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Abstract: Myofascial pain syndrome is a chronic pain disorder characterized by myofascial trigger
points (MTrPs). Quantitative ultrasound (US) techniques can be used to discriminate MTrPs from
healthy muscle. In this study, 90 B-mode US images of upper trapezius muscles were collected
from 63 participants (left and/or right side(s)). Four texture feature approaches (individually and
a combination of them) were employed that focused on identifying spots, and edges were used to
explore the discrimination between the three groups: active MTrPs (n = 30), latent MTrPs (n = 30),
and healthy muscle (n = 30). Machine learning (ML) and one-way analysis of variance were used
to investigate the discrimination ability of the different approaches. Statistically significant results
were seen in almost all examined features for each texture feature approach, but, in contrast, ML
techniques struggled to produce robust discrimination. The ML techniques showed that two texture
features (i.e., correlation and mean) within the combination of texture features were most important
in classifying the three groups. This discrepancy between traditional statistical analysis and ML
techniques prompts the need for further investigation of texture-based approaches in US for the
discrimination of MTrPs.

Keywords: myofascial trigger point; texture features; machine learning; ultrasound

1. Introduction

Chronic pain (e.g., myofascial pain syndrome (MPS)) affects nearly one hundred
million adults in the United States with an annual cost between USD 560 to 635 billion [1].
MPS is one of the most prevalent musculoskeletal pain disorders that occur in every age
group and has been associated with primary pain conditions, including osteoarthritis, disc
syndrome, tendinitis, migraines, and spinal dysfunction [2]. Myofascial trigger points can
be used to characterize MPS. These can be split into two types: active MTrPs (A-MTrP),
which are spontaneously painful nodules, and latent MTrPs (L-MTrP), which are nodules
that are only painful when palpated.

MTrPs have been classically defined as a “hyperirritable spot” in skeletal muscle that is
associated with a hypersensitive palpable nodule in a taut band [3]. The diagnostic criteria
for MPS involve physical screening, but studies have shown that the manual detection of
MTrPs is unreliable [4]. Quantitative techniques can help improve the detection of MTrPs.

Ultrasound (US) is an attractive modality for this problem as it has been used to identify
MTrPs [4–6]. It is a non-invasive way to assess muscles, tendons, and ligaments [7–9] and
is relatively low cost. Doppler and elastography US have been used to visualize and
distinguish MTrPs from normal tissue [8,10–12]. Unfortunately, not all clinical US machines
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are equipped with elastography capabilities, and these approaches require comprehensive
training to use and interpret. Brightness mode (B-mode) US, on the other hand, is readily
available in most clinics and hospitals and would be the preferred option for diagnosing
and screening musculoskeletal disorders if possible.

However, B-mode US has high variability in echo intensity depending on the operator,
model, and more. Thus, texture features have been used to mitigate this issue and have been
widely used to discriminate variables in B-mode US images. Texture features play a vital
role in radiomics, providing information such as muscle fiber orientation, normal anatomy,
and the extent of adipose, fibrous, and other connective tissues within muscle [10]. Previous
studies have suggested that the muscle fibers within the MTrPs in the affected zone and the
muscle fibers in the surrounding regions have different orientations in comparison with
normal skeletal muscle [10].

Although texture feature analysis of US images has been explored to distinguish
MTrPs in affected muscle from normal tissue [8,11,12], there is currently no “gold standard”
to detect the presence of MTrPs within B-mode US images. Previous research has used
various methods of analyzing texture to tackle this problem, such as using entropy charac-
teristics [11], gray-level co-occurrence matrices (GLCM), blob analysis, local binary pattern
(LBP), and statistical analysis [12]. A comprehensive review paper on texture analysis or
classification categorized these techniques into four main categories [13]:

• Transform-Based: Transform-based techniques employ a set of predefined filters
or kernels to extract texture information from an image. Common filters include
Gabor filters and LBP [14,15]. These filters highlight certain frequency components
or local variations in pixel values, making them suitable for tasks where patterns are
characterized by specific spatial frequencies or orientations.

• Structural: Structural techniques focus on describing the spatial arrangement and
relationships between different elements in an image. They often involve identifying
and characterizing specific patterns or structures within the texture (e.g., GLCM). These
methods are valuable for capturing details related to texture regularity, directionality,
or organization.

• Statistical: Statistical methods involve the analysis of various statistical properties
of pixel intensities within an image or a region of interest (ROI). Common statisti-
cal features include entropy, contrast, correlation, homogeneity, energy, mean, and
variance. These metrics quantify the distribution and variation of pixel values, pro-
viding insights into the texture’s overall properties, such as roughness, homogeneity,
or randomness.

• Model-Based: Model-based methods involve fitting mathematical or statistical models
to patterns in an image. These models can be simple, such as a parametric distribution
(i.e., Gaussian distribution or Markov random fields), or more complex, such as deep
learning models like convolutional neural networks. Model-based approaches are
versatile and can capture intricate texture patterns, making them increasingly popular
for texture analysis.

Of these categories, we focused on features that may better describe spots, edges, and
patterns. This is because a variety of studies describe MTrPs as “knots” in the muscle.
A wide variety of studies describe the MTrPs as a hyperechoic band, hypoechoic elliptical
region, or simply a different echo architecture than the surrounding muscle tissue in clinical
examination (e.g., US screening) [16,17].

