solution, and a higher recognition ac‑
curacy (0.97) was achieved when using repetition counting (see Table 1). The originality
of this work is the combination of a convolutional neural network (CNN) with an addi‑
tional post‑processing block (PPB) and repetition counting. In addition, CNNs were used
for the analysis of heterogeneous activity signals. The main limitation of the proposed
system is that the protocols specifying the scenarios (i.e., sequences of activities) were de‑
veloped based on the on the sport activities performed by test persons. This process of
creating sport activity scenarios should be fully prepared by a sports trainer to guarantee
the correctness of the exercises performed. In further work, the scenarios specifying the
correctness of each sport activity will be formulated and added. The workflow and limita‑
tions described in this paper can also serve as a basis for furtherwork in order to implement
our advisory system in the form of a web application. This application will be a system
acting as a personal trainer supervising the correctness of training in accordance with a
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previously prepared protocol (order, number and pace of exercises) using only sensors
available in commonly used mobile devices (e.g., smart phones or smart watches).

5. Conclusions
In summary, the proposed advisory system that processes the data of 488 sports ac‑

tivities (squats, pull‑ups and dips) collected from mobile sensors and stationary anchors
provided through a system‑controlling server (gateway) using a convolutional neural net‑
work (CNN) with an additional post‑processing block (PPB) followed by repetition count‑
ing is a promising solution for the generation of a variety of conditions, providing the basis
for a statement about the correctness of the performed sports exercise.

In a future work, sport activity scenarios prepared by a sports trainer will be ap‑
plied, and experiments based on the new data will be conducted. Thus, the scenarios,
new dataset and further research experiments on various neural networks to achieve bet‑
ter accuracy and to reduce the computational efforts would be especially beneficial for the
development of a system in the form of, e.g., a web application available for users to super‑
vise the performance of exercises without the need for the physical presence of a trainer.
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