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Abstract: Although the Lissajous frequency modulated (LFM) mode can improve the long-term and
temperature stability of the scale factor (SF) for mode mismatch MEMS gyroscopes, its SF nonlinearity
poses a significant limitation for full-scale accuracy maintenance. This paper examines the interaction
effects among stiffness coupling, system phase delay, readout demodulation phase shift, and velocity
amplitude mismatch within the control process. Based on the completion of frequency difference
control and demodulation phase matching, we clarify that the remaining stiffness coupling and
residual system phase error are the primary factors influencing SF nonlinearity. Furthermore, SF
nonlinearity is reduced through error compensation. On one hand, this paper suppresses stiffness
coupling through the observation of the instantaneous frequency difference and the application of
the quadrature voltage. On the other hand, system phase error is compensated by observing the
amplitude control force and tuning the reference in the Phase-Locked Loops (PLLs). Subsequent
simulations of these methods demonstrated a remarkable 97% reduction in SF nonlinearity within the
measurement range of ±500°/s. In addition, an observed rule dictates that maintaining a sufficiently
large frequency split effectively constrains the SF nonlinearity.

Keywords: Lissajous frequency modulation (LFM); scale factor nonlinearity; stiffness coupling; phase
error; frequency difference

1. Introduction

The MEMS gyroscope has been widely used in consumer electronics, autonomous
driving, industry, and even near-inertial navigation [1,2]. However, conventional am-
plitude modulated (AM) mode gyroscopes face challenges in improving the SF stability,
temperature stability, and dynamic range [3–6]. Recently, frequency modulated (FM) mode
operations, like the quadrature FM (QFM) mode, indexed FM (IFM) mode, and fully
differential FM mode, have emerged as potential alternatives due to their superior tem-
perature stability, wider dynamic range, and increased measurement bandwidth [7–11].
Unfortunately, the aforementioned FM modes necessitate mode matching, which involves
complex operations including mechanical trimming, stiffness tuning, and mode-matching
control [2]. In contrast, the LFM operation only necessitates equal amplitude control
and natural frequency maintenance, significantly simplifying the implementation pro-
cess [12,13]. By leveraging the principle of continue-time mode reversal, the LFM mode
enhances the gyroscope performance without mode matching, resulting in advantages
such as a more stable SF, reduced sensitivity to temperature variations, a higher quality
factor, and lower power consumption. Furthermore, while the anisodamping error leads
to angle-dependent drift in the whole angle (WA) mode, it is effectively eliminated in the
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LFM mode with the aid of differential operations [14]. Coincidentally, mass-produced
fully symmetric MEMS gyroscopes (e.g., the micro-hemispherical resonant gyroscope, disk
resonant gyroscope, etc.) typically exhibit high-quality factors and significant frequency
splits with the current production process [15,16]. Implementing the LFM operation on
them would improve their performance without complex tuning. LFM gyroscopes can
be widely used in tactical applications, offering benefits in terms of cost, size, weight,
and power (CSWaP).

In the preceding decade, considerable advancements have been achieved on LFM
gyroscopes, specifically pertaining to the structural design, circuitry construction, and elec-
tromechanical integration. In the domain of structural design, the utilization of quad-mass
resonators as the operational units for the LFM has emerged, complementing the con-
ventional lumped mass MEMS resonators [12]. Notably, a dual-mass pitch gyroscope
with an out-of-plane structure has been innovatively designed, alongside the develop-
ment of resonators supporting three-axis detection [17,18]. Regarding circuit construction,
a specialized sigma–delta frequency-to-digital conversion circuit has been instrumental in
enhancing the frequency detection resolution significantly [19]. Additionally, a circuit pro-
moting real-time phase extraction and digital demodulation has been devised, effectively
achieving phase-matching readout [20]. Furthermore, the introduction of an all-digital con-
trol circuit based on the digital PLL has been proposed, eliminating the need for specialized
frequency readout circuits [21]. Concerning electromechanical integration, the inception
of the fully digital output Application-Specific Integrated Circuit (ASIC) has laid a robust
foundation for LFM commercialization [22]. These works aim to augment the fundamental
capabilities of the LFM and propel its product applications. Discussions of the LFM perfor-
mance usually revolve around reducing random noise, with research endeavors targeting
enhancements in the frequency stability, demodulator accuracy, and comprehensive noise
analysis within the system. Nevertheless, as a gyroscope with a substantial measurement
range, investigations into the SF nonlinearity of the LFM are rarely present in the research.