For many clinicians and investigators, the finding of one or more MTrPs is required
to assure the diagnosis of MPS. However, there remains a lack of optimal methods for
characterizing these muscle structures, and achieving an objective characterization of
MTrPs has the potential to enhance their localization and diagnosis. This can facilitate the
development of clinical measures [15]. One of the leading challenges in the classification
of B-mode US images is that they may vary in scale, view, or intensity. For these reasons,
various approaches attempt to address these challenges.
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Gabor filters are a feature that can be used to detect direction and are often used to
reveal lines and edges in an image [18]. They can also be used to determine the structure
and visual content contained within an image [13]. Previously, Gabor filters have been
used to enhance fiber orientation and detect edges in US images [19,20]. LBP is another
approach that can be used to characterize skeletal muscle composition in patients with MPS
compared with normal healthy participants [8,21]. Most of these approaches have been
used for image processing and statistical analysis, but classification may benefit greatly
from the incorporation of machine learning (ML).

ML approaches may enhance classification as they are able to autonomously learn
patterns and relationships from data [22–24]. ML is focused on making predictions as
accurate as possible, while traditional statistical models are aimed at inferring relationships
between variables [24]. ML offers advantages in terms of flexibility and scalability when
contrasted with conventional statistical methods, allowing its utilization across various
tasks like diagnosing, classifying, and predicting survival. Nevertheless, it is crucial to
assess and compare the accuracy of muscle characterization through traditional statistical
methods and ML within the context of clinical screening [25]. Supervised ML algorithms
(e.g., neural networks (NNs), decision trees (DTs), etc.) can generalize from training data
to make accurate predictions or classifications on new, unseen data. Their adaptability
allows them to handle diverse domains and tasks, making them invaluable tools for tasks
ranging from image recognition to medical diagnosis, enhancing efficiency and precision
in decision-making processes [22].

Thus, this study delves into the utilization of various texture feature approaches and
ML techniques to classify and characterize MTrPs in US images. We investigate different
texture feature approaches (i.e., LBP, Gabor, SEGL method, and their combination with
texture features) extracted from US images to classify MTrPs. We further employ various
ML techniques as well as traditional statistical analysis to explore the effectiveness of the
extracted features from the US images to characterize and classify the muscle between
A-MTrPs, L-MTrPs, and healthy muscle.

2. Materials and Methods
2.1. Participants

Participants (n = 63) were recruited from the musculoskeletal/pain specialty outpatient
clinic at the Toronto Rehabilitation Institute. The upper trapezius muscle of all participants
was examined. All participants underwent a physical examination by a trained clinician
on our team (BD), who determined the presence or absence of MTrPs (i.e., A-MTrPs and
L-MTrPs) in the upper trapezius muscle according to the standard clinical criteria defined
by Travell and Simons [3] and through visual confirmation on B-mode US. Participants
who demonstrated no symptoms or history related to neuromuscular disease, based on
diagnostic criteria, were included in this study. Each participant’s muscle(s) (right and/or
left) was labeled as A-MTrPs (n = 30), L-MTrPs (n = 30), or healthy control (n = 30) (Table 1).

Table 1. Number of participant’s muscles in each group.

Group Number of Sites

A-MTrPs 30
L-MTrPs 30

Healthy Control 30
Note: Number of sites shows the number of each participant’s left and/or right muscle.

All subjects gave their informed consent for inclusion before they participated in
the study and their upper trapezius muscles were included in our study. The study was
conducted in accordance with the Declaration of Helsinki, and the protocol was approved
by the Institutional Review Board of the University Health Network (UHN) (protocol
code 15-9488).
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2.2. Ultrasound Acquisition Protocol and Pre-Processing

US videos were acquired using a US system (SonixTouch Q+, Ultrasonix Medical
Corporation, Richmond, BC, Canada) with a linear ultrasonic transducer of 6–15 MHz and
a depth set to 2.5 cm. The acquisition settings including time gain compensation, depth, and
sector size were held constant across all participants. Acquisition was performed by an ex-
perienced sonographer with the participant sitting upright in a chair with their arms relaxed
on their sides and forearms resting on their thighs. The transducer was placed on the skin
in the center of the trapezius muscle (i.e., the midpoint of the muscle belly between the C7
spinous process and the acromioclavicular joint) with enough gel to cover the entire surface
(Figure 1). A ten-second video (sampling frequency: 30 frames/second) of the trapezius
muscle from each side per participant was recorded by moving the transducer towards the
acromioclavicular joint (parallel to the orientation of the muscle fibers) at approximately
1 cm/s, generating 300 images per participant for analysis (Figure 1). While recording the
video, the researcher manipulated the transducer’s position to reduce artifacts and mitigate
muscle distortion caused by the transducer, such as applying downward pressure. From
each video, 4 unique frames/images were manually selected out of 300 B-mode images.
These selected images captured various sections of the muscle (i.e., lateral to medial) and
were used to validate the presence or absence of MTrPs evident in the video (Figure 2A).
Images from each side of a participant (e.g., left and/or right trapezius) were treated as
independent sites (Table 1).
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ROIs of the muscle (i.e., the region between the upper trapezius muscle’s superior and
inferior fascia) were manually extracted from the acquired images via visual localization.
These muscle ROIs were further analyzed using the following texture features (Figure 3).
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2.3. Texture Feature Analyses

I. Local Binary Patterns. LBP, a rotationally invariant feature, is one of the most
popular texture feature analysis operators [26]. It can evaluate the local spatial patterns
and contrast of grayscale images. This technique calculates eigenvalues for the different
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patterns in an image, such as edges and corners within a neighborhood. LBP was calculated
for every B-mode image using the following equation below (Equation (1)).

