
Citation: Murra, D.; Bollanti, S.; Di

Lazzaro, P.; Flora, F.; Mezi, L.

Interfacing Arduino Boards with

Optical Sensor Arrays: Overview and

Realization of an Accurate Solar

Compass. Sensors 2023, 23, 9787.

https://doi.org/10.3390/s23249787

Academic Editors: Vittorio M.

N. Passaro, Yuliya Semenova and

Nikolay Kazanskiy

Received: 10 November 2023

Revised: 6 December 2023

Accepted: 7 December 2023

Published: 12 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Interfacing Arduino Boards with Optical Sensor Arrays:
Overview and Realization of an Accurate Solar Compass
Daniele Murra * , Sarah Bollanti, Paolo Di Lazzaro , Francesco Flora and Luca Mezi

ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development,
Fusion and Technology for Nuclear Safety and Security Department, Frascati Research Center, Via E. Fermi 45,
00044 Frascati, Italy
* Correspondence: daniele.murra@enea.it

Abstract: In this paper, an overview of the potentiality of Arduino boards is presented, together with
a description of the Arduino interfacing with light multi-sensors. These sensors can be arranged in
linear arrays or in a matrix configuration (CCD or CMOS type cameras) and are equipped with tens,
hundreds, or even thousands of elements whose sizes range from a few microns to tens of microns.
The use of these sensors requires electronics that have high time accuracy, since they work through
regular pulses sent by an external source and, furthermore, have the ability to digitize and store
voltage signals precisely and quickly. We show that, with the appropriate settings, a simple Arduino
board can handle both 1D and 2D optical sensors. Finally, we describe a solar compass made with
such a board coupled to one of the tested optical array sensors that is capable of providing the north
direction with a very high degree of accuracy.

Keywords: Arduino board; photosensors; array detector; solar compass

1. Introduction

The hardware platform called ‘Arduino’ has become a standard for use among elec-
tronics amateurs as well as in research laboratories. The reasons for its success are its ease
of use, the versatility of its applications, the countless peripherals that can be connected
to it, and the copious literature consisting of algorithms, libraries, forums, and help of
all kinds that can be found on the Internet [1], together with scientific papers [2–4] and
books [5,6].

Nowadays, many research laboratories exploit the Arduino electronics, but in most
cases, it is used as an analog-to-digital converter and storage device [7], as a temperature
datalogger [8], as a servo-mechanism controller [9], as a brightness and contrast regu-
lator [10], as a triggering system [11], as an RGB sensor controller [12], and so on. In
contrast, information on the interface between Arduino and an optical sensor array is
difficult to find in the scientific literature. Some examples involve an apparatus including
32 light-dependent resistors [13] or the use of the 128-pixel TSL1401CL array [14,15].

In this paper, we briefly introduce the board hardware and some applications in a
research laboratory, and then we focus on the use of the board in interfacing with 1D- and
2D-array light sensors. The optical sensors considered here are standard silicon sensors
with a spectral response ranging from infrared to approximately 300 nm. However, some
important advances in this field should be taken into account when an electro-optical
device has to be designed, especially for UV detection [16,17].

In our laboratory, the main goal was the possibility of using a photosensor array to
measure the viewing angle of a light source from a specific observation point with extreme
accuracy, as in the case of the solar compass that ENEA designed and patented [18,19].
In the case of the solar compass, the light sensor was initially made up of a webcam
managed by a laptop PC. Then, this was replaced, respectively, by a matrix sensor and
a microcontroller communicating via a serial protocol. The time required to capture a

Sensors 2023, 23, 9787. https://doi.org/10.3390/s23249787 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23249787
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-0536-8579
https://orcid.org/0000-0003-1823-1133
https://orcid.org/0000-0001-7233-2467
https://doi.org/10.3390/s23249787
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23249787?type=check_update&version=1

Sensors 2023, 23, 9787 2 of 21

frame to measure the viewing angle of the sun and download and analyze it is about
10 s. This fact led us to search for possible alternatives, both for the sensor and the
electronics, possibly also improving other aspects of the device, such as the use of a graphic
display or communicating with a mobile phone via Bluetooth. Moreover, due to a specific
request to design a new compass prototype, we found that some components are no longer
commercially available; therefore, we searched for other sensors and electronic boards. Our
choice fell on an Arduino board and linear photosensors.

2. The Arduino Board

The main features of Arduino boards are described in numerous books and articles [1–15].
Figure 1 shows a photo of an Arduino UNO board, where the various elements that make
it up are indicated. It is possible to program the board microcontroller through the classic
connection to an external programmer, as happens with a common PIC (Programmable
Interrupt Controller). More simply, this can also be performed through the dedicated
development environment, which, once installed on the PC, allows us to edit a C/C++
program, compile it, and send it directly to the board via the USB serial port.

Sensors 2023, 23, x FOR PEER REVIEW 2 of 21

webcam managed by a laptop PC. Then, this was replaced, respectively, by a matrix
sensor and a microcontroller communicating via a serial protocol. The time required to
capture a frame to measure the viewing angle of the sun and download and analyze it is
about 10 s. This fact led us to search for possible alternatives, both for the sensor and the
electronics, possibly also improving other aspects of the device, such as the use of a
graphic display or communicating with a mobile phone via Bluetooth. Moreover, due to
a specific request to design a new compass prototype, we found that some components
are no longer commercially available; therefore, we searched for other sensors and elec-
tronic boards. Our choice fell on an Arduino board and linear photosensors.

2. The Arduino Board
The main features of Arduino boards are described in numerous books and articles

[1–15]. Figure 1 shows a photo of an Arduino UNO board, where the various elements
that make it up are indicated. It is possible to program the board microcontroller through
the classic connection to an external programmer, as happens with a common PIC (Pro-
grammable Interrupt Controller). More simply, this can also be performed through the
dedicated development environment, which, once installed on the PC, allows us to edit a
C/C++ program, compile it, and send it directly to the board via the USB serial port.

Figure 1. The Arduino UNO board with its main components.

Looking at the number of digital (input/output) and analogue ports (input only, ex-
cept for the DUE board, where there are also analogue output ports), it is evident that
applications in which it is necessary to connect many sensors or actuators do not repre-
sent a problem.

In the Laboratory of Plasma Applications and Interdisciplinary Experiments at the
ENEA Research Center in Frascati, several experiments made use of Arduino boards, as
in [8], where UV light irradiation was carried out on samples to test their resistance to
solar radiation degradation outside the atmosphere. In that case, an Arduino NANO
board was interfaced both with some light sensors (photoresistors) to monitor the inten-
sity of the light as a function of time and with a probe to control the temperature of the
sample and possibly turn off the light if the temperature had exceeded the alert value.

On another occasion, an Arduino UNO board was used to drive linear actuators to
simulate the movements of a structure. This is suitable for verifying the behavior of op-
tical fiber sensors under mechanical stress. After a positive final test, the box containing
the power supplies, Arduino, and the control console was delivered to an ENEA group
that used it within a national project [20] aimed at an experimental study for a seismic
isolation system of structures equipped with and monitored by fiber optic sensors.

Finally, an Arduino board was used for characterization measurements of a UV-C
LED sanitization system. The aim was to measure the angular distribution of the light
energy emitted by an LED. For this purpose, we arranged a setup where the LED was

Figure 1. The Arduino UNO board with its main components.

Looking at the number of digital (input/output) and analogue ports (input only,
except for the DUE board, where there are also analogue output ports), it is evident that
applications in which it is necessary to connect many sensors or actuators do not represent
a problem.

In the Laboratory of Plasma Applications and Interdisciplinary Experiments at the
ENEA Research Center in Frascati, several experiments made use of Arduino boards, as
in [8], where UV light irradiation was carried out on samples to test their resistance to solar
radiation degradation outside the atmosphere. In that case, an Arduino NANO board was
interfaced both with some light sensors (photoresistors) to monitor the intensity of the
light as a function of time and with a probe to control the temperature of the sample and
possibly turn off the light if the temperature had exceeded the alert value.

On another occasion, an Arduino UNO board was used to drive linear actuators to
simulate the movements of a structure. This is suitable for verifying the behavior of optical
fiber sensors under mechanical stress. After a positive final test, the box containing the
power supplies, Arduino, and the control console was delivered to an ENEA group that
used it within a national project [20] aimed at an experimental study for a seismic isolation
system of structures equipped with and monitored by fiber optic sensors.

Finally, an Arduino board was used for characterization measurements of a UV-C LED
sanitization system. The aim was to measure the angular distribution of the light energy
emitted by an LED. For this purpose, we arranged a setup where the LED was rotating
around a vertical axis lying on the LED emitting plane, while a photodiode was fixed. An
Arduino NANO board was equipped with a motor driver, allowing a stepper motor to
rotate the LED, while the photodiode output was connected, via a series resistor, to an
analog input on the same board. The Arduino program moved the motor by a certain angle

Sensors 2023, 23, 9787 3 of 21

and, at the same time, measured the voltage from the photodiode, recording both the angle
and the light intensity, in such a way to reconstruct the angular distribution of the LED.

The advantages of using a programmable board equipped with several interfaces
and to which a large number of sensors can be connected are evident. The following
paragraphs illustrate the feasibility of using these boards to also drive light sensors made
up of hundreds or thousands of sensors, arranged in linear arrays or matrices. The use of
these sensors is a more challenging task, because for their correct functioning, it is necessary
to provide a clock signal of tens of kHz or more, and furthermore, the amount of data
generated by these sensors can exceed the memory size of the processors themselves.

3. Light Sensors

A very simple light sensor, the photoresistor, whose electrical resistance varies as a
function of the light power that excites it, was used during the experiment described in [8].
When this sensor is inserted into an electrical circuit, the light intensity is measured by
checking the voltage drop across the resistor pins.

Other common light sensors are photodiodes, made up of a semiconductor junction,
in which the impinging light allows, through the voltage-powered junction, the passage
of current, which flows through a series-connected resistor, providing the voltage signal
at its ends. Compared to the photoresistor, the operating principle is different, but from
a measurement point of view, it is very similar. The situation is unlike that of the linear
array or matrix sensors. In this case, there are hundreds of photodiodes aligned along a
row or thousands of cells arranged in a grid. These sensors are internally equipped with an
electrical circuit, which ‘downloads’ the signals coming from the individual microdetectors
and sends them sequentially to the external processor. As anticipated in the Introduction,
the need to use a sensor of this type arose during the development of an electronic solar
compass in order to measure, with extreme precision, the arrival direction of the sun’s rays
with respect to a vertical reference plane and then to determine the true north direction.
Consequently, an investigation was conducted to verify which sensors were available on
the market and which of these could be compatible with the Arduino hardware.

The linear sensors taken into consideration were the following:

- TSL1401CL by AMS;
- LF1401 by IC HAUS;
- S9226 by Hamamatsu;
- ILX554A from Sony;
- TCD1304DG from Toshiba.

The option of using a 2D-array was also explored, in particular, the Omnivision
OV7670 CMOS (Complementary Metal-Oxide Semiconductor) camera. Table 1 shows the
main characteristics of the various sensors examined. It is clear that, apart from the AMS
and IC Haus sensors, which are practically identical, their characteristics vary a lot from
each other, both in terms of geometry, in particular, the size of the pixels, and in terms of the
clock speed for the operation of the internal circuit of the chip that drives the photodiodes.
The cost of these sensors is quite low, and some of them can be found in the catalogs
of large electronics vendors on the Internet. The request for a high spatial resolution
leads to the choice of Sony or Toshiba chips, while the need to use a low clock time while
maintaining the execution of a measurement within a few fractions of a second requires
the number of pixels to not be excessively high. In the last case, the choice would hence
fall on the Hamamatsu array or on the twins of AMS or IC Haus. Clearly, if the purpose of
the measurement is to obtain an image or if two-dimensional information is needed, the
only possibility is to opt for the CMOS camera. As we show in the next paragraph, with
Arduino, it was possible to drive all of the sensors listed in Table 1, except for the Toshiba
one, probably due to pulse synchronization issues.

Sensors 2023, 23, 9787 4 of 21

Table 1. Optical/electrical features and costs of the tested light sensors.