SF nonlinearity serves as a critical indicator of gyroscope stability, correlating with
the measurement range and requiring careful consideration [23]. It is caused by errors
within the system, including stiffness coupling, system phase error, readout module phase
shift, and velocity amplitude mismatch. Among these errors, the issue of phase shift,
as a significant concern in circuit research, has already been addressed through various
approaches. The velocity amplitude mismatch is the primary factor influencing the SF,
as illustrated by the distorted Lissajous trajectory in Figure 1a. It is dependent on the stabi-
lization of the frequency difference and amplitude, which varies with the input angular
rate [24]. On the one hand, although utilizing electrostatic force for frequency difference
control has been investigated, this necessitates an additional electrostatic voltage to the
driving electrode, resulting in increased power consumption [25]. On the other hand,
AGC-less control methods and control methods with separate differential and integral
operations can suppress fluctuations in amplitude [26,27]. Furthermore, advanced control
methods for MEMS gyroscopes can greatly enhance the control effectiveness. These meth-
ods include the data-driven control scheme, the nonsingular terminal sliding mode control
method, an approximation-based adaptive fractional sliding mode control scheme, and
so on [28–30]. Hence, research on stiffness coupling and system phase error is crucial for
further constraining the SF nonlinearity. The stiffness coupling between the two detection
modes results in a significant quadrature error and leads to the generation of distorted
Lissajous trajectories, as depicted in Figure 1b. While the AM mode mitigates the stiffness
coupling through quadrature tuning during mode matching, no relevant aspects of the
LFM model have been reported [31]. The phase lags exist in each block of the MEMS
system, contributing to driving force deflection and resulting in PLL tracking errors. While
the impact of phase errors has been studied in AM and WA operations, its effect on the
LFM operation remains unknown [32,33]. Coincidentally, when there is a deviation angle
between the force and the mode, it generates a component force in the orthogonal direction,
which resembles the impact of the system phase error on the driving force deflection [34].



Sensors 2023, 23, 9701 3 of 20

Figure 1. Patterns of distorted Lissajous trajectories: (a) The green trajectory is the pattern with a
1.15% velocity amplitude mismatch caused by a 500 dsp angular rate. (b) The orange trajectory is the
pattern with stiffness coupling caused by the 20 Hz frequency split and 5 deg stiffness axis deflection.
The red circle with a displacement of 2 µm in the center is the circular trajectory generated by the
standard pattern.

Indeed, it is noteworthy that all errors are inherently interactive, precluding absolute
elimination and collectively impacting the SF and zero rate output (ZRO). Therefore, more
precise compensation, control, and signal processing techniques are necessary. The focus
of this paper is a fully symmetric resonator. Consequently, this paper investigates the
interaction effects among stiffness coupling, system phase error, readout modulation phase
shift, and velocity amplitude mismatch in the LFM gyroscope. The research then prioritizes
the achievement of readout phase matching through the utilization of the fine impulse
response (FIR) filter and the maintenance of frequency difference stability via in-phase
control force as prerequisites. This thesis primarily addresses compensation for two specific
errors. Specifically, the principle of electrostatic negative stiffness is employed to minimize
stiffness coupling by applying an electrostatic voltage. Simultaneously, the system phase
error is identified by observing the amplitude control force, and compensation is applied
by adjusting the target value of the controller in the PPLs. Finally, the study concludes by
demonstrating the impacts of these two errors on ZRO and the SF nonlinearity, accompanied
by a detailed analysis of the underlying reasons.

2. Working Principle and Scheme Design

The vibration mode of the fully symmetric gyroscope is typically depicted in Figure 2a
as the n = 2 wineglass mode. In the LFM mode, the vibration exhibits a continuous transi-
tion between standing and traveling waves. An analysis of the trajectories derived from
the changes in the X and Y axis displacements in Figure 2b reveals the alternating nature
between lines and circles, resulting in the generation of a typical Lissajous pattern. Capaci-
tive transformation can be achieved by sixteen distinct outer electrodes positioned outside
the resonator’s lip. These out-of-plane electrodes can be used for excitation, detection,
and electrostatic tuning. Furthermore, the symbols employed in the theoretical derivations
and their corresponding descriptions are detailed in Table A1.
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Figure 2. (a) n = 2 glass vibration mode with eight pairs of electrodes arranged around it, including
one pair of driving electrodes and one pair of detecting electrodes on the X axis and Y axis and four
pairs of electrodes used for quadrature correction. (b) With the continuous change in the relative
phase between two axes, the vibration mode switches repeatedly from a standing wave to a traveling
wave, and the displacement synthesis pattern changes continuously from a line to a circle, forming a
standard Lissajous pattern.