LBPP,R =
P−1

∑
p=0

s
(

gp − gc
)
2p , s(x) =

{
1, x ≥ 0
0, x < 0,

(1)

where P is the number of pixels within the neighborhood and within a circle radius of
R = 1, gp represents the pth neighboring pixel, gc represents the center pixel, and s(x) is the
obtained binary code at position (x) neighbors.

In our study, a 3 by 3 neighborhood was used, and its central pixel intensity was
compared with its surrounding eight neighbor pixels [27]. If the neighboring pixel intensity
was below the pixel intensity of the central pixel, then it was labeled 0; otherwise, it was
assigned the value 1. This resultant binary matrix was then multiplied by a fixed weight
matrix, which was then summed replacing the central pixel (i.e., the LBP measure). This
produced one of 256 (28) possible patterns.

LBP was calculated across the entire ROI, and the outer border of the ROI (i.e., did not
have eight neighbors) was replaced with the next closest pixel values (Figure 2C).

II. Gabor Feature. Gabor filtering was introduced by Daugman and used in pattern
analysis applications [28–30]. The Gabor filter-based features are directly extracted from the
gray-level images (i.e., B-mode images) and compute a measure of “energy” in a window
around each pixel in each response image. In the spatial domain, a two-dimensional Gabor
filter is a Gaussian kernel function modulated by a complex sinusoidal plane wave, defined
as (Equation (2)) [31]:

G(x, y) = exp

{
−1
2

(
x′2

σ2
1
+

x′2

σ2
2

)}
cos
(
2π f x′ + ϕ

)
, (2)

x′ = xsinθ + ycosθ, y′ = −xcosθ + ysinθ,

where ƒ is the spatial frequency of the wave at angle θ with the x-axis, σ1 and σ2 are the
standard deviations of the 2-D Gaussian envelope, and ϕ is the phase.

Gabor features were calculated using the Gabor feature extraction function created by
Haghighat et al. [32] in MATLAB (2023a, The MathWorks, Natick, MA, USA). Forty Gabor
filters were calculated at 5 frequency scales for eight orientations (i.e., θ: 0◦, 45◦, 90◦, 135◦,
180◦, 225◦, 270◦, and 315◦), producing 40 Gabor feature images for each B-mode US image
(Figure 2B).

III. SEGL Method. SEGL stands for statistical, edge, GLCM, and LBP and was
proposed by Fekri Ershad S. for textual analysis [33]. It is a feature extraction method that
combines statistical, edge, GLCM, and LBP features. First, LBP is calculated from the input
image. Then, GLCM is calculated on the resultant LBP image in which the edge feature is
then calculated before calculating the statistical features.

GLCM was proposed by Haralick and Shanmugam [34]. GLCM provides information
about how often a pixel with the intensity value i occurs in a specific spatial relation-
ship to a pixel with the value j. In this study, GLCM was calculated along 8 directions
(i.e., θ: 0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, and 315◦) with an empirically determined dis-
tance (offset = one pixel).

Edge detection is the process of localizing pixel intensity transitions that have been
used to extract information in the image via object recognition, target tracking, segmenta-
tion, etc. It is defined by a discontinuity in gray-level values or a boundary between two
regions with relatively distinct gray-level values [35]. The Canny edge detection method
was used, as previous literature has shown that the Sobel edge detection method cannot
produce smooth and thin edges compared to the Canny method [36].

Finally, the seven statistical features, described below (Section 4), were calculated over
the edge detected images. This resulted in 56 features (8 directions × 7 statistical features).
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IV. Statistical Feature. Statistical features were used to measure the image variation.
In our study, 7 statistical features of entropy, energy, mean, contrast, homogeneity, corre-
lation, and variance were computed. A summary of these statistical features is provided
below (Equations (3)–(9)).

• Entropy: shows the degree of randomness of pixel intensities within an image
(Equation (3)) [7,30,34].

Entropy : a1 = −
N−1

∑
i,j=0

Ln
(

pi,j
)

pi,j, (3)

• Contrast: measures the local contrast of an image (Equation (4)).

Contrast : a2 =
N−1

∑
i,j=0

Pi,j(i− j)2, (4)

• Correlation: provides a correlation between two pixels in a pixel pair (Equation (5)).

Correlation : a3 =
N−1

∑
i,j=0

Pi,j(i− µ)(j− µ)/σ2), (5)

• Homogeneity: measures the local homogeneity of a pixel pair (Equation (6)).

Homogeneity : a4 =
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• Energy: measures the number of repeated pairs (Equation (7)).

Energy : a5 =
N−1

∑
i,j=0

(Pi,j)
2 (7)

• Mean (Equation (8)):

Mean : a6 =
N−1

∑
i,j=0

i (Pi,j) (8)

Variance (Equation (9)):

Variance : a7 =
N−1

∑
i,j=0

Pi,j (i− µ)2 (9)

where Pi,j is the pixel value in position (i, j) in the output image, µ and σ are, respectively,
the mean and standard deviation (variance) of all Pi,j values in the output image, and N is
the number of gray levels in the output image.