Model Number of
Pixels

Pixel Spacing
(µm)

Active Area
Length
(mm)

Minimum
External Clock

(µs)

Maximum
External Clock

(µs)

Estimated
Price (€)

TSL1401CL
(AMS-Premstaetten

Austria)
128 63.5 8.13 0.125 200 10

LF1401 (IC
Haus—Bodenheim,

Germany)
128 63.5 8.13 0.2 No limits 13

S9226 (Hamamatsu—
Hamamatsu City,

Japan)
1024 7.8 8 1.25 100 80

ILX554A (Sony—Tokyo,
Japan) * 2048 14 28.7 0.5 No limits 10

TCD1304DG
(Toshiba—Tokyo, Japan) 3648 8 29.2 0.42 1.25 30

OV7670
(Omnivision—Santa Clara,

CA, USA)
640 × 480 3.7 × 3.7 2.36 × 1.76 0.02 ** 1 ** 15

* This chip is discontinued but can still be found online from some electronics vendors with a very wide price
range. ** These refer to the clock of the AL422B chip, an external memory used as a buffer for data. The minimum
clock time for CMOS is still 0.02 µs, but the maximum value is only 0.1 µs.

4. The Characteristics of Arduino and the Requirements of Linear Sensors

The photodiode arrays are made up of a light-sensitive area, where hundreds or
thousands of sensors are aligned, and an externally controlled electronic circuit, which
regulates the operation of the electro-optical elements and sends voltage data proportional
to the local value of the light intensity. These data are sent sequentially, and timing
synchronization occurs via a clock signal provided by the external driver. In the case of
the CMOS matrix, the external clock is needed to not only synchronize the sending of the
intensity data but also to allow all the operations of the on-board electronics. The number of
communication pins between the driver and sensor is always three for all models, except for
the IC Haus and the Toshiba models. The three pins represent the clock signal (input), start
signal (input), and output signal. In the IC Haus and Toshiba models, there is an additional
input signal to regulate the light integration time. The temporal graph representing the
sequence of signals to be sent to the arrays is represented in Figure 2 in its most general
form (the true sequence may vary slightly from sensor to sensor). In addition to the stability
of the clock frequency and the necessity of falling between the minimum and maximum
allowed timing values, there are other time requirements that are essential for successful
communication between the driver and the sensor. These requirements consist of the speed
of the rising (and falling) edge of the clock signal and the temporal distance between the rise
(or falling) of the start pulse with respect to the clock pulse and the digitization speed of the
output signal, which must conclude within a duration of approximately half a clock period
to avoid an overlap between the acquisition of one pixel and the next. Figure 3 shows, for
example, the indication given in the datasheet of the Hamamatsu model regarding the
speed of the rising and falling edges and the delay between the clock and the start.

Although very high frequencies are not required, the electronics responsible for driving
these sensors must still be able to maintain the high–low transition of the logical states of
the digital outputs within the limit of a few tens of nanoseconds. Moreover, at the same
time, the stable sending of a train of pulses with a period of a few microseconds and the
simultaneous digitization and storage of the input analog signals must be guaranteed.
The clock speed of the ATmega processor on almost all Arduino boards is 16 MHz, so the
execution time of an elementary operation is in the order of 60 ns. A high-level computer

Sensors 2023, 23, 9787 5 of 21

instruction requires numerous elementary operations and, consequently, some periods, or
a few dozen periods, of execution time for a single instruction. For more stringent time
requirements, it is possible to use the Arduino DUE board which has a microcontroller with
a clock that is about five times faster. The language used to program the processor was
C/C++, and the high-level instructions that generate a square wave signal, i.e., the ‘clock’
signal, are as follows:

digitalWrite(10, HIGH); //set pin 10 to logic level ‘1’;
digitalWrite(10, LOW); // set pin 10 to logic level ‘0’.

Sensors 2023, 23, x FOR PEER REVIEW 5 of 21

of the Hamamatsu model regarding the speed of the rising and falling edges and the delay
between the clock and the start.

Figure 2. Example of the sequence of the clock, start, and output pulses for the acquisition of the
light signal.

Figure 3. Rising and falling edge requirements of the Hamamatsu sensor.

Although very high frequencies are not required, the electronics responsible for driv-
ing these sensors must still be able to maintain the high–low transition of the logical states
of the digital outputs within the limit of a few tens of nanoseconds. Moreover, at the same
time, the stable sending of a train of pulses with a period of a few microseconds and the
simultaneous digitization and storage of the input analog signals must be guaranteed. The
clock speed of the ATmega processor on almost all Arduino boards is 16 MHz, so the exe-
cution time of an elementary operation is in the order of 60 ns. A high-level computer in-
struction requires numerous elementary operations and, consequently, some periods, or a
few dozen periods, of execution time for a single instruction. For more stringent time re-
quirements, it is possible to use the Arduino DUE board which has a microcontroller with a
clock that is about five times faster. The language used to program the processor was
C/C++, and the high-level instructions that generate a square wave signal, i.e., the ‘clock’
signal, are as follows:
digitalWrite(10, HIGH); //set pin 10 to logic level ‘1’;
digitalWrite(10, LOW); // set pin 10 to logic level ‘0’.

By executing a cycle in which these instructions are continuously sent to the pro-
cessor, a square wave signal whose period is equal to 9 μs is obtained, that is, a whopping
150 times the elementary operation duration. Using this signal as an oscillator for the
sensors, it is clear that neither the Toshiba chip nor the CMOS camera would be man-
ageable (see Table 1). For the other sensors, this value is within the limits, and the signal
transfer of all points shall occur within an acceptable period of time (with a maximum of
approximately 37 ms in the case of the Hamamatsu sensor, for which the reading of a
pixel occurs every four cycles of clock pulses). It is not difficult, however, to increase the

Figure 2. Example of the sequence of the clock, start, and output pulses for the acquisition of the
light signal.

Sensors 2023, 23, x FOR PEER REVIEW 5 of 21

of the Hamamatsu model regarding the speed of the rising and falling edges and the delay
between the clock and the start.

Figure 2. Example of the sequence of the clock, start, and output pulses for the acquisition of the
light signal.

Figure 3. Rising and falling edge requirements of the Hamamatsu sensor.

Although very high frequencies are not required, the electronics responsible for driv-
ing these sensors must still be able to maintain the high–low transition of the logical states
of the digital outputs within the limit of a few tens of nanoseconds. Moreover, at the same
time, the stable sending of a train of pulses with a period of a few microseconds and the
simultaneous digitization and storage of the input analog signals must be guaranteed. The
clock speed of the ATmega processor on almost all Arduino boards is 16 MHz, so the exe-
cution time of an elementary operation is in the order of 60 ns. A high-level computer in-
struction requires numerous elementary operations and, consequently, some periods, or a
few dozen periods, of execution time for a single instruction. For more stringent time re-
quirements, it is possible to use the Arduino DUE board which has a microcontroller with a
clock that is about five times faster. The language used to program the processor was
C/C++, and the high-level instructions that generate a square wave signal, i.e., the ‘clock’
signal, are as follows:
digitalWrite(10, HIGH); //set pin 10 to logic level ‘1’;
digitalWrite(10, LOW); // set pin 10 to logic level ‘0’.

By executing a cycle in which these instructions are continuously sent to the pro-
cessor, a square wave signal whose period is equal to 9 μs is obtained, that is, a whopping
150 times the elementary operation duration. Using this signal as an oscillator for the
sensors, it is clear that neither the Toshiba chip nor the CMOS camera would be man-
ageable (see Table 1). For the other sensors, this value is within the limits, and the signal
transfer of all points shall occur within an acceptable period of time (with a maximum of
approximately 37 ms in the case of the Hamamatsu sensor, for which the reading of a
pixel occurs every four cycles of clock pulses). It is not difficult, however, to increase the

Figure 3. Rising and falling edge requirements of the Hamamatsu sensor.

By executing a cycle in which these instructions are continuously sent to the processor,
a square wave signal whose period is equal to 9 µs is obtained, that is, a whopping 150 times
the elementary operation duration. Using this signal as an oscillator for the sensors, it
is clear that neither the Toshiba chip nor the CMOS camera would be manageable (see
Table 1). For the other sensors, this value is within the limits, and the signal transfer of all
points shall occur within an acceptable period of time (with a maximum of approximately
37 ms in the case of the Hamamatsu sensor, for which the reading of a pixel occurs every
four cycles of clock pulses). It is not difficult, however, to increase the frequency of the
square wave emitted by the digital pins of the Arduino, resorting to direct manipulation
of the processor registers, rather than using high-level instructions. The two instructions
given previously, if transformed into low-level ones, would change as follows:

PORTB = 0b00000100; // set pin 10 to logic level ‘1’;
PORTB = 0b00000000; // set pin 10 to logic level ‘0’.

This sequence of instructions generates a square wave with a period of only 125 ns,
just two elementary cycles. Figure 4 shows the waveforms recorded by an oscilloscope

Sensors 2023, 23, 9787 6 of 21

corresponding to a train of pulses sent from an Arduino UNO board using high- and
low-level instructions respectively.

Sensors 2023, 23, x FOR PEER REVIEW 6 of 21

frequency of the square wave emitted by the digital pins of the Arduino, resorting to di-
rect manipulation of the processor registers, rather than using high-level instructions.
The two instructions given previously, if transformed into low-level ones, would change
as follows:
PORTB = 0b00000100; // set pin 10 to logic level ‘1’;
PORTB = 0b00000000; // set pin 10 to logic level ‘0’.

This sequence of instructions generates a square wave with a period of only 125 ns,
just two elementary cycles. Figure 4 shows the waveforms recorded by an oscilloscope
corresponding to a train of pulses sent from an Arduino UNO board using high- and
low-level instructions respectively.

Figure 4. A square wave emitted from an Arduino UNO pin at the maximum frequency. (Left) The
output signal when high-level instructions are used (the sharp peaks visible at any voltage flip are
due to imperfect balance of the electronic circuit); (Right) the same signal when the processor regis-
ters are directly manipulated. Note that the time scale of the right figure is 20 times shorter than the
left one.

If the clock speed appears to be sufficient, we need to verify whether the digitization
speed of the sensor output signal sent to an analog input of the Arduino board is also
within the limits. This digitization must necessarily be inserted within the clock cycle;
therefore, the clock/read cycle should follow this scheme:
- Send a high clock signal;
- Read and digitize the analog signal output from the sensor;
- Send a low clock signal.

In this way, however, since the reading operation lengthens the high-clock time, the
pulses no longer have a 50% duty cycle, which is required (even if not strictly) by the
sensor electronics. To bring the cycle close to 50%, therefore, the times must necessarily
be extended. To find out the digitization time of a signal using high-level instructions, we
just run the following loop:
for (n = 1; n < 10,000; n++);
int value = analogRead(analogPin).

This cycle of ten thousand digitizations is completed in approximately 1.1 s; there-
fore, a single operation takes place in 100 μs. This is an unacceptable speed, because it
should be comparable to at least the slowest clock period (9 μs). Beyond the fact that 100
μs is excessive, even for the Hamamatsu chip (as well as for the Toshiba one), the reading
of the 1024 pixels would take place in almost half a second, which would be intolerable if
several readings per second were expected. Actually, the digitalization speed is limited
by an Arduino hardware setting that can be changed with a few instructions. In practice,
the ADC also has its own clock, which is derived from the main clock (the 16 MHz one)
scaled by a numerical factor. This factor, called the ‘prescaler’, is equal to 128 by default,
which, when combined with the 13 cycles used by the digitization instruction, leads to
the 100 μs previously measured. Decreasing the prescaler from 128, for example, to 16,
brings the ADC clock to the value of 1 MHz. This is achieved via the following instruc-
tions (see Appendix A):

Figure 4. A square wave emitted from an Arduino UNO pin at the maximum frequency. (Left) The
output signal when high-level instructions are used (the sharp peaks visible at any voltage flip are due
to imperfect balance of the electronic circuit); (Right) the same signal when the processor registers are
directly manipulated. Note that the time scale of the right figure is 20 times shorter than the left one.

If the clock speed appears to be sufficient, we need to verify whether the digitization
speed of the sensor output signal sent to an analog input of the Arduino board is also
within the limits. This digitization must necessarily be inserted within the clock cycle;
therefore, the clock/read cycle should follow this scheme:

- Send a high clock signal;
- Read and digitize the analog signal output from the sensor;
- Send a low clock signal.

In this way, however, since the reading operation lengthens the high-clock time, the
pulses no longer have a 50% duty cycle, which is required (even if not strictly) by the
sensor electronics. To bring the cycle close to 50%, therefore, the times must necessarily be
extended. To find out the digitization time of a signal using high-level instructions, we just
run the following loop:

for (n = 1; n < 10,000; n++);
int value = analogRead(analogPin).