2.1. Dynamical Model of Gyroscope

The dynamical characteristics of the fully symmetric MEMS gyroscope can be de-
scribed as a mass–spring–damping system [35]. However, it should be noted that the
physical period of the standing wave azimuth is half that of the lumped mass block. Taking
the micro-hemisphere resonator as an example, as illustrated in Figure 3a, the model incor-
porates the errors arising from quality factor mismatch, frequency mismatch, damping axis
deflection, and stiffness axis deflection between the principal mode X and the secondary
mode Y. The dynamical model is described as follows:[

ẍ
ÿ

]
+

([
d11 d12
d21 d22

]
+ 4αΩ

[
0 −1
1 0

])[
ẋ
ẏ

]
+

[
k11 k12
k21 k22

][
x
y

]
=

[
fx
fy

]
. (1)

where x and y are the vibration displacements of the two modes, respectively. fx and fy are
the control forces in the driving mode direction, respectively. α is the angular gain, and Ω
is the input angular rate. The damping matrix is defined as

[
d11 d12
d21 d22

]
=

 2
τ + ∆

(
1
τ

)
cos 4θτ ∆

(
1
τ

)
sin 4θτ

∆
(

1
τ

)
sin 4θτ

2
τ − ∆

(
1
τ

)
cos 4θτ

,

where 2/τ represents the average damping of two modes, and the damping magnitude is
the inverse of the time constant. ∆(1/τ) represents the anisodamping. θτ represents the
azimuth of the principal damping axis, which is the angle between the maximum damping
axis and the X axis. The stiffness matrix is expressed as[

k11 k12
k21 k22

]
=

[
ω2 −ω∆ω cos 4θω −ω∆ω sin 4θω

−ω∆ω sin 4θω ω2 + ω∆ω cos 4θω

]
,

where ω2 represents the average stiffness of two modes, and the stiffness is squared with
respect to the frequency. ∆ω represents the frequency split. θω represents the azimuth of
the principal stiffness axis, which is the angle between the minimum stiffness axis and the
X axis. Figure 3b shows the amplitude–frequency characteristics of the detected modes in
the presence of the frequency split and anisodamping error.
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Figure 3. (a) Schematic diagram of the fully symmetric gyroscope model including the anisodamping
error and frequency split. (b) The amplitude–frequency response of the principal mode in the LFM
model, reflecting the quality factor and the resonant frequency of the resonator.

2.2. Basic Working Principle of LFM

According to the averaging method, a sinusoidal approximation can be made for the
X axis and Y axis displacement vibration signals as well as the drive signals. The displace-
ments and control forces are assumed to be, respectively[

x
y

]
= Re

{
xa · ei·φqx

ya · ei·φqy

}
, (2)

[
fx
fy

]
= Re

{
( fxc + i fxs)ei·φ f x(

fyc + i fys
)
ei·φ f y

}
, (3)

where i is the imaginary unit and Re{·} represents the operation of taking the real part. xa
and ya represent the amplitudes of the X and Y mode displacement signals, respectively,
while φqx and φqy represent the phases of the X and Y displacement signals, respectively. fxc
and fyc denote the in-phase control force of the vibration, which can regulate the frequency.
fxs and fys denote the quadrature control force of the vibration, which can regulate the
amplitude. φ f x and φ f y denote the phases of the X and Y mode drive signals, respectively.
It should be noted that all of the aforementioned parameters are time-dependent functions.