2.4. Classification Techniques, Training, and Evaluation

The features calculated from each approach (Table 2) were used to train a variety
of ML models to discriminate muscle with MTrPs (A-MTrPs and L-MTrPs) from healthy
muscle. ML models were implemented in Python using the Scikit Learn library. These ML
models were logistic regression (LR) [37], decision tree (DT) [38], random forest (RF) [39],
k-nearest neighbors (kNN) [40], naive Bayes (NB) [41], support vector machine (SVM) [42],
and artificial neural networks (NNs) [43,44]. These models were used because they are
common in the literature [45], have different strengths, and could easily be implemented.
Each method used the libraries’ default parameters and other hyperparameters such as the
number of neighbors in kNN, which was tuned using grid search (Table 3).
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Table 2. The summary of approached texture features for each image (LBP, Gabor, SEGL, and LBP).

Approach Number of Features

I. LBP 7
II. Gabor Feature 280 (40 × 7)
III. SEGL Method 56 (8 × 7)

IV. Statistical Features 7

Table 3. The following ML classifier techniques with their associated parameters were used. * Shows
the best accuracy performance for each classifier technique.

Classifier Techniques Hyperparameters

K-nearest neighbors (kNN) [39] n_neighbors = 3, 5 *, 7
Decision tree (DT) [37] Criterion = ‘gini’ *, ‘entropy’, ‘log_loss’

Random forest (RF) [38] Criterion = ‘gini’ *, ‘entropy’, ‘log_loss’
Logistic regression (LR) [36] C = 0.1, 1, 10 *

Naive bayes (NB) [40] Gaussian
(
var_smoothing = 1.0, 10−5 , 10−9 *)

Support vector machine (SVM) [41] C = 0.1, 1, 10 *
Artificial neural network (NN) [42,43]

The NN was a single hidden-layer network (512) with a dropout layer (50% of nodes
dropped). All activation functions were Rectified Linear Units. The output layer was a
3-node output with an activation function of SoftMax. The NN was trained for 250 epochs
with an early stopping criterion of 7 epochs of no improvement in the validation loss. The
learning rate was the default set by Keras and was decreased by a factor of 0.1 after 3 epochs
of no improvement to a minimum learning rate = 0.00001.

Input to all classifiers were the features from each approach as seen in Table 2. A leave-
one-site-out approach was used due to the low number of images to better evaluate
performance. The remaining examples were used for training (i.e., LR, DT, RF, k-NN,
NB, and SVM) with the exception of the NN approach, where they were split into 75%
training and 25% validation sets. For example, a training set would consist of 356 images
(89 sites × 4 US images), and a test set would consist of 4 images. In the case of the NN,
the training and validation sets would consist of 268 and 88 images (67 sites × 4 US images;
22 sites × 4 US images), respectively. Performance was evaluated using classification
accuracy, F1-score, sensitivity, specificity, positive predictive value (PPV), and negative
predictive value (NPV), which were calculated via the function statsOfMeasure in MATLAB.

2.5. Ensemble Approaches, Feature Importance, and Statistical Analysis

The ML techniques were further investigated using an ensemble approach. The best-
performing trained classifier for each technique (e.g., kNN, SVM, etc.) was selected based
on the mean performance across all 4 feature approaches (i.e., B-mode LBP, Gabor, and
SEGL), as shown with asterisks (*) in Table 3. These selected classifiers were then used to
perform a majority vote for a classification task. This was implemented via the function
majorityvote in MATLAB.

In addition, to determine which features were more important toward the classifica-
tion task, we examined the classification performance of using a single statistical feature
(e.g., entropy, mean, etc.) and removing a single feature (from the set of 7).

For the single statistical feature case, we took the features from all approaches (as seen
in Table 2) and used only the statistical feature of interest. In cases where there were more
than 7 features (i.e., Gabor and SEGL), the mean values were used (i.e., 40 entropy features
converted into a single mean entropy feature for the Gabor approach). This resulted in a
vector of 4 values (i.e., entropy feature from the 4 approaches).

For the removal of a single feature case, the same procedure was used except that the
features that were not removed were used as inputs (i.e., vector of 24 values (6 statistical
features × 4 approaches)). Statistical analysis was performed on each feature using a
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one-way analysis of variance (ANOVA) to compare the 3 groups: A-MTrPs, L-MTrPs, and
healthy control.

3. Results

Table 4 shows the classification accuracy (%), F1-score, sensitivity, specificity, PPV,
and NPV for the best parameter of each ML technique, with the bolded values showing
the best performance for each parameter for each approach (B-mode, LBP, Gabor feature,
and SEGL).

Table 4. Classification accuracy (%), F1-score, sensitivity, specificity, positive prediction values (PPVs),
and negative prediction values (NPVs) for the best parameter of each ML technique for each approach
(SEGL, LBP, B-mode, and Gabor).