This cycle of ten thousand digitizations is completed in approximately 1.1 s; therefore,
a single operation takes place in 100 µs. This is an unacceptable speed, because it should
be comparable to at least the slowest clock period (9 µs). Beyond the fact that 100 µs is
excessive, even for the Hamamatsu chip (as well as for the Toshiba one), the reading of
the 1024 pixels would take place in almost half a second, which would be intolerable if
several readings per second were expected. Actually, the digitalization speed is limited
by an Arduino hardware setting that can be changed with a few instructions. In practice,
the ADC also has its own clock, which is derived from the main clock (the 16 MHz one)
scaled by a numerical factor. This factor, called the ‘prescaler’, is equal to 128 by default,
which, when combined with the 13 cycles used by the digitization instruction, leads to the
100 µs previously measured. Decreasing the prescaler from 128, for example, to 16, brings
the ADC clock to the value of 1 MHz. This is achieved via the following instructions (see
Appendix A):

#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
sbi(ADCSRA, ADPS2);
cbi(ADCSRA, ADPS1);
cbi(ADCSRA, ADPS0).

By setting the prescaler to 16, the time to complete the same cycle seen previously
becomes 150 ms, that is, 15 µs for each analog–digital conversion. If the ADC clock is
further pushed up to 2 MHz (prescaler equal to 8), a complete cycle that includes sending

Sensors 2023, 23, 9787 7 of 21

the clock signal to the sensor, during which the voltage signal is read and digitized, would
have a period of approximately 16 µs (8 µs for the conversion and another 8 µs to have a
50% duty cycle). Using this cycle duration, Table 2 shows the times of a complete scan for
each of the linear sensors (for the sake of comparison, in the table we also report those that
do not allow such a slow clock). For completeness, the same information is shown if the
Arduino DUE board is used (optimizing the ADC times). However, if a light sensor does
not require a particularly high refresh rate, the board with the 16 MHz processor is suitable
for this purpose.

Table 2. Acquisition times for a complete scan of the arrays to be tested using a clock of 16 µs for the
UNO board and the lowest possible clock (around 3 µs) for the DUE board.

Model Number of
Pixels

Clock Cycles
for a Single

Pixel Readout

Arduino UNO
Acquisition
Time (ms)

Arduino UNO
Acquisition Rate

(Hz)

Arduino DUE
Acquisition
Time (ms)

Arduino DUE
Acquisition

Rate (Hz)

S9226 1024 4 66 15 12.3 81.4

TSL1401CL 128 1 2 500 0.4 2500

LF1401 128 1 2 500 0.4 2500

ILX554A 2048 1 33 30 6.2 162.8

TCD1304DG 3648 4 233 4 87.6 11.4

5. Results of the Tests Carried out on the Linear Sensors

All sensors presented in Table 2 and shown in Figure 5 were interfaced to an Arduino
board to verify the ability of this board to drive the sensors and acquire data as well as to
evaluate the reliability of a measurement device.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 21

#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
sbi(ADCSRA, ADPS2);
cbi(ADCSRA, ADPS1);
cbi(ADCSRA, ADPS0).

By setting the prescaler to 16, the time to complete the same cycle seen previously
becomes 150 ms, that is, 15 μs for each analog–digital conversion. If the ADC clock is
further pushed up to 2 MHz (prescaler equal to 8), a complete cycle that includes sending
the clock signal to the sensor, during which the voltage signal is read and digitized,
would have a period of approximately 16 μs (8 μs for the conversion and another 8 μs to
have a 50% duty cycle). Using this cycle duration, Table 2 shows the times of a complete
scan for each of the linear sensors (for the sake of comparison, in the table we also report
those that do not allow such a slow clock). For completeness, the same information is
shown if the Arduino DUE board is used (optimizing the ADC times). However, if a light
sensor does not require a particularly high refresh rate, the board with the 16 MHz pro-
cessor is suitable for this purpose.

Table 2. Acquisition times for a complete scan of the arrays to be tested using a clock of 16 μs for
the UNO board and the lowest possible clock (around 3 μs) for the DUE board.

Model
Number of

Pixels

Clock Cycles
for a Single

Pixel Readout

Arduino UNO
Acquisition Time

(ms)

Arduino UNO
Acquisition Rate

(Hz)

Arduino DUE
Acquisition
Time (ms)

Arduino DUE
Acquisition Rate

(Hz)
S9226 1024 4 66 15 12.3 81.4

TSL1401CL 128 1 2 500 0.4 2500
LF1401 128 1 2 500 0.4 2500

ILX554A 2048 1 33 30 6.2 162.8
TCD1304DG 3648 4 233 4 87.6 11.4

5. Results of the Tests Carried Out on the Linear Sensors
All sensors presented in Table 2 and shown in Figure 5 were interfaced to an Ar-

duino board to verify the ability of this board to drive the sensors and acquire data as
well as to evaluate the reliability of a measurement device.

Figure 5. Photos of the five sensors interfaced to the Arduino boards: (a) TSL1401CL, (b) LF1401, (c)
S9926, (d) ILX554A, (e) TCD1304D.

5.1. TSL1401CL
The first sensor to be tested was the AMS model TSL1401CL [21]. This sensor, pre-

pared for surface soldering, was soldered to semirigid wires and put onto a prototype
board. For the test, the board was inserted into a light shielding container with a 2 mm
wide slit centered above the sensor, 2 cm away. The timing requirements for this array are
rather moderate and the number of pixels is low, so we decided to work at a low clock
frequency using exclusively high-level instructions. The sequence of pulses sent to the
sensor is illustrated in Figure 6. After a while, the program was started, Arduino sends a
START signal to empty the content that the photodiodes have previously accumulated.

Figure 5. Photos of the five sensors interfaced to the Arduino boards: (a) TSL1401CL, (b) LF1401,
(c) S9926, (d) ILX554A, (e) TCD1304D.

5.1. TSL1401CL

The first sensor to be tested was the AMS model TSL1401CL [21]. This sensor, prepared
for surface soldering, was soldered to semirigid wires and put onto a prototype board.
For the test, the board was inserted into a light shielding container with a 2 mm wide slit
centered above the sensor, 2 cm away. The timing requirements for this array are rather
moderate and the number of pixels is low, so we decided to work at a low clock frequency
using exclusively high-level instructions. The sequence of pulses sent to the sensor is
illustrated in Figure 6. After a while, the program was started, Arduino sends a START
signal to empty the content that the photodiodes have previously accumulated. After this
signal, the light is collected by the photodiodes until the second START signal. In this
sensor, the minimum light integration time (the interval between two START signals) is
equal to 110 times the clock duration plus 20 µs. Using high-level instructions, therefore,
with a minimum clock time of 9 µs, the minimum integration time is equal to about 1 ms.

Sensors 2023, 23, 9787 8 of 21

Sensors 2023, 23, x FOR PEER REVIEW 8 of 21

After this signal, the light is collected by the photodiodes until the second START signal. In
this sensor, the minimum light integration time (the interval between two START signals) is
equal to 110 times the clock duration plus 20 μs. Using high-level instructions, therefore,
with a minimum clock time of 9 μs, the minimum integration time is equal to about 1 ms.

After launching the acquisition program, we used two cycles of 150 clock signals
plus another cycle of 128 pulses for the voltage reading. In order to adjust the amount of
light recorded by the sensor to exploit the maximum signal/noise ratio, a parameter was
inserted into the program that allows us to increase or decrease the clock period and
therefore modify the integration time. In this way, the time taken for a complete acquisi-
tion ranges from a minimum of 16 ms to a maximum of 40 ms. This procedure immedi-
ately gave good results.

Figure 6. Sequence of the pulses sent by Arduino to the TSL1401CL sensor for the acquisition of the
128 pixel signals.

5.2. LF1401
The situation for the IC Haus sensor [22] is similar to that of the AMS. The two chips,

in fact, are identical in terms of both the pixel dimensions and electrical characteristics of
the electronics. Therefore, the test carried out on this sensor gave results comparable to
those of the TSL1401 using the same instructions. The IC Haus chip, however, has some
advantages over the AMS one. First of all, the sensor is placed on a plate equipped with
holes, on which the electrical contacts can be soldered with a passing-through wire (see
Figure 5). Therefore, unlike the twin TSL1401, there is no need to perform surface sol-
dering and the risk of contacts detaching is drastically reduced. Furthermore, in the
LF1401, the signal integration time can be directly adjusted using a dedicated input. If
this input is connected to the ground, integration is active, while if it is connected to the
power supply, integration is inhibited. In this way, the integration time can be adjusted
down to zero, which can be useful in case of particularly intense light sources, or in-
creased as desired without having to change the clock period and the acquisition time.

5.3. S9226
The Hamamatsu sensor [23] is similar to the previous two in size but contains eight

times more pixels. Among all of the sensors taken into consideration in this paper, this is
the most expensive and not even the one with the most interesting features, but it is a
device with excellent quality and reliability. Unlike 128-pixel devices, this one comes in a
package that resembles a common dual in-line package integrated circuit (as the Sony
and Toshiba sensors discussed below). In fact, it is equipped with pins that can be in-
serted into a common eight-pin socket, so there is no need to perform soldering. The
number of pixels, although not at the level of the Sony or Toshiba model, is still very high,
and the size is the smallest among the linear arrays. A small pixel accomplishes the ac-
curacy of the measurement of the width of a light line, since, for the same-sized illumi-
nated area, the line will intercept a greater number of pixels, thus reducing errors due to
background noise or the non-uniformity of the response. This chip requires a maximum
value of 100 μs for the clock oscillation period, which is equal to the duration of the dig-
itizing operation on an ATmega board when using high-level instructions (see Section 4).
Furthermore, some requirements regarding the rise/fall times of the pulses and the duty

Figure 6. Sequence of the pulses sent by Arduino to the TSL1401CL sensor for the acquisition of the
128 pixel signals.

After launching the acquisition program, we used two cycles of 150 clock signals
plus another cycle of 128 pulses for the voltage reading. In order to adjust the amount
of light recorded by the sensor to exploit the maximum signal/noise ratio, a parameter
was inserted into the program that allows us to increase or decrease the clock period and
therefore modify the integration time. In this way, the time taken for a complete acquisition
ranges from a minimum of 16 ms to a maximum of 40 ms. This procedure immediately
gave good results.

5.2. LF1401

The situation for the IC Haus sensor [22] is similar to that of the AMS. The two chips,
in fact, are identical in terms of both the pixel dimensions and electrical characteristics of
the electronics. Therefore, the test carried out on this sensor gave results comparable to
those of the TSL1401 using the same instructions. The IC Haus chip, however, has some
advantages over the AMS one. First of all, the sensor is placed on a plate equipped with
holes, on which the electrical contacts can be soldered with a passing-through wire (see
Figure 5). Therefore, unlike the twin TSL1401, there is no need to perform surface soldering
and the risk of contacts detaching is drastically reduced. Furthermore, in the LF1401, the
signal integration time can be directly adjusted using a dedicated input. If this input is
connected to the ground, integration is active, while if it is connected to the power supply,
integration is inhibited. In this way, the integration time can be adjusted down to zero,
which can be useful in case of particularly intense light sources, or increased as desired
without having to change the clock period and the acquisition time.

5.3. S9226

The Hamamatsu sensor [23] is similar to the previous two in size but contains eight
times more pixels. Among all of the sensors taken into consideration in this paper, this
is the most expensive and not even the one with the most interesting features, but it is a
device with excellent quality and reliability. Unlike 128-pixel devices, this one comes in
a package that resembles a common dual in-line package integrated circuit (as the Sony
and Toshiba sensors discussed below). In fact, it is equipped with pins that can be inserted
into a common eight-pin socket, so there is no need to perform soldering. The number of
pixels, although not at the level of the Sony or Toshiba model, is still very high, and the
size is the smallest among the linear arrays. A small pixel accomplishes the accuracy of the
measurement of the width of a light line, since, for the same-sized illuminated area, the
line will intercept a greater number of pixels, thus reducing errors due to background noise
or the non-uniformity of the response. This chip requires a maximum value of 100 µs for
the clock oscillation period, which is equal to the duration of the digitizing operation on
an ATmega board when using high-level instructions (see Section 4). Furthermore, some
requirements regarding the rise/fall times of the pulses and the duty cycle (see Figure 3)
are such that it is better to drive this chip through the Arduino DUE board. Furthermore,
this board works at 3.3 V and can be used to power the S9226. The digitization time of the
Arduino DUE is only 4 µs (using high-level instructions), and it is possible to increase the
resolution of the conversion up to 12 bit. The electronics of this chip provide data every

Sensors 2023, 23, 9787 9 of 21

four clock cycles. Then, the minimum acquisition time of 1024 pixels is just over 32 ms
without the need to manipulate the processor registers. As in the case of the 128-pixel
arrays, with the Hamamatsu chip, the first tests gave a comforting outcome, so we decided
to design and create the new solar compass with this sensor, as detailed in Section 7.