The LFM operation necessitates equal vibration amplitudes for the two modes while
maintaining a constant frequency difference. To fulfill the control condition, it is necessary
to introduce a phase shift of π/2 between fxs and fys in relation to the phases of xa and ya,
respectively. This ensures the satisfaction of the condition φqx = φ f x = φx. Furthermore,
the rate of change in the amplitude satisfies ẋa = ẏa ≈ 0. By incorporating the conditions
and assumptions of (2) and (3) into (1), the phase method is employed to equate their real
and imaginary parts. Finally, analytical expressions for the amplitudes and frequencies of
the X and Y modes are derived:

ωx = (4αΩ− d12)
vya

vxa
sin
(
∆φxy

)
+

k11

ωx
+

k12

ωy

vya

vxa
cos
(
∆φxy

)
− fxc

vxa
, (4)

v̇xa = (4αΩ− d12)
vya

2
cos
(
∆φxy

)
− d11vxa

2
− k12ya

2
sin
(
∆φxy

)
+

fxs

2
, (5)

ωy = (4αΩ+d21)
vxa

vya
sin
(
∆φxy

)
+

k22

ωy
+

k21

ωx

vxa

vya
cos
(
∆φxy

)
−

fyc

vya
, (6)

v̇ya = −(4αΩ+d21)
vxa

2
cos
(
∆φxy

)
−

d22vya

2
+

k21xa

2
sin
(
∆φxy

)
+

fys

2
. (7)

In the equation, ωx and ωy represent the instantaneous frequencies of the X and Y
modes, respectively. ∆φxy = φqy − φqx denotes the real-time phase difference between the
two modes, while vxa = xaωx and vya = yaωy correspond to the amplitude of the vibration
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velocity. (4)–(7) demonstrate the modulation effect of the frequency difference on the
vibration displacement and reveal the evolution of manufacturing detects in the resonator
in the LFM operation. The summation of (4) and (6) yields the following expression:

ωΣxy = 4αΩ
(

vya

vxa
+

vxa

vya

)
sin
(
∆φxy

)
+

(
k22

ωy
+

k11

ωx

)
+ d12

(
vxa

vya
−

vya

vxa

)
sin
(
∆φyx

)
(8)

+

(
k21

ωx

vxa

vya
+

k12

ωy

vya

vxa

)
cos
(
∆φxy

)
,

where ωΣxy denotes the summation of two frequencies. After demodulation of this signal
and low-pass filtering, an estimate of the angular rate can be obtained. The effectiveness of
the LFM relies significantly on a robust control system, as it is through this system that all
of the aforementioned control conditions are attained.

2.3. Control Scheme of the LFM

The control scheme for the LFM mode is illustrated in Figure 4a, featuring separate
control loops for the X and Y modes. Each loop comprises two components: amplitude
control and frequency tracking. Taking the control structure of the X mode as an example,
the vibration signal Px is extracted from the gyroscope and converted into a voltage signal
using the C2V module. Subsequently, the voltage signal is demodulated with the reference
signal from the previous moment to derive the slow variables Sx and Cx. These two signals
are combined through the amplitude and phase extraction module to obtain the current
amplitude and phase. Finally, the amplitude control signal and the real-time phase are
combined to generate the feedback control force Fx, which is then transformed into the
drive voltage signal Dx by the amplifier. The control structure for the Y mode follows a
similar configuration. For clarity, the ADC and DAC modules are omitted from the figure.

Figure 4. The basic scheme of the LFM operation. (a) The control scheme and X and Y modes are
controlled independently, and the frequency tracking loop and amplitude control loop are set up,
respectively. The modules added to the orange dashed box apply in-phase control forces to sustain
the frequency difference. (b) The structure of the PLL is composed of a demodulator, a phase extractor,
and a NCO, adopting a phase-sensitive demodulation method. (c) Structure of the readout module,
applying the reference signal to demodulate the angular rate of the frequency.
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Frequency difference control is necessary due to the frequencies of the X and Y modes
shifting in opposite directions with an increase in the input angular rate. The in-phase
control force of the vibration displacement is employed to adjust the resonant frequency
without the need for additional components. The orange dashed box in Figure 4a illustrates
the control of the instantaneous frequency difference ω∆xy using AGC feedback to the
frequency split. This control strategy generates control forces fxc and fyc, which have equal
magnitudes but opposite signs, enabling the adjustment of ωx and ωy in an inverse manner.
Finally, the frequency and amplitude control forces combine to form the final drive signal
as follows:

fx = fxc cos φ f x − fxs sin φ f x,

fy = fyc cos φ f y − fys sin φ f y.
(9)

The form of (9) is consistent with the assumptions stated in (3). It is important
to emphasize that the bandwidth of the controller should be significantly smaller than
the frequency split value. This ensures that the frequency does not interfere with the
modulation effect of the frequency by the angular rate.