Approach ML Technique, Parameter Accuracy (%) F1-Score Sensitivity Specificity PPV NPV

SEGL Method

SVM, C = 10 48.05 0.4806 0.4806 0.7403 0.4814 0.7398
LR, C = 10 46.39 0.4639 0.4639 0.7319 0.4644 0.7317

DT, Criterion = ‘gini’ 41.67 0.4168 0.4167 0.7083 0.4258 0.7056
RF, Criterion = ‘log_loss’ 45.56 0.4556 0.4556 0.7278 0.4703 0.7228
KNN, N-neighbors = 5 43.33 0.4333 0.4333 0.7167 0.4315 0.7157

NB, Gaussian, smoothing = 1.0 45.56 0.4556 0.4556 0.7278 0.4505 0.7081
NN 44.44 0.4444 0.4444 0.7222 0.4467 0.7215

LBP

SVM, C = 10 44.17 0.4417 0.4417 0.7208 0.4447 0.7200
LR, C = 1.0 45.56 0.4556 0.4556 0.7278 0.4629 0.7249

DT, Criterion = ‘gini’ 40.28 0.4028 0.4028 0.7014 0.3968 0.7026
RF, Criterion = ‘log_loss’ 45.28 0.4528 0.4528 0.7264 0.4555 0.7256
KNN, N-neighbors = 3 48.89 0.4894 0.4889 0.7444 0.4879 0.7447

NB, Gaussian, smoothing = 10−5 40.00 0.4000 0.4000 0.7000 0.4138 0.6896
NN 43.33 0.4333 0.4333 0.7167 0.4445 0.7132

B-mode

SVM, C = 0.1 52.22 0.5222 0.5222 0.7611 0.5278 0.7372
LR, C = 1.0 45.83 0.4583 0.4583 0.7292 0.4710 0.7234

DT, Criterion = ‘gini’ 44.17 0.4417 0.4417 0.7208 0.4450 0.7196
RF, Criterion = ‘gini’ 49.72 0.4868 0.4972 0.7486 0.5088 0.7431

KNN, N-neighbors = 5 50.83 0.5083 0.5083 0.7542 0.5108 0.7534
NB, Gaussian, smoothing = 1.0 53.06 0.5306 0.5306 0.7653 0.5355 0.7460

NN 46.94 0.4694 0.4694 0.7347 0.4858 0.7283

Gabor Filter

SVM, C = 10 48.33 0.4848 0.4889 0.7444 0.4945 0.7424
LR, C = 10 45.00 0.4500 0.4500 0.7245 0.4515 0.7245

DT, Criterion = ‘gini’ 45.00 0.4500 0.4500 0.7250 0.4542 0.7237
RF, Criterion = ‘log_loss’ 46.67 0.4667 0.4667 0.7333 0.4777 0.7297
KNN, N-neighbors = 5 47.22 0.4722 0.4722 0.7361 0.4757 0.7350

NB, Gaussian, smoothing = 10−5 43.61 0.4361 0.4361 0.7181 0.4341 0.7183
NN 43.06 0.4306 0.4306 0.7153 0.4343 0.7141

Note: The bolded numbers represent the best performance for each approach.

Figure 4 shows the confusion matrices of the ML techniques for each approach
(B-mode, LBP, Gabor feature, and SEGL), each approach with the majority vote, a sin-
gle statistical feature, and the removal of a single statistical feature. For each analysis, the
ML classifier with the parameter that presented the best performance is shown in Table 5.

Table 5 shows the classification accuracy (%), F1-score, sensitivity, specificity, PPV, and
NPV for the ensemble approach and the effects of using a single statistical feature and
the removal of a single statistical feature. The highest performance can be seen with the
“correlation” feature (accuracy = 53.33%, F1-score = 0.4861) and the removal of variance
(accuracy = 51.67%, F1-score = 0.518).

Table 6 shows the results of the statistical analysis (mean and standard deviation)
of all four approaches (B-mode, SEGL, Gabor, and LBP) between all 3 groups: A-MTrPs,
L-MTrPs, and healthy controls with bolded values showing statistical significance. Statis-
tical differences (p < 0.05) were seen for almost all features for all approaches except in
B-mode (i.e., entropy, contrast, and energy) and Gabor (i.e., mean and correlation).
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Figure 4. Confusion matrices of the ML algorithms with the best performance for (A) each approach
(B-mode, LBP, Gabor feature, and SEGL) and each approach with the majority vote; (B) a single
statistical feature; and (C) the removal of a single statistical feature for discriminating the three
groups: A-MTrPs, L-MTrPs, and healthy controls.
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Table 5. The classification accuracy (%), F1-score, sensitivity, specificity, PPV, and NPV for the ML
techniques: for each approach (B-mode, LBP, Gabor feature, and SEGL) with the majority vote
(highlighted in orange), a single statistical feature (highlighted in green), and the removal of a single
statistical feature (highlighted in blue). (SVM: support vector machine, LR: logistic regression, KNN:
K-nearest neighbors, DT: decision tree).

Approach/Feature Accuracy (%) F1-Score Sensitivity Specificity PPV NPV
SEGL Method (Majority Vote) 49.44 0.4731 0.4944 0.7472 0.5034 0.7384

LBP (Majority Vote) 47.22 0.4582 0.4722 0.7361 0.4703 0.7311
B-Mode (Majority Vote) 49.44 0.4786 0.4944 0.7472 0.5078 0.7397

Gabor Filter (Majority Vote) 48.89 0.4855 0.4889 0.7444 0.4922 0.7429
Entropy (SVM, C = 10) 43.33 0.4248 0.4333 0.7167 0.4472 0.7125

Energy (LR, C = 0.1) 48.06 0.4614 0.4806 0.7403 0.4993 0.7309
Contrast (SVM, C = 1) 49.72 0.4831 0.4972 0.7486 0.5082 0.7415