5.4. ILX554A

This Sony chip [24] has the only drawback of no longer being in production, although,
at the time of writing this paper, many samples are still being sold by several international
retailers. Compared to the sensors just illustrated, the ILX554A has the notable advantage
of having a much larger number of photodiodes (2048) and a very small-sized single
photosensor (14 µm instead of the 63.5 µm of the 128-pixel sensors and comparable with the
7.8 µm of the Hamamatsu one). Moreover, it has a much wider sensitive length (28.7 mm
versus approximately 8 mm), and therefore, it is more suitable for precision measurements
such as the reading of bar codes or the measurement of electromagnetic spectra. On the
other hand, the large number of pixels is not suitable for a modest clock speed, and even
storing 2048 values requires hardware that is beyond the capabilities of the Arduino boards.
The Arduino analog–digital converter, in fact, works at 10 bits, which implies the use of
2 byte variables (unless you wish to lose resolution or make complicated algorithms to
pack 10 bit numbers into 1 byte variables). Therefore, storing 2048 numbers requires a
4096 byte RAM, double that available for the UNO and NANO boards and half that of the
MEGA2560 board. A trick that is useful for testing the Arduino-ILX554A combination is
to memorize only part of the array or to send the digitized data to an external interface
such as a display or a computer connected serially. The latter system allows us to store the
data (by the computer), but it has the disadvantage of lengthening the acquisition times,
since between one digitization and another, it is necessary to send the data to the serial
port. Another possibility is to use the Arduino DUE board, which is equipped with 96 kB
of memory and also has a higher clock speed. On the other hand, the 3.3 V working voltage
of the Arduino DUE is technically incompatible with that of the Sony chip, which is 5 V.
To use this board, therefore, you need a voltage signal adapter. From an electrical point
of view, this sensor is slightly more demanding than those previously seen. The clock, in
fact, does not set an upper limit to the oscillation period while, on the contrary, the rise and
fall times must be contained within 100 ns, and the duty cycle can vary from 40% to 60%
at most.

With these assumptions, we decided to verify the possibility of driving this sensor
via an Arduino UNO board Rev. 3 using low-level instructions to produce a fast clock
and storing the 1500 central pixels using only 1 byte per pixel, thereby decreasing the
analog-to-digital resolution to 8 bits. To exploit the full potential of this sensor, a prototype
that uses an Arduino to drive the ILX554A could be interfaced to an external memory (an
EEPROM or an SD card) to save all 2048 values in a reasonably short time. Alternatively, if
the objective of the measurement is to find a single peak, after having verified the presence
of a peak (without storing the data), a second scan could be restricted to those pixels that
are located around the peak itself. The algorithm for driving and downloading data from
the ILX554A sensor does not change much compared to that used for the TSL1401, apart
from the use of low-level instructions and with the prescaler of the analog–digital converter
decreased from 128 to 32 (see Section 4), providing a frequency of 0.5 MHz. In order to
respect the 50% duty cycle, however, the two clock half-periods, where digitization is
performed during the first, must have similar durations. With the instructions used, the
digitization time was 28 µs, so each half-oscillation of the clock in which there was no
digitization was lengthened to 20 µs via a software delay (with a duty cycle of 20/48 = 42%).

The global acquisition time, taking into account a period of 48 µs, an integration time
of 20 clock cycles, and 2088 cycles for a complete scan (40 optically inactive pixels and
2048 active pixels), was approximately 100 ms.

A problem that must be taken into consideration when testing such sensors, which
are extremely sensitive to light, is the difficulty of distinguishing a malfunction of the

Sensors 2023, 23, 9787 10 of 21

entire sensor from saturation due to excessive light intensity. The photodiodes of ILX554A
saturate when hit by a light intensity of 4 millilux for one second. An excessive amount of
light compared to this limit, which hits even just a part of the sensor, does not simply lead to
a maximum signal (which, for this sensor, corresponds to a minimum output voltage), but
to anomalous behavior of all of the pixels, like a broken sensor. To minimize this problem
and verify the correct functioning of the chip, we shielded almost the entire sensor with
cardboard, leaving it uncovered on a few millimeters, and we inserted the sensor in a box
that was completely closed, except for a hole of approximately 6 mm2, that was not directly
facing the sensor, from which light could enter. In this way, a very small amount of ambient
light could reach the sensor area. Figure 7 shows images of the behavior of the signal
acquired with the oscilloscope under these conditions, the same signal in which the central
pixels are weakly saturated, and finally, the signal obtained when the box containing the
sensor was opened on one side. Taking care to avoid sensor saturation, the trial test of the
ILX554A via Arduino UNO had a positive outcome.

Sensors 2023, 23, x FOR PEER REVIEW 10 of 21

of the clock in which there was no digitization was lengthened to 20 μs via a software
delay (with a duty cycle of 20/48 = 42%).

The global acquisition time, taking into account a period of 48 μs, an integration
time of 20 clock cycles, and 2088 cycles for a complete scan (40 optically inactive pixels
and 2048 active pixels), was approximately 100 ms.

A problem that must be taken into consideration when testing such sensors, which
are extremely sensitive to light, is the difficulty of distinguishing a malfunction of the
entire sensor from saturation due to excessive light intensity. The photodiodes of
ILX554A saturate when hit by a light intensity of 4 millilux for one second. An excessive
amount of light compared to this limit, which hits even just a part of the sensor, does not
simply lead to a maximum signal (which, for this sensor, corresponds to a minimum
output voltage), but to anomalous behavior of all of the pixels, like a broken sensor. To
minimize this problem and verify the correct functioning of the chip, we shielded almost
the entire sensor with cardboard, leaving it uncovered on a few millimeters, and we in-
serted the sensor in a box that was completely closed, except for a hole of approximately 6
mm2, that was not directly facing the sensor, from which light could enter. In this way, a
very small amount of ambient light could reach the sensor area. Figure 7 shows images of
the behavior of the signal acquired with the oscilloscope under these conditions, the same
signal in which the central pixels are weakly saturated, and finally, the signal obtained
when the box containing the sensor was opened on one side. Taking care to avoid sensor
saturation, the trial test of the ILX554A via Arduino UNO had a positive outcome.

Figure 7. Light signals measured by the ILX554A sensor, driven by an Arduino UNO and recorded
by the oscilloscope. (A) Signal under normal conditions (curve that drops to a minimum); (B) signal
under weak saturation conditions; (C) signal under strong saturation conditions. Situation (C)
could be mistaken for a malfunction of the sensor, since it seems to saturate in an unlit area and
give zero signal (indeed, even below the minimum) in the part hit by the light.

5.5. TCD1304DG
This Toshiba sensor [25] appears to be even more promising than the ILX554A if you

need to make highly accurate measurements. Its 3648 pixels of 8 μm width, in fact, if used
to measure the angle of a solar ray passing through a slit as in the case of our solar com-
pass, can cover an angular aperture of greater than 70 degrees with a resolution of 2/100
of a degree per pixel. Furthermore, this sensor is still produced by the parent company,
and its cost is definitely low. Unfortunately, this was also the only sensor that could not
be driven with Arduino. Probably, the request for a very high clock time (minimum fre-
quency 800 kHz) combined with a rather demanding requirement regarding the syn-
chronization between the integration pulse and the start pulse (not exceeding a micro-
second) did not allow us to obtain any useful results. In fact, the signal output from the
sensor has never provided a trend proportional to the light intensity. Even the use of the
Arduino DUE board did not give positive results. The only viable solution at the moment
is to have additional electronics to send the clock to the chip and synchronize the other
two signals (SH and ICG pins) and to delegate the Arduino only to the digitization of the
signal.

6. Arduino Interfacing a Matrix Point Sensor
Interfacing a matrix sensor is significantly different from that of a linear array. Ma-

trix sensors (CCD or CMOS) are essentially used for imaging, that is, reproducing a sub-

Figure 7. Light signals measured by the ILX554A sensor, driven by an Arduino UNO and recorded
by the oscilloscope. (A) Signal under normal conditions (curve that drops to a minimum); (B) signal
under weak saturation conditions; (C) signal under strong saturation conditions. Situation (C) could
be mistaken for a malfunction of the sensor, since it seems to saturate in an unlit area and give zero
signal (indeed, even below the minimum) in the part hit by the light.

5.5. TCD1304DG

This Toshiba sensor [25] appears to be even more promising than the ILX554A if you
need to make highly accurate measurements. Its 3648 pixels of 8 µm width, in fact, if used
to measure the angle of a solar ray passing through a slit as in the case of our solar compass,
can cover an angular aperture of greater than 70 degrees with a resolution of 2/100 of a
degree per pixel. Furthermore, this sensor is still produced by the parent company, and
its cost is definitely low. Unfortunately, this was also the only sensor that could not be
driven with Arduino. Probably, the request for a very high clock time (minimum frequency
800 kHz) combined with a rather demanding requirement regarding the synchronization
between the integration pulse and the start pulse (not exceeding a microsecond) did not
allow us to obtain any useful results. In fact, the signal output from the sensor has never
provided a trend proportional to the light intensity. Even the use of the Arduino DUE board
did not give positive results. The only viable solution at the moment is to have additional
electronics to send the clock to the chip and synchronize the other two signals (SH and ICG
pins) and to delegate the Arduino only to the digitization of the signal.

6. Arduino Interfacing a Matrix Point Sensor

Interfacing a matrix sensor is significantly different from that of a linear array. Matrix
sensors (CCD or CMOS) are essentially used for imaging, that is, reproducing a subject
through the use of a lens and, possibly, ensuring an image processing speed such that it is
attainable to view or record a movie; therefore, it should have no less than 15 frames per
second. Unlike the sensors previously seen, in the OV7670 [26], the signal is digitized at
the start signal, and the value corresponding to the brightness of the single pixel is sent
at each clock cycle via a parallel connection made up of eight pins. At each clock cycle,
therefore, the microcontroller must simultaneously read eight digital inputs. Although
paralleling eliminates the slow timing problem of serial communication, a camera with
VGA resolution (640 × 480 pixels) used to shoot color video at 15 frames per second must

Sensors 2023, 23, 9787 11 of 21

send 640 × 480 × 2 × 15 = 9216 million of pixels per second (the sensor uses one byte for
chrominance and one byte for luminance information). The required clock speeds, at least
theoretically, should not be smaller than 0.1 µs. This requirement is extremely stringent, and
a 16 MHz board cannot achieve it. Even if using just one byte per pixel (obtaining a black
and white image), the clock would be excessively short. Furthermore, the 300,000 bytes
that make up the matrix require a memory that goes beyond that of any Arduino board.
This prevents storage for subsequent processing directly on the board’s hardware, and the
use of external memory becomes essential.

However, there is a commercial version of the OV7670 camera where, on the same
sensor board, there is 384 kB of memory and an oscillator responsible for sending the fast
clock to the CMOS. When using this camera, the Arduino processor interfaces only with
the memory, whose clock is less demanding (it can reach 1 µs) and also sends commands
directly to the sensor and does not need to keep the data for processing, because it can
exploit this external memory to read the already acquired frame, even several times. The
disadvantage is a small increase in price (of a few euros) and an increase in time, since
there is an extra step. On the other hand, the hardware is simplified, and for our purposes,
the use of a microsecond clock guarantees an acceptable acquisition time (about 300 ms).
The described version is an OV7670 camera with AL422B memory [27] (see Figure 8). For
the sake of clarity, we also tried to use an OV7670 without the AL422B, but the result was
never very reproducible when we tried to exploit the maximum resolution. The problems
essentially arose from electromagnetic noise that interfered with the clock signal (sent by
Arduino and traveling along shielded cables for about 30 cm), so that the images obtained
from the CMOS were often affected by spurious signals.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 21

ject through the use of a lens and, possibly, ensuring an image processing speed such that
it is attainable to view or record a movie; therefore, it should have no less than 15 frames
per second. Unlike the sensors previously seen, in the OV7670 [26], the signal is digitized at
the start signal, and the value corresponding to the brightness of the single pixel is sent at
each clock cycle via a parallel connection made up of eight pins. At each clock cycle,
therefore, the microcontroller must simultaneously read eight digital inputs. Although
paralleling eliminates the slow timing problem of serial communication, a camera with
VGA resolution (640 × 480 pixels) used to shoot color video at 15 frames per second must
send 640 × 480 × 2 × 15 = 9216 million of pixels per second (the sensor uses one byte for
chrominance and one byte for luminance information). The required clock speeds, at least
theoretically, should not be smaller than 0.1 μs. This requirement is extremely stringent,
and a 16 MHz board cannot achieve it. Even if using just one byte per pixel (obtaining a
black and white image), the clock would be excessively short. Furthermore, the 300,000
bytes that make up the matrix require a memory that goes beyond that of any Arduino
board. This prevents storage for subsequent processing directly on the board’s hardware,
and the use of external memory becomes essential.