The PLLs are established by the phase extractor and demodulator for tracking and
reading instantaneous frequencies. The PLL structure of X modes is illustrated in Figure 4b,
utilizing the phase-sensitive demodulation method. The slow variables are obtained as
follows:

Cx = LPF
{

Ax sin
(
φqx
)
× 2 cos(φx)

}
= Ax sin(φqx − φ f x),

Sx = LPF
{

Ax sin
(
φqx
)
× 2 sin(φx)

}
= Ax cos(φqx − φ f x),

Cy = LPF
{

Ay cos
(
φqy
)
× 2 cos

(
φy
)}

= Ay cos(φqy − φ f y),

Sy = LPF
{

Ay cos
(
φqy
)
× 2 sin

(
φy
)}

= −Ay sin(φqy − φ f y).

(10)

where Ax and Ay are the amplified amplitude signals. They have a constant target value in
the controller, implying that the amplitude is sustained. The cut-off frequency of the low-
pass filter (LPF) is set between the natural frequency and two times the natural frequency.
Then, after the operation of the amp-phase extraction module, the expression of the slow-
varying control quantity is obtained as (11).

δϕx = arctan(Cx/Sx) = φqx − φ f x,

Ax =
√

C2
x + S2

x,

δϕy = − arctan(Sy
/

Cy) = φqy − φ f y,

Ay =
√

C2
y + S2

y.

(11)

where δϕx and δϕy denote the difference between the displacement vibration phase and
the reference phase of the X and Y modes, respectively. The PI controller ensures precise
frequency tracking by minimizing deviations to zero. It fine-tunes the natural frequency to
obtain the instantaneous frequencies ωx and ωy, which are then integrated to generate the
instantaneous phases φqx and φqy.

2.4. Readout Characteristics of the LFM

Figure 4c illustrates the process of the angular rate readout. ωΣxy is low-pass filtered
to remove the high-frequency harmonic component. Then, high-pass filtering is performed
to remove the constant component of the intrinsic frequency to obtain the modulated
signal of the rate. The phases φ f x and φ f y generated by the PLLs are differenced, and the
initial phase φ0 is added to obtain the phase of the demodulated reference signal. Finally,
sin
(
∆φxy

)
is generated for in-phase demodulation, and the ideal readout of the LFM is

obtained after low-pass filtering again, as follows:

Rout = 2αvrrs ×Ω + d12vrrd. (12)
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where vrrs =
(
vya
/

vxa + vxa
/

vya
)

denote the reciprocal sum of the vibration velocity
ratio, and vrrd =

(
vxa
/

vya − vya
/

vxa
)

denote the reciprocal difference. When the velocity
amplitude mismatch is small enough, vrrs ≈ 2 and vrrd ≈ 0. Meanwhile, the readout of the
sense mode of the AM gyroscope excluding the quadrature error is [36]:

Yout =
Ax√

(2∆ω)2 + (ω/Q2)
2
(4α×Ω + d12). (13)

Unlike the intricate scale factor associated with the AM mode, the output of the
LFM mode (12) does not contain the resonant frequency and quality factor, the primary
contributors to temperature sensitivity. Although the ωΣxy in the LFM exhibits slow
variations with the ambient temperature, these changes are significantly smaller than the
split frequency. The high-pass filter effectively mitigates this variation, resulting in excellent
temperature stability for the LFM. Furthermore, the LFM mode demonstrates an immunity
to the anisodamping error when compared to the AM mode due to vrrd ≈ 0. However,
these advantages are accompanied by the limitation of the bandwidth in the LFM.

Thanks to the accurate frequency detection, the phase of the demodulated reference
signal can be obtained directly as ∆φxy =

∫ (
ωy −ωx

)
dt. The integration operation intro-

duces a phase lag of π/2, which requires overcompensation for the demodulated signal.
Nevertheless, the filtered signal ωΣxy introduces a phase delay with respect to sin

(
∆φxy

)
,

and this delay is also subject to variations in ωΣxy. Therefore, real-time phase matching
becomes necessary. One potential solution to this problem is the utilization of the class-I FIR
filter, which is characterized by a group delay that is expressed as follows in the frequency
domain:

τg(ω) =
dθ(ω)

dω
= −N − 1

2
. (14)

In digital signal processing, the unit of group delay is typically measured in samples,
and the corresponding delay can be calculated based on the sampling frequency. The linear
phase characteristic of the FIR filter ensures that real-time phase matching can be achieved
by simply delaying sin

(
∆φxy

)
by a fixed number of samples. This approach remains

effective, regardless of how the real-time frequency difference may change.