Correlation (SVM, C = 1) 53.33 0.4861 0.5333 0.7667 0.525 0.7485
Variance (KNN, K = 3) 49.17 0.405 0.4917 0.7458 0.4901 0.7462

Homogeneity (LR, C = 0.1) 46.67 0.4508 0.4667 0.7333 0.4882 0.7258
Mean (SVM, C = 10) 52.5 0.51 0.525 0.7625 0.5359 0.7551

Without Entropy (SVM, C = 10) 50.83 0.507 0.5083 0.7542 0.5107 0.7535
Without Energy (SVM, C = 10) 50.28 0.5014 0.5028 0.7514 0.5053 0.7507

Without Contrast (SVM, C = 10) 50.28 0.5014 0.5028 0.7514 0.5051 0.7507
Without Correlation (DT, Criterion = gini) 49.17 0.4868 0.4917 0.7458 0.4983 0.7435

Without Variance (LR, C = 10) 51.67 0.518 0.5167 0.7583 0.5135 0.759
Without Homogeneity (SVM, C = 10) 51.11 0.509 0.5111 0.7556 0.5149 0.7545

Without Mean (SVM, C = 10) 50.83 0.5088 0.5083 0.7542 0.5071 0.7544
Note: The bolded numbers represent the best performance for the ML algorithms in each category.

Table 6. The results of the statistical analysis (mean and standard deviation (SD)) of all four
approaches (B-mode, SEGL, Gabor, and LBP) between all 3 groups: A-MTrPs, L-MTrPs, and
healthy controls.

Approach p-Value Mean
(A-MTrPs)

SD
(A-MTrPs)

Mean
(Healthy)

SD
(Healthy)

Mean
(L-MTrPs)

SD
(A-MTrPs)

En
tr

op
y Gabor 2.32 × 10−2 7.30 × 10−4 1.58 × 10−4 6.23 × 10−4 2.00 × 10−4 7.40 × 10−4 1.77 × 10−4

SEGL 1.70 × 10−2 7.67 × 10−2 2.96 × 10−2 5.34 × 10−2 3.04 × 10−2 7.19 × 10−2 3.72 × 10−2

B-mode 6.88 × 10−1 6.19 4.17 ×−10 5.72 4.12 ×−10 6.10 4.58 × 10−1

LBP 1.00 × 10−3 5.37 1.75 ×−10 5.36 2.47 ×−10 5.36 1.81 × 10−1

En
er

gy

Gabor 1.00 × 10−3 9.36 × 108 1.83 × 108 1.13 × 109 2.87 × 108 9.31 × 108 2.05 × 108

SEGL 1.38 × 10−2 −2.27 × 108 9.94 × 107 −1.86 × 108 4.25 × 107 −2.17 × 108 6.56 × 107

B-mode 6.38 × 10−2 1.73 × 108 9.50 × 107 9.28 × 107 5.42 × 107 1.47 × 108 9.62 × 107

LBP 1.40 × 10−3 1.40 × 109 2.57 × 108 1.56 × 109 4.37 × 108 1.37 × 108 2.68 × 108

M
ea

n

Gabor 2.34 × 10−1 1.23 × 102 1.58 1.24 × 102 1.26 1.23 × 102 1.64 × 104

SEGL 1.38 × 10−2 9.74 × 10−3 4.13 × 10−3 6.47 × 10−3 4.10 × 10−7 9.17 × 10−3 5.20 × 10−3

B-mode 4.20 × 10−3 4.72 × 10 1.73 × 10 3.08E × 10 1.03 × 10 4.31 × 10 1.80 × 10
LBP 1.40 × 10−3 1.17 × 102 7.90 1.09 × 102 1.00 × 10 1.16 × 102 9.89

C
on

tr
as

t Gabor 3.80 × 10−3 4.13 × 1011 5.36 × 1010 4.62 × 1011 7.85 × 1010 4.11 × 1011 5.95 × 1010

SEGL 2.04 × 10−2 7.65 × 106 3.53 × 106 4.95 × 106 3.57 × 106 7.09 × 106 4.42 × 106

B-mode 1.90 × 10−1 1.59 × 1011 5.37 × 1010 1.23 × 1011 4.22 × 1010 1.41 × 1011 5.05 × 1010

LBP 2.01 × 10−2 3.98 × 1011 4.96 × 1010 4.20 × 1011 7.70 × 1010 3.93 × 1011 4.90 × 1010

H
om

og
en

ei
ty Gabor 1.7 × 10−3 4.58 × 104 9.30 × 103 5.54 × 104 1.44 × 104 4.57 × 104 1.05 × 104

SEGL 1.02 × 10−2 39.76 1.18 × 10 2.9 × 10 1.20 × 10 3.8 × 10 1.52 × 10
B-mode 3.24 × 10−2 1.74 × 104 6.61 × 103 1.30 × 104 5.60 × 103 1.54 × 104 6.69 × 103

LBP 3.14 × 10−2 4.30 × 104 8.12 × 103 4.82 × 104 1.40 × 104 4.11 × 104 8.63 × 103
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Table 6. Cont.