However, there is a commercial version of the OV7670 camera where, on the same
sensor board, there is 384 kB of memory and an oscillator responsible for sending the fast
clock to the CMOS. When using this camera, the Arduino processor interfaces only with
the memory, whose clock is less demanding (it can reach 1 μs) and also sends commands
directly to the sensor and does not need to keep the data for processing, because it can
exploit this external memory to read the already acquired frame, even several times. The
disadvantage is a small increase in price (of a few euros) and an increase in time, since
there is an extra step. On the other hand, the hardware is simplified, and for our pur-
poses, the use of a microsecond clock guarantees an acceptable acquisition time (about
300 ms). The described version is an OV7670 camera with AL422B memory [27] (see
Figure 8). For the sake of clarity, we also tried to use an OV7670 without the AL422B, but
the result was never very reproducible when we tried to exploit the maximum resolution.
The problems essentially arose from electromagnetic noise that interfered with the clock
signal (sent by Arduino and traveling along shielded cables for about 30 cm), so that the
images obtained from the CMOS were often affected by spurious signals.

The use of the same sensor, equipped with external memory, however, gave much
more satisfactory results. Compared to linear sensors, the connections between the board
and sensor are much more numerous. As already mentioned, the signal is sent on eight
lines in parallel, rather than on just one serial line. There are two communication chan-
nels (by I2C protocol) for the setting commands and for other signals like the clock and
reset. We used the bare minimum number of pins, i.e., 17 out of 22 (see Table 3).

Figure 8. The camera OV7670 with the AL422B memory chip. The classic version does not have the
integrated circuit on the back side, and there are 18 connection pins instead of 22.
Figure 8. The camera OV7670 with the AL422B memory chip. The classic version does not have the
integrated circuit on the back side, and there are 18 connection pins instead of 22.

The use of the same sensor, equipped with external memory, however, gave much
more satisfactory results. Compared to linear sensors, the connections between the board
and sensor are much more numerous. As already mentioned, the signal is sent on eight
lines in parallel, rather than on just one serial line. There are two communication channels
(by I2C protocol) for the setting commands and for other signals like the clock and reset.
We used the bare minimum number of pins, i.e., 17 out of 22 (see Table 3).

The board used was an Arduino DUE and the instructions both for the clock and for
reading the digital pins were written by directly driving the processor registers.

Sensors 2023, 23, 9787 12 of 21

Table 3. List of pins on the board with the CMOS OV7670 and the AL422B memory with the
indications of those actually used and their functions.

PIN 3V3 SIOC VSYNC D7 D5 D3 D1 RST STR WR WRST

Use Voltage
supply Clock I2C

Vertical
syncro Bit 7 Bit 5 Bit 3 Bit 1 →3.3 V Not used Write

enable Write reset

PIN GND SIOD HREF D6 D4 D2 D0 PWDN RCK OE RRST

Use Ground Data I2C Not used Bit 6 Bit 4 Bit 2 Bit 0 Not used Byte readout
clock →GND Read reset

The sequence of operations to be performed before capturing a picture is quite complex
and concerns the setting of the CMOS registers. There are 201 registers and a large number
of them must be modified compared to the default value for the entire image acquisition
chain to be successful. Fortunately, algorithms can be found on the web that include
instructions for setting these registers and that can be adapted according to specific needs.
In Appendix B, for the benefit of those who wish to venture into interfacing an Arduino
board with the OV7670, there are instructions for the initial setting of the registers to be
modified and which, in our case, produced a positive outcome. This CMOS can be set with
different resolutions: 120 × 160, 320 × 240, and 640 × 480. Considering that resolution is
an important element in any type of measurement and that the acquisition time was not
decisive, as long as it was below 1 s, we set the program so that the memory exclusively
acquired a VGA resolution image (that is, the highest). Furthermore, since a black and
white image was more than sufficient for our purposes, we reduced the signal of each pixel
to one byte. Even with only one byte per pixel, however, a 640 × 480 byte matrix exceeds
the memory limits of the Arduino DUE. Therefore, to verify the correct acquisition of a
VGA frame, there were only two possibilities: dividing the frame into sectors and sending
them to a computer for an “a posteriori” entire image reconstruction or giving up storing
the bytes in Arduino, sending them directly to the computer. Initially, we checked the
correct functioning of the electronics by acquiring a small portion of the entire frame, after
which we opted to send the bytes directly to the computer. This solution involved a strong
increase in the clock time due to the serial communication timing and, since the AL422B
limits the oscillation time of the reading clock (one microsecond at most, according to the
datasheet), the insertion of a command to send any input data to the serial port could lead
to malfunctions. The duration of the oscillation of a clock pulse, in fact, was found to be
equal to 40 µs, of which more than 39.5 µs was due to the use of the serial line (despite using
a baud rate of 250,000). Despite this, the test was successful, and it was possible to obtain
the VGA image of Figure 9, in black and white, in about 12 s. The sequence of instructions
to send to the chip, after setting the parameters, is quite simple and is summarized here in
pseudo-code:

- Wait for the vertical sync pulse (start of frame);
- Send a reset pulse to the WRST pin;
- Enable writing to memory by raising the WR pin;
- (at this moment, the AL422B memory acquires the image from the camera);
- Wait for the vertical sync pulse (end of frame);
- Disable writing to memory by lowering the WR pin;
- Lower the RRST pin to bring the read pointer to the beginning of the frame;
- Wait a few clock cycles and then raise the RRST pin;
- Now, at each clock cycle, the byte relating to the brightness of each pixel arrives on

pins D0–D7, sequentially.

Without inserting the serial transmission between one clock and another, the acquisi-
tion speed of an entire frame, considering the waiting times of vertical synchronization, is
approximately 300 milliseconds. Any mathematical processing on the image, therefore, can
take place extremely quickly without prejudice due to the fact that it is possible to store

Sensors 2023, 23, 9787 13 of 21

only a portion of the entire frame on the Arduino. The presence of the AL422B external
memory, however, allows you to acquire a frame and then download various portions of
the same image several times in successive moments.

Sensors 2023, 23, x FOR PEER REVIEW 13 of 21

Figure 9. A 640 × 480 pixel photo taken with the OV7670 camera, supported by AL422B memory,
interfaced with Arduino.

Without inserting the serial transmission between one clock and another, the acqui-
sition speed of an entire frame, considering the waiting times of vertical synchronization,
is approximately 300 milliseconds. Any mathematical processing on the image, therefore,
can take place extremely quickly without prejudice due to the fact that it is possible to
store only a portion of the entire frame on the Arduino. The presence of the AL422B ex-
ternal memory, however, allows you to acquire a frame and then download various por-
tions of the same image several times in successive moments.

7. Design and Construction of a Solar Compass with Arduino and a Linear Sensor
The ENEA Solar Compass is a pointing measurement instrument, patented in 2013

[18], that is able to accurately determine the viewing direction orientation of any ob-
served object of interest with respect to the observation point. The operating principle of
a solar compass is based on the knowledge of the position of the Sun in the sky, that is, its
angular coordinates viewed from a particular observation point on Earth. These coordi-
nates consist of the elevation of the Sun above the horizon and its azimuth, i.e., the angle
between the vertical plane containing the Sun and the local meridian plane (the plane
where the two Poles and the observation point lie) [19]. Once the direction of view of the
Sun has been measured with respect to a vertical reference plane on the solar compass,
we consequently know the angle that the direction of view of the reference plane makes
with respect to the geographical north.

Thus, on one side, the instrument is based on a dedicated simplified algorithm for the
calculation of the ephemeris and, on the other hand, on the measurement of the direction of
the Sun with respect to the vertical reference plane of the compass, obtained with an inno-
vative electro-optical device which uses a slit and an optical sensor. The measurement of
the direction of the Sun is performed by calculating the center of the line of light projected
on the sensor (2-D or 1-D) with respect to the reference column (2D case) or pixel (1D case).

This instrument has been proven to be one of the most precise methods for deter-
mining true north (with an RMS accuracy within 1/100 of a degree). Unfortunately, the
prototype that we built and patented with a 2D sensor cannot be replicated, because
some components are no longer available on the market. Anyway, since a linear sensor is
sufficient to measure the line of sight of the Sun, after the first tests were carried out on
the Hamamatsu chip, we decided to design and create a new solar compass based on this
sensor and an Arduino board. Clearly, the accuracy of such an instrument is highly de-
pendent on the geometrical features of the optical configuration. In order to keep the
system compact and to avoid excessive broadening of the light line, the sensor cannot be
placed at a distance of more than 25 mm from the slit. Then, keeping the sensor at a dis-
tance of 20 mm, for example, to distinguish the direction of view of the Sun with a reso-
lution of 0.1 degrees, a sensor with pixel size of less than 35 μm is required. In this re-
spect, the 7.8 μm size of the Hamamatsu array is a very good choice.

Figure 9. A 640 × 480 pixel photo taken with the OV7670 camera, supported by AL422B memory,
interfaced with Arduino.

7. Design and Construction of a Solar Compass with Arduino and a Linear Sensor

The ENEA Solar Compass is a pointing measurement instrument, patented in 2013 [18],
that is able to accurately determine the viewing direction orientation of any observed
object of interest with respect to the observation point. The operating principle of a solar
compass is based on the knowledge of the position of the Sun in the sky, that is, its angular
coordinates viewed from a particular observation point on Earth. These coordinates consist
of the elevation of the Sun above the horizon and its azimuth, i.e., the angle between the
vertical plane containing the Sun and the local meridian plane (the plane where the two
Poles and the observation point lie) [19]. Once the direction of view of the Sun has been
measured with respect to a vertical reference plane on the solar compass, we consequently
know the angle that the direction of view of the reference plane makes with respect to the
geographical north.

Thus, on one side, the instrument is based on a dedicated simplified algorithm for the
calculation of the ephemeris and, on the other hand, on the measurement of the direction
of the Sun with respect to the vertical reference plane of the compass, obtained with an
innovative electro-optical device which uses a slit and an optical sensor. The measurement
of the direction of the Sun is performed by calculating the center of the line of light projected
on the sensor (2-D or 1-D) with respect to the reference column (2D case) or pixel (1D case).

This instrument has been proven to be one of the most precise methods for determining
true north (with an RMS accuracy within 1/100 of a degree). Unfortunately, the prototype
that we built and patented with a 2D sensor cannot be replicated, because some components
are no longer available on the market. Anyway, since a linear sensor is sufficient to measure
the line of sight of the Sun, after the first tests were carried out on the Hamamatsu chip, we
decided to design and create a new solar compass based on this sensor and an Arduino
board. Clearly, the accuracy of such an instrument is highly dependent on the geometrical
features of the optical configuration. In order to keep the system compact and to avoid
excessive broadening of the light line, the sensor cannot be placed at a distance of more
than 25 mm from the slit. Then, keeping the sensor at a distance of 20 mm, for example, to
distinguish the direction of view of the Sun with a resolution of 0.1 degrees, a sensor with
pixel size of less than 35 µm is required. In this respect, the 7.8 µm size of the Hamamatsu
array is a very good choice.

The electronics supplied with the compass, in addition to these two elements, include
a GPS receiver, an alphanumeric display, an SD card reader, and a Bluetooth module.
Everything (except the GPS) is inserted into a console which also contains the battery
pack and the voltage regulation modules; externally, there are buttons, LEDs, and various

Sensors 2023, 23, 9787 14 of 21

connectors. The linear sensor is placed, as in the original compass, in an aluminum case to
be placed above a pointing system, such as a theodolite. The wall facing the Sun, behind
which the sensor is placed, is inclined at 45◦ and presents a vertical slit for the passage of
Sun rays. The slit is 4 cm high and approximately 70 µm wide and has been realized by the
Institute of Photonics and Nanotechnologies of the CNR in Rome by depositing a thin layer
of metal (chromium) on a glass slide and removing part of it using a lithographic technique.
The compass head and electronics are connected via a common eight-pole ethernet cable.