3. Interactive Error Analysis and Correction

The stiffness coupling and velocity amplitude mismatch were previously addressed in
the section where the LFM dynamic equations were established. To examine the interaction
effect among these errors, this section takes into account the impact of both the system
phase error and the readout module phase shift. The resulting LFM output expression
incorporates all relevant errors. Subsequent discussion is centered on the identification and
compensation methods for stiffness coupling and system phase error, respectively.

3.1. Analysis of Interaction Effect

In practical control systems, phase errors inevitably exist, causing a phase lag between
the control signal and the displacement. Due to the consistent structure, the phase error of
the X mode is almost equal to that of the Y mode. Therefore, it is reasonable to assume that

φqx − φ f x = φqy − φ f y = δϕ, (15)

where δϕ represents the phase error. With this assumption, the expressions for (4) and (6)
are updated as follows:

ωx = (4αΩ− d12)
vya

vxa

sin
(
∆φxy + δϕ

)
cos(δϕ)

+
k11

ωx
+

k12

ωy

vya

vxa

cos
(
∆φxy + δϕ

)
cos(δϕ)

− d11 tan(δϕ), (16)
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ωy = (4αΩ+d21)
vxa

vya

sin
(
∆φxy − δϕ

)
cos(δϕ)

+
k22

ωy
+

k21

ωx

vxa

vya

cos
(
∆φxy − δϕ

)
cos(δϕ)

− d22 tan(δϕ). (17)

It can be observed that the phase error affects the modulation effect of the rate on the
frequency and directly influences the frequency offset through damping. Meanwhile, there
is a phase shift ∆ϕ between ωΣxy and sin

(
∆φxy

)
caused by the filter. Thus, (12) is updated

as follows:

Rout = 2α

vrrs cos(∆ϕ) + vrrd tan(δϕ) sin(∆ϕ)︸ ︷︷ ︸
Item1

×Ω + d12vrrd cos(∆ϕ)︸ ︷︷ ︸
Item2

+ d12vrrs tan(δϕ) sin(∆ϕ)︸ ︷︷ ︸
Item3

−
(

k21

ωx

vxa

vya
− k12

ωy

vya

vxa

)
tan(δϕ) cos(∆ϕ)︸ ︷︷ ︸

Item4

−
(

k21

ωx

vxa

vya
+

k12

ωy

vya

vxa

)
sin(∆ϕ)︸ ︷︷ ︸

Item5

(18)

This indicates that stiffness coupling, the anisodamping error, the system phase error,
the phase shift in the readout module, and velocity amplitude mismatch collectively influ-
ence the ZRO and SF of the gyroscope, resulting in complex interaction effects. In theory,
individually eliminating each error can significantly optimize the performance. However,
each of these influences cannot be completely removed. Therefore, while frequency dif-
ference control and FIR filters have been employed to mitigate the velocity mismatch and
phase shift, it remains imperative to suppress stiffness coupling and compensate for the
phase error to optimize the output performance.

3.2. Suppression of Stiffness Coupling by Quadrature Voltage

Stiffness coupling is caused by both ∆ω and θω. The LFM gyroscope intentionally
maintains a large frequency split that cannot be altered. In fully symmetric resonators,
the azimuth of the principal stiffness axis is typically substantial. Its size depends on the
accuracy of identifying the stiffness axis and the relative electrode installation since it lacks
physical constraints. Therefore, stiffness coupling has to be suppressed by adjusting the
angle using quadrature electrodes located at 22.5°, as shown in Figure 5a. By applying
a static DC voltage to the resonator, based on the electrostatic negative stiffness effect,
the voltage can be equivalently regarded as a stiffness load that alters the degree of coupling
between the stiffness in the X and Y modes. Under this influence, the stiffness matrix is
represented as follows:[