Approach p-Value Mean
(A-MTrPs)

SD
(A-MTrPs)

Mean
(Healthy)

SD
(Healthy)

Mean
(L-MTrPs)

SD
(A-MTrPs)

C
or

re
la

ti
on Gabor 8.56 × 10−2 −2.27 × 108 9.94 × 107 −1.86 × 108 4.26 × 107 −2.17 × 108 6.56 × 107

SEGL 3.10 × 10−2 1.39 × 109 1.89 × 108 1.51 × 109 2.56 × 108 1.39 × 109 1.43 × 108

B-mode 3.00 × 10−4 1.05 × 107 2.71 × 107 7.01 × 107 5.83 × 107 1.90 × 107 3.14 × 107

LBP 2.00 × 10−5 −5.08 × 106 7.12 × 105 −3.88 × 106 1.33 × 106 −4.86 × 106 9.44 × 105

V
ar

ia
nc

e Gabor 6.00 × 10−4 2.71 × 107 5.72 × 106 3.18 × 107 6.45 × 106 2.63 × 107 4.96 × 106

SEGL 1.40 × 10−2 6.30 × 102 2.66 × 102 4.19 × 102 2.64 × 102 5.93 × 102 3.35 × 102

B-mode 4.70 × 10−3 3.06 × 107 1.40 × 107 1.97 × 107 1.01 × 107 2.80 × 107 1.13 × 107

LBP 1.70 × 10−3 5.94 × 108 1.12 × 108 7.04 × 108 1.83 × 108 5.93 × 108 1.36 × 108

Note: The bolded numbers represent the statistical significance (p < 0.05).

4. Discussion

Our study investigated the effectiveness of combining texture features derived from
US images that focused on edges and spots for the purposes of discriminating muscles
with MTrPs from healthy muscle.

Our findings indicate that a combined approach did not achieve a high level of
accuracy in distinguishing between A-MTrPs, L-MTrPs, and healthy muscle. The combined
approach showed slightly better performance (in majority votes) for the B-mode and SEGL
method compared to the LBP and Gabor feature (49.44% and 49.44% vs. 47.22% and 48.89%,
respectively). We hypothesized that structural and statistical approaches and a combination
of them could better classify muscle with MTrPs from healthy muscle. However, the overall
accuracies obtained from these combination approaches exhibited a similar range, ranging
from 43.33% to 53.33%. These results are comparable to another study that compared
texture features to a CNN approach [46]. Their F1-score ranged from 0.383 to 0.477 for
their texture approaches (i.e., first-order statistical, LBP, and blob analysis) when classifying
these three groups using an NN. This study shows better performance in the texture feature
approach, which may be attributed to the combined ensemble approach and features that
focus on structural information (i.e., spots and edges).

Additionally, when a simple ensemble approach using majority voting was used, al-
most no improvements were observed in the different approaches (i.e., SEGL classification
accuracy: 48.05% to 49.44%, LBP classification accuracy: 48.89% to 47.22%, B-mode classifi-
cation accuracy: 53.06% to 49.44%, and Gabor classification accuracy: 48.33 to 48.89%).

It is worth mentioning that, while the PPV and classification accuracy only showed an
approximately 50% ability to distinguish MTrPs (i.e., A-MTrPs and L-MTrPs) from healthy
muscle, the specificity and NPV results demonstrated almost 75%. This may be helpful in
providing clinicians with more certainty in identifying the absence of MTrPs.

Statistical analysis showed no statistically significant differences in “correlation” and
“mean” with respect to the Gabor feature approach (p = 0.0857 and p = 0.2338). This could be
attributed to the fact that the Gabor feature measures the gray level of US images [47], and
there were similar mean and standard deviations seen in the A-MTrP and L-MTrP groups as
indicated in Table 5. These findings align with previous studies that have reported muscle
with MTrPs to exhibit anisotropy [10].

While the statistical analysis revealed statistically significant differences in most fea-
tures among the three groups, the ML techniques could not classify the three groups
sufficiently. This may be due to the fact that the features are relatively overlapped among
the three groups as seen in Table 5.

The result of our traditional statistical analysis agrees with the results seen in previous
literature [8]. One study using LBP and blob analysis demonstrated statistically significant
results between healthy individuals and patients with MPS (p < 0.001) [8]. Based on this,
they suggested that a combination of texture features (i.e., LBP and blob area and count)
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can be used to describe differences between individuals with MPS and healthy individuals
using a principal component analysis. However, this study grouped individuals with both
A-MTrPs and L-MTrPs into the group of individuals with MPS. Koh et al. demonstrated
better performance in classifying MTrPs (i.e., A-MTrP and L-MTrP grouped) from healthy
muscle compared to the three-group case (i.e., A-MTrP, L-MTrP, and healthy muscle) [46].
These studies within the literature plus the results seen in this study suggest that MTrPs can
be distinguished from healthy muscle but may not be sufficient for discrimination between
the two types of MTrPs (i.e., A-MTrPs from L-MTrPs).

Notably, the ‘correlation’ and ‘mean’ features demonstrated better discriminatory
ability than the other features, yielding accuracies of 53.33% and 52.5%, respectively. Un-
surprisingly, when these features were removed, the accuracies decreased to the lowest
values of 49.17% and 50.83%, respectively, suggesting that these features carry significant
weight in the classification performance.