Once all the interfaces connected to the Arduino board were verified, the most difficult
problem to solve was to calibrate the electro-optical device. In particular, it was necessary to
know, with high accuracy, the distance between the sensor and the slit (D), the identification
number of the pixel representing the projection of the slit on the sensor (XR0), the two
rotation angles of the sensor with respect to the vertical plane containing the slit (α) and
the direction of the slit itself (β). Finally, also the deviation angle (ψ) along the horizontal
plane between the direction of the vertical reference plane of the compass compared to
that pointed to by the sighting system (a telescope) of the support where the compass head
is placed (see Figure 10) has to be taken into account. This is because, due to mechanical
errors, the last two planes might not coincide.

Sensors 2023, 23, x FOR PEER REVIEW 14 of 21

The electronics supplied with the compass, in addition to these two elements, in-
clude a GPS receiver, an alphanumeric display, an SD card reader, and a Bluetooth mod-
ule. Everything (except the GPS) is inserted into a console which also contains the battery
pack and the voltage regulation modules; externally, there are buttons, LEDs, and various
connectors. The linear sensor is placed, as in the original compass, in an aluminum case
to be placed above a pointing system, such as a theodolite. The wall facing the Sun, behind
which the sensor is placed, is inclined at 45° and presents a vertical slit for the passage of
Sun rays. The slit is 4 cm high and approximately 70 μm wide and has been realized by the
Institute of Photonics and Nanotechnologies of the CNR in Rome by depositing a thin layer
of metal (chromium) on a glass slide and removing part of it using a lithographic tech-
nique. The compass head and electronics are connected via a common eight-pole ethernet
cable.

Once all the interfaces connected to the Arduino board were verified, the most dif-
ficult problem to solve was to calibrate the electro-optical device. In particular, it was
necessary to know, with high accuracy, the distance between the sensor and the slit (D),
the identification number of the pixel representing the projection of the slit on the sensor
(XR0), the two rotation angles of the sensor with respect to the vertical plane containing
the slit (α) and the direction of the slit itself (β). Finally, also the deviation angle (ψ) along
the horizontal plane between the direction of the vertical reference plane of the compass
compared to that pointed to by the sighting system (a telescope) of the support where the
compass head is placed (see Figure 10) has to be taken into account. This is because, due
to mechanical errors, the last two planes might not coincide.

Calibration took place as follows: the compass was placed on a theodolite equipped
with a spirit level and a high-precision goniometer. Then, some LEDs were placed in
front of the compass along a vertical line to simulate the Sun at different heights. For each
of these LEDs, the pixel number xa, corresponding to the center of the light line formed on
the sensor, was measured for different positions of the goniometer. By plotting the values
of this line center as a function of the angle of the goniometer, the result obtained is a se-
ries of points placed along different lines, each corresponding to a different height of the
light source.

Figure 10. Representation of the variables and parameters to take into account when calibrating the
solar compass.

The slope and y-axis intercept of these lines depend on the construction parameters
of the compass, so by acting on these parameters, it is possible to optimize the corre-
spondence between the theoretical curve and the experimental data. Assuming that the
sensor is mounted perfectly parallel to the wall with the slit and orthogonal to the slit it-
self (i.e., with α = 0 and β = 90°), the equation that determines the point xa hit by a ray of

Figure 10. Representation of the variables and parameters to take into account when calibrating the
solar compass.

Calibration took place as follows: the compass was placed on a theodolite equipped
with a spirit level and a high-precision goniometer. Then, some LEDs were placed in front
of the compass along a vertical line to simulate the Sun at different heights. For each of
these LEDs, the pixel number xa, corresponding to the center of the light line formed on
the sensor, was measured for different positions of the goniometer. By plotting the values
of this line center as a function of the angle of the goniometer, the result obtained is a
series of points placed along different lines, each corresponding to a different height of the
light source.

The slope and y-axis intercept of these lines depend on the construction parameters of
the compass, so by acting on these parameters, it is possible to optimize the correspondence
between the theoretical curve and the experimental data. Assuming that the sensor is
mounted perfectly parallel to the wall with the slit and orthogonal to the slit itself (i.e., with
α = 0 and β = 90◦), the equation that determines the point xa hit by a ray of light coming
from a source placed at elevation ϕ and azimuth ϑ is the following, where xa and XR0 are
given in mm (details are in Appendix C):

xa = D
√

2
sin(ϑ)

cos(ϑ) + tan(ϕ)
+ XR0 (1)

Sensors 2023, 23, 9787 15 of 21

The distance xa (measured with respect to the edge of the array, i.e., with respect to the
first pixel) is exactly XR0 when ϑ = 0, i.e., when the light is orthogonal to the sensor. The
values of ϑ, ϕ, and xa are obtained experimentally, while the D and XR0 values must be
determined so that the difference between the two members of Equation (1) is minimized.
In Figure 11, it is possible to appreciate the sensitivity to these parameters by observing the
difference between the experimental points and the straight line obtained through Equation
(1) for a particular elevation value ϕ and for different values of the parameters D and XR0.

Sensors 2023, 23, x FOR PEER REVIEW 15 of 21

light coming from a source placed at elevation φ and azimuth ϑ is the following, where xa
and XR0 are given in mm (details are in Appendix C): 𝑥௔ = 𝐷√2 sin (𝜗)cos(𝜗) + tan (𝜑) + 𝑋𝑅0 (1)

The distance xa (measured with respect to the edge of the array, i.e., with respect to
the first pixel) is exactly XR0 when ϑ = 0, i.e., when the light is orthogonal to the sensor.
The values of ϑ, φ, and xa are obtained experimentally, while the D and XR0 values must
be determined so that the difference between the two members of Equation (1) is mini-
mized. In Figure 11, it is possible to appreciate the sensitivity to these parameters by ob-
serving the difference between the experimental points and the straight line obtained
through Equation (1) for a particular elevation value φ and for different values of the
parameters D and XR0.

Once the calibration parameters have been determined (ψ is measured successively),
the second step is to check the behavior of the compass once it is exposed to the Sun.

The correctness of the parameters can be estimated by observing the azimuth values
provided while keeping the compass stationary for a certain period of time. In this case,
its azimuth should be constant since, regardless of the apparent motion of the Sun, the
compass always points in the same direction. A trend other than a series of values oscil-
lating around an average value, for example, values that tend to increase, decrease, or
form a parabola, proves that some calibration parameters are wrong. In that case, by us-
ing specifically developed software to simulate the behavior of the compass, it is possible
to change the values of the construction parameters to see the expected output given by
the compass and to identify the parameter responsible for that wrong result.

To this end, we performed several scans with the compass fixed and illuminated by
the Sun and recorded a series of line center values xa vs. time. At the same time, we used
our ephemeris calculation software (written in C++ using Microsoft Visual Studio Com-
munity 2019 (release 16.11.21), which, by entering the geographical data as the date, time,
latitude, and longitude, provides the azimuth of the Sun) and calculated the foreseen
position of the light line on the sensor, depending on the given calibration parameters.

Figure 11. Line of light position measured on the array, from a light source with an elevation of
56.1° and its azimuth varied with respect to the normal of the sensor, compared with the corre-
sponding theoretical value for different distances D (left) and XR0 (right). We can see how very
small differences in parameters easily lead to a disagreement with the experimental data.

In this way, firstly, the correctness of the calibration parameters is verified by com-
paring the sequence of theoretical and experimental azimuth values and, secondly, if
necessary, the estimate of the parameters can be refined by forcing this trend to be con-
stant (with the sensor stationary, as already mentioned, the azimuth of the compass
should not change). The simulation program, moreover, is able to optimize the parame-
ters automatically, leaving the possibility of changing them manually. Figure 12 shows
both the azimuth measured by the compass and the azimuth resulting from the simula-
tion with this program (left graph) and the result after optimization (right graph).

Figure 11. Line of light position measured on the array, from a light source with an elevation of 56.1◦

and its azimuth varied with respect to the normal of the sensor, compared with the corresponding
theoretical value for different distances D (left) and XR0 (right). We can see how very small differences
in parameters easily lead to a disagreement with the experimental data.

Once the calibration parameters have been determined (ψ is measured successively),
the second step is to check the behavior of the compass once it is exposed to the Sun.

The correctness of the parameters can be estimated by observing the azimuth values
provided while keeping the compass stationary for a certain period of time. In this case, its
azimuth should be constant since, regardless of the apparent motion of the Sun, the compass
always points in the same direction. A trend other than a series of values oscillating around
an average value, for example, values that tend to increase, decrease, or form a parabola,
proves that some calibration parameters are wrong. In that case, by using specifically
developed software to simulate the behavior of the compass, it is possible to change the
values of the construction parameters to see the expected output given by the compass and
to identify the parameter responsible for that wrong result.

To this end, we performed several scans with the compass fixed and illuminated by the
Sun and recorded a series of line center values xa vs. time. At the same time, we used our
ephemeris calculation software (written in C++ using Microsoft Visual Studio Community
2019 (release 16.11.21), which, by entering the geographical data as the date, time, latitude,
and longitude, provides the azimuth of the Sun) and calculated the foreseen position of the
light line on the sensor, depending on the given calibration parameters.

In this way, firstly, the correctness of the calibration parameters is verified by compar-
ing the sequence of theoretical and experimental azimuth values and, secondly, if necessary,
the estimate of the parameters can be refined by forcing this trend to be constant (with the
sensor stationary, as already mentioned, the azimuth of the compass should not change).
The simulation program, moreover, is able to optimize the parameters automatically, leav-
ing the possibility of changing them manually. Figure 12 shows both the azimuth measured
by the compass and the azimuth resulting from the simulation with this program (left
graph) and the result after optimization (right graph).

Once D and XR0 have been optimized, the deviation between the reference plane of
the compass and the direction aimed at by the pointing system (the angle ψ in Figure 10)
remains to be included in the calculations.

Sensors 2023, 23, 9787 16 of 21

Sensors 2023, 23, x FOR PEER REVIEW 16 of 21

Once D and XR0 have been optimized, the deviation between the reference plane of
the compass and the direction aimed at by the pointing system (the angle ψ in Figure 10)
remains to be included in the calculations.

In order to estimate this last parameter, it is crucial to know the true azimuth of a
given target seen by the observation point. If the azimuth between points A (observer) and
B (target) is known, in fact, it is sufficient to aim at point B from A, measure the azimuth
provided by the compass, and calculate the difference between this value and the known
azimuth. To obtain, with a suitable level of accuracy, the true azimuth of the line joining
points A and B, it is necessary to know the geographical coordinates of the two points and
use a method that takes into account the curvature of the Earth [28]. For a typical accuracy
of a few meters on the geographical coordinates, a distance between A and B of larger than
10 km is sufficient to reduce the error on the true azimuth to values smaller than the error
on the experimental azimuth given by the compass. Obviously, the ψ angle should be
measured any time the compass is removed from the pointing instrument and then placed
again on it, unless a very accurate mechanical system for a reproducible positioning is
adopted.

Once this last calibration phase has been completed, the compass is ready to be used
as a measuring instrument.

Figure 12. (Left) Experimental data of the azimuth measured by the stationary compass (circles)
and the corresponding values calculated by the software (continuous curve), in which the con-
struction parameters of the compass and the light line position, resulting from the measurement,
were entered; (Right) the experimental data values (circles) and the new data calculated using the
optimized parameters (squared). With optimization, by changing only parameter D of 0.4 mm, the
points are arranged around a constant value within ±1.5 arc minutes, i.e., ±1/25 of a degree.

A few days after completing the whole calibration procedure, we checked if the
compass continued to provide the correct azimuth values. Therefore, we placed the
compass on an observation point at the ENEA Center in Frascati, whose azimuth values
with respect to some reference points, located in Rome, are known (using the geograph-
ical coordinates method, as described above), and we carried out some measurements.
The results are shown in Table 4.

Table 4. Azimuth values measured using the compass made with the Arduino DUE board and the
Hamamatsu S9226 sensor a few days after completing the calibration process and a comparison
with the actual values. From these data, both the precision and accuracy of this instrument can be
appreciated. Note that the differences between the data obtained by the maps (the expected value)
and the experimental data are expressed in arc minutes.

 Saint Peter’s Dome
Broadcast Antenna on

Monte Mario
Bell tower of the Basilica of

Santa Maria Maggiore
Number of measures 5 5 3

Measured azimuth (degree) 116.6956° 120.4162° 120.894°
Expected value (degree) 116.6891° 120.4103° 120.8946°
Difference (arc minute) 0.39′ 0.35′ −0.04′

Maximum deviation of all measure- 0.46′ 0.43′ 0.19′

Figure 12. (Left) Experimental data of the azimuth measured by the stationary compass (circles) and
the corresponding values calculated by the software (continuous curve), in which the construction
parameters of the compass and the light line position, resulting from the measurement, were entered;
(Right) the experimental data values (circles) and the new data calculated using the optimized
parameters (squared). With optimization, by changing only parameter D of 0.4 mm, the points are
arranged around a constant value within ±1.5 arc minutes, i.e., ±1/25 of a degree.