k11 k12
k21 k22

]
=

[
ω2 −ω∆ω cos 4θω + Tθ −ω∆ω sin 4θω − Tθ

−ω∆ω sin 4θω − Tθ ω2 + ω∆ω cos 4θω + Tθ

]
,

where Tθ is the stiffness load, which is negatively proportional to the electrostatic voltage.
The purpose of stiffness coupling suppression is to make Tθ = −ω∆ω sin 4θω by tuning
the electrostatic voltage. The resonant frequencies of the X and Y modes can be calculated
from the characteristic values of the stiffness matrix. When Tθ = 0, ωx = ω1 and ωy = ω2
are calculated, indicating that the instantaneous frequencies can be tracked to the natural
frequencies under normal circumstances. As ωx and ωy vary with the adjustment of
Tθ , it results in a continuous decrease in the instantaneous frequency difference ω∆xy,
where ω∆xy = ωy −ωx. Additionally, the fluctuation in the frequency difference varies with
the stiffness coupling. Figure 5b illustrates a least squares fit to both the instantaneous
frequency difference and the frequency fluctuation.



Sensors 2023, 23, 9701 10 of 20

Figure 5. (a) Applying a stiffness load at the 22.5° position alters the stiffness distribution of the
resonator. (b) The bias and fluctuations (peaks and valleys) in the frequency difference change as the
equivalent stiffness load of the quadrature voltage varies. The minimum point is reached when they
are equal.

When Tθ = −ω∆ω sin 4θω, ω∆xy reaches the minimum value. Hence, the flowchart
for stiffness coupling suppression is illustrated in Figure 6a. The value of ω∆xy can be
directly read, and its minimum can be observed by continuously adjusting the quadrature
voltage. Once the voltage at the minimum frequency difference is determined, the stiffness
coupling can be eliminated by applying a constant voltage. Additionally, the minimum
points for both of them correspond to approximately the same electrostatic voltage level.
Furthermore, the value of θω can be estimated as follows:

θ̂ω = arccos

(
min

{
ω∆xy

}
∆ω

)
. (19)

where min{·} represents the operation of obtaining the minimum value.

Figure 6. (a) The flowchart for stiffness coupling identification and suppression. (b) The flowchart
for system phase error identification and compensation.
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3.3. Identification and Compensation for the System Phase Error

The system phase error is caused by different components of the circuit, including
voltage-capacitor drive, resonator, capacitor-voltage conversion, and slow variable demod-
ulation. Figure 7a illustrates that the phase error of the system can be attributed to the
phase lag of the quadrature control force fs. When the amplitude control loop is stable
without input angular rate, the quadrature control signal can be expressed as follows:

Fxa = | fxs| cos(δϕ) = d11vxa − d12
ωy cos

(
∆φxy + δϕ

)
cos(δϕ)

, (20)

Fya =
∣∣ fys
∣∣ cos(δϕ) = d22vya + d21

ωx cos
(
∆φxy − δϕ

)
cos(δϕ)

, (21)

where Fxa and Fya represent the amplitude control forces for the X and Y modes, respectively.
|·| denotes the mode selection. Taking the X mode as an example, to balance the damping
with Fxa, the magnitude of fxs varies with δϕ. fxs is minimized when δϕ = 0, and Fxa = fxs.

Figure 7. (a) Due to phase error, the direction of the quadrature control force fs experiences a
deviation. To ensure that the amplitude control force Fa effectively counteracts the damping, fs will
increase. Additionally, this leads to the generation of an orthogonal component Fw which, in turn,
changes the resonant frequency of the mode. (b) As the phase error of the system continuously varies
from 80° lagged to 80° ahead, the quadrature control force (red) initially decreases, then increases,
and reaches its minimum at the zero point. Simultaneously, the resonant frequency (blue) decreases,
then increases, and reaches the natural frequency at the zero point.

As depicted by the red curve in Figure 7b, the quadrature control force exhibits a
cosecant relationship as the system phase error is continuously adjusted from −80° to
80°. The control force is minimized when the phase error is zero. Additionally, the reso-
nant frequency offset also varies with the phase error, as indicated by the blue curve in
Figure 7b, showing a tangential relationship between them. The zero point of the phase
error corresponds to the zero point of the frequency offset.