Overall, MTrPs have been identified and labeled as hypoechoic (dark grey) nodules
in US images in previous literature [48,49]. However, recent research has proposed the
identification of MTrPs as large hypoechoic contracture knots, which also exhibit smaller
hyperechoic “speckles” within the hypoechoic contracture knot [50,51]. The presence of
these “speckles” can affect the structural information of MTrPs within the muscle ROI and
interfere with the characterization of muscle with MTrPs using texture feature analysis. For
instance, entropy is capable of describing homogeneity and randomness in the observed
patterns in US images, while LBP depicts the structural elements (spots, edges, etc.) of US
backscatter. Consequently, the presence of different patterns within muscles affected by
MTrPs may lead to variations in the values of calculated texture features within each group,
thereby reducing the predictive power of the ML techniques.

Another aspect to consider is the relationship between the US image and the clinical
scenario. The existing literature has proposed certain clinical criteria for MTrPs, but these
criteria have not been clearly associated with specific US abnormalities. Currently, most
researchers in this field concur that MTrPs are a physical entity that exhibits a spherical or
elliptical shape, but this has not been thoroughly investigated [52]. Therefore, it is crucial
to identify characteristics that can identify the MTrP in ultrasound, which can then be
exploited for classification purposes.

In addition, defining the “border zone” that separates this region from the surround-
ing normal muscle is necessary, as previous literature has suggested that this border or
transition zone may provide more valuable information than the lesion (i.e., hypoechoic
contracture knot) itself [53]. Moreover, in cases where a patient experiences pain but does
not present with MTrPs, it is uncertain if there is an ‘at-risk’ area that later transforms into
a visually defined spherical/elliptical MTrPs.

To the best of our knowledge, this study represents the first attempt to investigate
the combination of texture features focusing on information that represents the known
representation of MTrP in US for discriminating muscle with MTrPs from healthy muscle.
Previous studies have primarily relied on traditional statistical methods as opposed to
ML approaches [12,54]. This study focused on a data-driven process relying less on user
knowledge to achieve more precise predictions. This helps to avoid the mistake of using an
inappropriate statistical model on the dataset, which could limit accuracy [24].

It is worth mentioning that the proposed approach of using a combination of texture
features may be a potential tool in discriminating and characterizing the muscular structural
information in various medical fields of activity. For example, a study used the features
of entropy and energy in LBP images to quantitively assess the spastic biceps brachii
muscle in post-stroke patients [55]. Additionally, a study used the angular second moment,
contrast, and homogeneity features calculated over a GCLM feature in US images of the
quadriceps to measure the muscle texture (pattern) under the effects of neuromuscular
electrical stimulation to characterize individuals with lower back pain [56]. Thus, it is likely
that the proposed approach could be used to interpret the uniformity of muscle patterns
and abnormalities in other applications (e.g., rehabilitation).
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Limitations

One limitation of this study lies in the proper definition and localization of the region
of MTrPs within the US images from the muscle for the analysis. While the literature agrees
that MTrPs present as hypoechoic structures in US, it is uncertain what area around these
regions constitutes the MTrP. Thus, the entire ROI of the muscle was used for analysis to
ensure no information was missed, but this may not be an optimal approach.

Furthermore, while hypoechoic images are generally associated with hyperperfused
areas and hyperechoic images with hypoperfused areas [57], it is important to acknowledge
the possibility of image artifacts, such as anisotropy, in our patient population. Hypoechoic
areas may also arise from acoustic shadowing behind calcifications, lymph nodes, and
certain pathological conditions. However, in this study, the manual selection of images
aimed to alleviate the presence of any artifacts.

5. Conclusions

In conclusion, this paper sheds light on the utilization of texture features and combin-
ing them in different approaches (i.e., statistical features with B-mode, Gabor, LBP, and
SEGL method) for the classification of A-MTrPs, L-MTrPs, and healthy muscle. The focus
was to capture structural information such as edges, spots, and other relevant features. In
comparison to traditional statistical analysis methods (e.g., ANOVA), the employed ML
classification techniques did not achieve high classification results, likely due to the signif-
icant overlapping observed among the statistical values between the groups (maximum
reported accuracy of 53.33%). Nevertheless, our developed ML algorithms were mainly
able to perform better when there were no MTrPs (e.g., identify the healthy muscles (true
negative results)). The results, however, were still much higher than chance, suggesting
that these groups may be distinguishable, but further investigation is required to improve
either the features or technique for classification.

Therefore, this study highlights the need to explore the potential of extracting ad-
vanced texture features in combination with non-traditional statistical analysis for ef-
fectively identifying MTrPs from healthy muscle. Such endeavors can contribute to the
development of more robust diagnostic criteria based on US image characteristics. The find-
ings from these future studies hold promise for the development of improved mechanisms
to aid in the accurate identification and diagnosis of MTrPs.
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List of Abbreviations (Alphabetical Order)

A-MTrPs Active Myofascial Trigger Points
DT Decision Tree
GLCM Gray-Level Co-occurrence Matrices
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KNN K-nearest Neighbors
L-MTrPs Latent Myofascial Trigger Points
LBP Local Binary Pattern
LR Logistic Regression
ML Machine Learning
MPS Myofascial Pain Syndrome
MTrPs Myofascial Trigger Points
NB Naive Bayes
NPV Negative Predictive Value
NN Neural Network
PPV Positive Predictive Value
ROI Region of Interest
RF Random Forest
SD Standard Deviation
SEGL Statistical + Edge + Gray-Level Co-occurrence Matrices + Local Binary Pattern
SVM Support Vector Machine
US Ultrasound
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