In order to estimate this last parameter, it is crucial to know the true azimuth of a
given target seen by the observation point. If the azimuth between points A (observer) and
B (target) is known, in fact, it is sufficient to aim at point B from A, measure the azimuth
provided by the compass, and calculate the difference between this value and the known
azimuth. To obtain, with a suitable level of accuracy, the true azimuth of the line joining
points A and B, it is necessary to know the geographical coordinates of the two points and
use a method that takes into account the curvature of the Earth [28]. For a typical accuracy
of a few meters on the geographical coordinates, a distance between A and B of larger
than 10 km is sufficient to reduce the error on the true azimuth to values smaller than the
error on the experimental azimuth given by the compass. Obviously, the ψ angle should
be measured any time the compass is removed from the pointing instrument and then
placed again on it, unless a very accurate mechanical system for a reproducible positioning
is adopted.

Once this last calibration phase has been completed, the compass is ready to be used
as a measuring instrument.

A few days after completing the whole calibration procedure, we checked if the
compass continued to provide the correct azimuth values. Therefore, we placed the
compass on an observation point at the ENEA Center in Frascati, whose azimuth values
with respect to some reference points, located in Rome, are known (using the geographical
coordinates method, as described above), and we carried out some measurements. The
results are shown in Table 4.

Even if the error of a single measure doubles when compared with the 2D-sensor
case [19], these data show that this device has an error of less 0.5 arc minutes (0.008 degrees)
during repeated measurements.

Although the solar compass is a very old orientation tool, with some interesting handy
examples [29], it is still one of the most accurate devices for determining the geographic
north. Apart from magnetic compasses, which point towards the magnetic pole and not
towards the true geographic north, other kinds of compasses are based on the gyroscopic
effect and on GPS satellites.

Gyroscopic compasses are the most accurate ones (with an uncertainty of a few arc
seconds), but their cost is very high (tens of thousands of euros), and the time necessary
to build and align the setup is very long [30]. The compasses based on GPS satellite
constellations are cheaper than gyroscopic compasses, but their accuracy is worse than our
electronic solar compass. Recent works testing the validity of GPS measurements provide
accuracies ranging from 0.07 to 1.5 degrees [31] and from 0.09 to 0.21 degrees [32], and, in a

Sensors 2023, 23, 9787 17 of 21

paper concerning a measurement campaign for the orientation of paleomagnetic drill cores,
the RMS deviation of a GPS compass was shown to be well above 0.1◦ [33].

Therefore, with respect to other survey devices, we can conclude that our solar com-
pass, based on the Arduino–Hamamatsu pair, is an instrument with excellent accuracy and
compactness and a competitive cost.

Table 4. Azimuth values measured using the compass made with the Arduino DUE board and the
Hamamatsu S9226 sensor a few days after completing the calibration process and a comparison
with the actual values. From these data, both the precision and accuracy of this instrument can be
appreciated. Note that the differences between the data obtained by the maps (the expected value)
and the experimental data are expressed in arc minutes.

Saint Peter’s Dome Broadcast Antenna on
Monte Mario

Bell Tower of the Basilica of
Santa Maria Maggiore

Number of measures 5 5 3

Measured azimuth (degree) 116.6956◦ 120.4162◦ 120.894◦

Expected value (degree) 116.6891◦ 120.4103◦ 120.8946◦

Difference (arc minute) 0.39′ 0.35′ −0.04′

Maximum deviation of all
measurements (arc minutes) 0.46′ 0.43′ 0.19′

Standard deviation (arc minutes) 0.37′ 0.29′ 0.17′

8. Conclusions

The versatility and reliability of Arduino boards are well known, and the possibility of
finding a considerable quantity of sensors on the market at a low price as well as retrieving,
on the Internet, the codes for their interfacing, makes them devices that can also be used in
a research laboratory. In this paper, we illustrated tests of light sensors, in both linear and
matrix arrangements, connected to Arduino boards to verify their compatibility and the
possibility of using these systems as measuring instruments. We took into consideration five
linear sensors manufactured by AMS, IC Haus, Hamamatsu, Sony, and Toshiba, consisting
of a minimum of 128 pixels to a maximum of 3648 pixels and a 640 × 480 pixel CMOS
camera from Omnivision. In all tests, except for the Toshiba sensor, the trials were positive,
and we were able to verify how the Arduino/photosensor combination could be a valid
device for measurements involving light, such as a spectrometer or a reader of bar code, or
even for imaging systems. In particular, a solar compass was designed and created based on
an Arduino DUE board and the Hamamatsu chip for measuring the direction of geographic
north (or the viewing direction of any object of interest with respect to geographic north)
by exploiting the equations of terrestrial motion. This solar compass obtained results that
are similar to those achieved with the patented ENEA solar compass, whose performance
is, in turn, comparable with the best devices available on the market, but whose cost is at
least two orders of magnitude greater than that of our device.

Author Contributions: Conceptualization, D.M., S.B., P.D.L., F.F. and L.M.; methodology, D.M., S.B.,
P.D.L., F.F. and L.M.; software, D.M., F.F. and L.M.; validation, D.M. and F.F.; data curation, D.M.;
writing—original draft preparation, D.M.; writing—review and editing, D.M., S.B., P.D.L., F.F. and
L.M.; supervision, D.M., S.B., P.D.L., F.F. and L.M. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Experimental data are reported in an internal laboratory notebook and
are available upon request to the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2023, 23, 9787 18 of 21

Appendix A Prescaler Settings

The prescaler is set by inserting a value made up of 3 bits into the ADCSRA register.
Depending on the values of these 3 bits, there is a different factor according to the following
table (for simplicity, only some combinations are reported):

Register Values

ADCSRA, ADPS0 1 1 0 1 1

ADCSRA, ADPS1 1 0 0 1 0

ADCSRA, ADPS2 1 1 1 0 0

Clock rate (MHz) 0.125 0.500 1 2 8

In order to set the bits, you can use the following lines, where the macro ‘cbi’ means ‘0’
and ‘sbi’ means ‘1’.

#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit));
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit)).

For example, to have a clock at 1 MHz (0-0-1), the instructions are the following:

cbi(ADCSRA, ADPS0); //set to 0;
cbi(ADCSRA, ADPS1); //set to 0;
sbi(ADCSRA, ADPS2); //set to 1.

Appendix B OV7670 Camera Register Settings for Interfacing with Arduino

The variables on the left have the same names as the registers indicated in Table 8.2
of the document “OV7670/OV7671 CMOS VGA (64 × 480) CameraChip Implementation
Guide” (version 1.0, 2 September 2005), available on the Internet at the address https://
usermanual.wiki/Pdf/OV767020Implementation20Guide20V10.1347697000/view, accessed
on 30 November 2023). When the registers are set according to these values, each pixel
records only one byte relating to brightness and the acquisition of a frame by the AL422
memory occurs in approximately 300 milliseconds. The frame download time by the
Arduino depends, however, on the speed of the clock sent on the RCK pin of the board
with the camera.

COM7 = 0 × 80//needs to reset all the parameters before setting them
CLKRC = 0 × 01
COM7 =0 × 05
COM3 = 0 × 00
COM14 = 0 × 00
SCALING_ × SC = 0 × 3A
SCALING_YSC = 0 × 35
SCALING_DCWCTR = 0 × 11
SCALING_PCLK_DIV = 0 × F0
SCALING_PCLK_DELAY = 0 × 02
TSLB = 0 × 01
COM17 = 0 × 00
AEW = 0 × 95
AEB = 0 × 33
HAECCn = 0 × 78, 0 × 68, 0 × D8, 0 × D8, 0 × F0, 0 × 90, 0 × 94 (with n = 1, 2, 3, 4, 5, 6, 7)
SATCTR = 0 × 60
ADCCTR1 = 0 × 02
ADCCTR2 = 0 × 91
ADC_add = 0 × 37
ACOM = 0 × 71
OFON = 0 × 2A

https://usermanual.wiki/Pdf/OV767020Implementation20Guide20V10.1347697000/view
https://usermanual.wiki/Pdf/OV767020Implementation20Guide20V10.1347697000/view

Sensors 2023, 23, 9787 19 of 21

ABLC1 = 0 × 0C
THL_ST = 0 × 82

Appendix C Calculation of the Impact Point of a Solar Ray on the Sensor

Let us consider the reference system shown in the figure with the slit lying on the YZ
plane and a vector passing through the (x0, y0, z0) point.

Sensors 2023, 23, x FOR PEER REVIEW 19 of 21

Appendix C. Calculation of the Impact Point of a Solar Ray on the Sensor
Let us consider the reference system shown in the figure with the slit lying on the YZ

plane and a vector passing through the (x0, y0, z0) point.

The equation of the slit (lying on the YZ plane with a 45° slope) is ቄ 𝑦 = −𝑧𝑥 = 0

The equation of the line of light passing for (x0, y0, z0) is the following:

ቐ 𝑥 = 𝑥଴ + 𝜌𝑐𝑜𝑠(𝜑)𝑠𝑖𝑛(𝜗)𝑦 = 𝑦଴ + 𝜌𝑠𝑖𝑛(𝜑) 𝑧 = 𝑧଴ + 𝑐𝑜𝑠(𝜑)𝑐𝑜𝑠(𝜗)

By replacing the term 𝜌𝑠𝑖𝑛(𝜑) = 𝑦 − 𝑦଴ in equations x and z, we have ൜ 𝑥 = 𝑥଴ + (𝑦 − 𝑦଴)𝑐𝑜𝑡(𝜑)𝑠𝑖𝑛(𝜗) 𝑧 = 𝑧଴ + +(𝑦 − 𝑦଴)𝑐𝑜𝑡(𝜑)𝑐𝑜𝑠(𝜗)

Now, the (x0, y0, z0) points are on the slit, so that its coordinates are (0, − z୤, z୤).
The line of light is now represented by the following equations: ቊ𝑥 = ൫𝑦 + 𝑧௙൯𝑐𝑜𝑡(𝜑)𝑠𝑖𝑛(𝜗) 𝑧 = 𝑧௙ + (𝑦 + 𝑧௙)𝑐𝑜𝑡(𝜑)𝑐𝑜𝑠(𝜗) (A1)

These equations represent a ‘solar ray’ passing through the slit.
Let us now consider the plane of the sensor with a distance of D from the (0, 0, 0)

point and a unitary vector which forms an α angle with the XZ plane and a β angle with
the YZ plane and passes through the point belonging to the sensor with the coordi-
nates (0, − ஽√ଶ , − ஽√ଶ).

This vector is represented by the equations

⎩⎪⎨
⎪⎧𝑥 = 𝑐𝑜𝑠(𝛼)𝑠𝑖𝑛(𝛽) 𝑦 = − 𝐷√2 + 𝑠𝑖𝑛(𝛼) 𝑧 = − 𝐷√2 + 𝑐𝑜𝑠(𝛼)𝑐𝑜𝑠(𝛽)

which, after a few mathematical steps, can be written as

⎩⎨
⎧𝑥 𝑡𝑎𝑛(𝛼) = ൬𝑦 + 𝐷√2൰ 𝑠𝑖𝑛(𝛽)𝑥 = ൬𝑧 + 𝐷√2൰ 𝑡𝑎𝑛(𝛽) (A2)

By combining Equations (A1) and (A2), we obtain the intersection point (xa, ya, za)
between the solar ray (A1) and the sensor line (A2) given by the following equations:

The equation of the slit (lying on the YZ plane with a 45◦ slope) is{
y = −z
x = 0

The equation of the line of light passing for (x0, y0, z0) is the following:
x = x0 + ρcos(ϕ)sin(ϑ)
y = y0 + ρsin(ϕ)
z = z0 + cos(ϕ)cos(ϑ)

By replacing the term ρsin(ϕ) = y− y0 in equations x and z, we have{
x = x0 + (y− y0)cot(ϕ)sin(ϑ)
z = z0 ++(y− y0)cot(ϕ)cos(ϑ)

Now, the (x0, y0, z0) points are on the slit, so that its coordinates are (0, −z f , z f).
The line of light is now represented by the following equations: x =

(
y + z f

)
cot(ϕ)sin(ϑ)

z = z f +
(

y + z f

)
cot(ϕ)cos(ϑ)

(A1)

These equations represent a ‘solar ray’ passing through the slit.
Let us now consider the plane of the sensor with a distance of D from the (0, 0, 0)

point and a unitary vector which forms an α angle with the XZ plane and a β angle with
the YZ plane and passes through the point belonging to the sensor with the coordinates
(0, − D√

2
,− D√

2
).

This vector is represented by the equations
x = cos(α)sin(β)
y = − D√

2
+ sin(α)

z = − D√
2
+ cos(α)cos(β)

Sensors 2023, 23, 9787 20 of 21

which, after a few mathematical steps, can be written asx tan(α) =
(

y + D√
2

)
sin(β)

x =
(

z + D√
2

)
tan(β)

(A2)

By combining Equations (A1) and (A2), we obtain the intersection point (xa, ya, za)
between the solar ray (A1) and the sensor line (A2) given by the following equations:

xa =
(

za − z f

)
tan(ϑ)

za = z f +
(

ya + z f

)
cos(ϑ)/tan(ϕ)

xa tan(α) =
(

ya +
D√

2

)
sin(β)

xa/tan(β) =
(

za +
D√

2

)
By assuming that the sensor array is parallel to the x-axis, i.e., α = β = 0, so that

ya = za = − D√
2

, and only the first two equations can be used, after some mathematical steps,
the xa intersection point is given by

xa = −D
√

2
sin(ϑ)

cos(ϑ) + tan(ϕ)

which is Equation (1) in the paper, apart from the sign which only reverts the point with
respect to the YZ plane, and the XR0 value, which represents the translation of the center
sensor with respect to the YZ plane.

References and Notes
1. The Official Website of Arduino. Available online: https://www.arduino.cc (accessed on 30 November 2023).
2. Kurniawan, A.; Dwi Atmaji, F.T.; Alhilman, J. Design of remote temperature monitoring system on automatic filling R125 Shinva

machine using LM35 sensor and Arduino Uno micro controller. Int. J. Integr. Eng. 2020, 12, 280–290.
3. Krishnamurthi, K.; Thapa, S.; Kothari, L.; Prakash, A. Arduino Based Weather Monitoring System. Int. J. Eng. Res. Gen. Sci. 2015,

3, 452–458.
4. Schubert, T.W.; D’ausilio, A.; Canto, R. Using Arduino microcontroller boards to measure response latencies. Behav. Res. Methods

2013, 45, 1332–1346. [CrossRef] [PubMed]
5. Blum, J. Exploring Arduino: Tools and Techniques for Engineering Wizardry, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2020.
6. Smith, W.F. Experimental Physics: Principles and Practice for the Laboratory; Part 2, “Tools of an Experimentalist”; CRC Press: Boca

Raton, FL, USA, 2020.
7. Bui, T.H.; Thangavel, B.; Sharipov, M.; Chen, K.; Shin, J.H. Smartphone-Based Portable Bio-Chemical Sensors: Exploring Recent

Advancements. Chemosensors 2023, 11, 468. [CrossRef]
8. Alpat, B.; Gulgun, M.; Çorapcıoglu, G.; Yildizhan, M.; Di Lazzaro, P.; Murra, D.; Kaplanoglu, T.; Postolache, V.; Mengali, S.;

Simeoni, M.; et al. Testing of substrates for flexible optical solar reflectors: Irradiations of nano-hybrid coatings of polyimide films
with 20 keV electrons and with 200–400 nm ultraviolet radiation. J. Instrum. 2019, 14, T06003. [CrossRef]

9. Dhulekar, P.; Choudhari, S.; Aher, P.; Khairnar, Y. Arduino based Anti-Photography System for Photography Prohibited
Areas. J. Sci. Technol. 2017, 2, 6–11. Available online: https://api.semanticscholar.org/CorpusID:172129198 (accessed on
30 November 2023).

10. Syafeeza, A.R.; Faiz, K.; Syazana-Itqan, K.; Wong, Y.C.; Noh, Z.M.; Ibrahim, M.M.; Mahmod, N.M. Design of Finger-vein Capture
Device with Quality Assessment using Arduino Microcontroller. J. Telecommun. Electron. Comput. Eng. 2017, 9, 55–60. Available
online: https://api.semanticscholar.org/CorpusID:57999438 (accessed on 30 November 2023).

11. Kleshnin, M.S.; I Fiks, I.; I Plekhanov, V.; Gamayunov, S.V.; Turchin, I.V. Compact and fully automated system for monitoring
photodynamic therapy, based on two LEDs and a single CCD. Laser Phys. Lett. 2015, 12, 115602. [CrossRef]

12. Juliano, A.; Hendrawan, A.H.; Ritzkal, R. Information System Prototyping of Strawberry Maturity Stages using Arduino Uno and
TCS3200. J. Robot. Control (JRC) 2020, 1, 86–91. [CrossRef]

13. Sampath, S.; Bhattacharya, B.; Aryan, P.; Sohn, H. A Real-Time, Non-Contact Method for In-Line Inspection of Oil and Gas
Pipelines Using Optical Sensor Array. Sensors 2019, 19, 3615. [CrossRef] [PubMed]

14. Costrada, A.N.; Harmadi; Kemal, B.M.; Marzuki. Landslide monitoring system based on fiber optic sensor and CCD TSL1401CL
linear sensor array. J. Phys. Conf. Ser. 2021, 1876, 012002. [CrossRef]

https://www.arduino.cc
https://doi.org/10.3758/s13428-013-0336-z
https://www.ncbi.nlm.nih.gov/pubmed/23585023
https://doi.org/10.3390/chemosensors11090468
https://doi.org/10.1088/1748-0221/14/06/T06003
https://api.semanticscholar.org/CorpusID:172129198
https://api.semanticscholar.org/CorpusID:57999438
https://doi.org/10.1088/1612-2011/12/11/115602
https://doi.org/10.18196/jrc.1319
https://doi.org/10.3390/s19163615
https://www.ncbi.nlm.nih.gov/pubmed/31434253
https://doi.org/10.1088/1742-6596/1876/1/012002

Sensors 2023, 23, 9787 21 of 21

15. Alsayed, A.; Mahadi, M.R.; Waykok, A.; Ismail, W.I.B.W. Development of a Hybrid Ultrasonic and Optical Sensing for Precision
Linear Displacement Measurement. J. Appl. Sci. 2015, 15, 1059–1072. [CrossRef]

16. Ying, H.; Ziqing, L.; Xiaosheng, F. Solution-prepared AgBi2I7 Thin Films and Their Photodetecting Properties. J. Inorg. Mater.
2022, 38, 1055–1061. [CrossRef]

17. Li, Z.; Yan, T.; Fang, X. Low-dimensional wide-bandgap semiconductors for UV photodetectors. Nat. Rev. Mater. 2023, 8, 587–603.
[CrossRef]

18. Flora, F.; Bollanti, S.; De Meis, D.; Di Lazzaro, P.; Fastelli, A.; Gallerano, G.P.; Mezi, L.; Murra, D.; Torre, A.; Vicca, D. High
Precision Electronic Solar Compass. PCT Patent WO 2014102841 A1, 23 December 2013.

19. Bollanti, S.; De Meis, D.; Di Lazzaro, P.; Flora, F.; Gallerano, G.P.; Mezi, L.; Murra, D.; Torre, A.; Vicca, D. Electro-optical sun
compass with a very high degree of accuracy. Opt. Lett. 2015, 40, 3619–3622. [CrossRef]

20. This is the ISOFIBRA Project, in Collaboration with the SOMMA Company, Financed by Regione Lazio (Italy). Available online:
https://www.lazioeuropa.it/beneficiari-2014-20/azienda/somma/ (accessed on 30 November 2023).

21. Available online: https://ams.com/tsl1401cl (accessed on 30 November 2023).
22. Available online: https://www.ichaus.de/product/ic-lf/ (accessed on 30 November 2023).
23. Available online: https://www.hamamatsu.com/jp/en/product/type/S9226-03/index.html (accessed on 30 November 2023).
24. Note: The Sony sensor is no longer in production, so there is no information directly on the company’s website. The ILX554A

datasheet can be found on many sites, for example, while a similar version to this sensor is produced by the US company Maxwell.
Available online: https://www.alldatasheet.com/datasheet-pdf/pdf/47514/SONY/ILX554A.html (accessed on 30 November 2023).

25. Available online: https://toshiba.semicon-storage.com/ap-en/semiconductor/product/linear-image-sensors/detail.TCD130
4DG.html (accessed on 30 November 2023).

26. Note: The OV7670 Model Is No Longer Present among Omnivision Products but There Are Equivalent Models Such as the
OV7725. The OV7670 Is However Easily Available on the Market, both in the Classic Version and in the one Equipped with AL422B
Internal Memory. Available online: https://datasheetspdf.com/datasheet/OV7670.html (accessed on 30 November 2023).

27. Available online: https://www.alldatasheet.com/datasheet-pdf/pdf/140799/ETC1/AL422B.html (accessed on 30 November 2023).
28. Bollanti, S.; De Meis, D.; Di Lazzaro, P.; Fastelli, A.; Flora, F.; Gallerano, G.P.; Mezi, L.; Murra, D.; Torre, A.; Vicca, D.

Calcolo Analitico della Posizione del Sole per L’allineamento di Impianti Solari ed Altre Applicazioni. Technical Report
RT/2012/24/ENEA, printed by ENEA, Frascati (Italy) 2012 (In Italian). Available online: https://biblioteca.bologna.enea.it/RT/
2012/2012_24_ENEA.pdf (accessed on 30 November 2023).

29. Harrison, P. A device for finding true north. Sol. Energy 1974, 15, 303–308. [CrossRef]
30. Felsky, A. Gyrocompasses—Their Condition and Direction of Development. Transnav. J. 2008, 2, 55–59. Available online:

https://www.transnav.eu/Article_Gyrocompasses_-_Their_Condition_Felski,5,72.html (accessed on 30 November 2023).
31. Ariffin, N.H.; Arsad, N. MEMS Gyro and Accelerometer as North-Finding System for Bulk Direction Marking. IEEE Access 2022,

10, 114214–114222. [CrossRef]
32. Wu, M.; Luo, S.; Wang, W.; Liu, W. Performance Assessment of BDS-2/BDS-3/GPS/Galileo Attitude Determination Based on the

Single-Differenced Model with Common-Clock Receivers. Remote Sens. 2021, 13, 4845. [CrossRef]
33. Fukuma, K.; Muramatsu, T. Orienting paleomagnetic drill cores using a portable GPS compass. Earth Planets Space 2022, 74, 136.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3923/jas.2015.1059.1072
https://doi.org/10.15541/jim20220569
https://doi.org/10.1038/s41578-023-00583-9
https://doi.org/10.1364/OL.40.003619
https://www.lazioeuropa.it/beneficiari-2014-20/azienda/somma/
https://ams.com/tsl1401cl
https://www.ichaus.de/product/ic-lf/
https://www.hamamatsu.com/jp/en/product/type/S9226-03/index.html
https://www.alldatasheet.com/datasheet-pdf/pdf/47514/SONY/ILX554A.html
https://toshiba.semicon-storage.com/ap-en/semiconductor/product/linear-image-sensors/detail.TCD1304DG.html
https://toshiba.semicon-storage.com/ap-en/semiconductor/product/linear-image-sensors/detail.TCD1304DG.html
https://datasheetspdf.com/datasheet/OV7670.html
https://www.alldatasheet.com/datasheet-pdf/pdf/140799/ETC1/AL422B.html
https://biblioteca.bologna.enea.it/RT/2012/2012_24_ENEA.pdf
https://biblioteca.bologna.enea.it/RT/2012/2012_24_ENEA.pdf
https://doi.org/10.1016/0038-092X(74)90020-6
https://www.transnav.eu/Article_Gyrocompasses_-_Their_Condition_Felski,5,72.html
https://doi.org/10.1109/ACCESS.2022.3217494
https://doi.org/10.3390/rs13234845
https://doi.org/10.1186/s40623-022-01699-y

	Introduction
	The Arduino Board
	Light Sensors
	The Characteristics of Arduino and the Requirements of Linear Sensors
	Results of the Tests Carried out on the Linear Sensors
	TSL1401CL
	LF1401
	S9226
	ILX554A
	TCD1304DG

	Arduino Interfacing a Matrix Point Sensor
	Design and Construction of a Solar Compass with Arduino and a Linear Sensor
	Conclusions
	Appendix A
	Appendix B
	Appendix C
	References and Notes