Therefore, the variation in the control force can be monitored by continuously adjusting
its phase. When the control force reaches a minimum value, it signifies the cancellation of
the phase error. Similarly, the phase can be continuously adjusted to align the frequency
with the natural frequency and match the system phase error value. However this method
is less stable due to the susceptibility of the stiffness to temperature fluctuations.

Nevertheless, the actual circuit lacks an interface for additional adjustment of the
control force phase. Therefore, it becomes imperative to identify an adjustable parameter as
an alternative. Figure 8 illustrates the transmission of the phase error within the loop. When
using the output of the PLL as the initial phase, the signal at point O remains unshifted in
phase, while each subsequent block undergoes a phase lag. The 90° phase shift occurs after
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driving force synthesis. The phase lags generated by the voltage–capacitor drive, resonator,
capacitor–voltage conversion, and slow variable demodulation are denoted as φ1, δφ, φ2,
and φ3, respectively. Table 1 illustrates the signal forms corresponding to nodes A, B, C, D,
and E. Subsequently, the system phase error can be expressed as

δϕ = 90◦ + δφ + φ1 + φ2 + φ3. (22)

Figure 8. The phase error signal flow can be represented by a block diagram, where the initial phase
is the output of the PLL in Amp-Phase Extract block. As the signal flows through each block in the
system, it accumulates a phase shift.

Table 1. The phase of the signal flow at different points of the system.

Signal Flow Point Signal Flow Phase

O cos(φ)
A cos(φ + 90◦)
B cos(φ + 90◦ + φ1)
C cos(φ + 90◦ + φ1 + δφ)
D cos(φ + 90◦ + φ1 + δφ + φ2)

E 1 cos(φ + 90◦ + φ1 + δφ + φ2 + φ3)
− sin(φ + 90◦ + φ1 + δφ + φ2 + φ3)

1 The phase difference between the demodulated signal of the in-phase and quadrature directions is π/2.

At time tk, the signal at point D is demodulated by the signal at point O. Subsequently,
the in-phase and quadrature signals at point E are generated, exhibiting a phase lag.
The phase difference is then determined from these signals, and the reference phase at
time tk+1 is obtained using the zero-error controller of the PLLs. Due to π/2 + δφ = 0,
a static error caused by (22) is consistently present in the output of the PLLs, as shown in
Figure 4b. In other words, the displacement phase φq remains unsynchronized with the
force phase φ f .

The crucial aspect is that the reference value ϕre f within the PLL controller serves as a
modifiable parameter interface. Thus, phase errors can be identified by tuning ϕre f instead
of adjusting the control phase. Specifically, instead of setting ϕre f to zero, it is set to −δϕ
when extracting the phase difference from point E. This corresponds to overcompensation
of the lag within the loop. The flowchart for system phase error compensation is illustrated
in Figure 6b. In this case, point D is always completely synchronized with the reference
signal, which means that the phase error is compensated for. And, the phase error can be
obtained by δ̂ϕ = −ϕre f .

4. Validations and Discussion

Experiments are designed for comparison and validation to verify the effectiveness of
the error discrimination-based compensation and optimal control strategy proposed in this
paper for the performance improvement of the LFM gyroscope with the interaction effect.
We designed and implemented a LFM test board as shown in Figure 9. The gyroscopes of
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the same batch have been tested to obtain the following approximate parameters, as shown
in Table 2, including the resonator characteristics and the system error.

Figure 9. MEMS gyroscope digital verification platform, including the MEMS gyroscope, FPGA,
and peripheral circuits.

Table 2. Key parameters used in the simulation.

Symbol Description Value Unit

ω1 primary modal frequency 4955.5 × 2π rad
ω2 secondary modal frequency 4975.5 × 2π rad
∆ω initial frequency split 20 × 2π rad
Q1 primary modal quality factor 50,000
Q2 secondary modal quality factor 48,000
θω azimuth of principal stiffness axis 1.5 deg
θτ azimuth of principal damping axis 5 deg
δφ system phase error 5 deg
δϕ initial demodulation phase shift π/3 rad

Across a wide measurement range, the velocity amplitude mismatch effect becomes
more pronounced, amplifying the adverse consequences produced from error interaction.
As depicted by the blue curve in Figure 10, when the input angular rate is set at stages of
0, 300°/s, 600°/s, and 900°/s, the frequency difference offset exhibits a stepwise increase
without frequency difference control. As illustrated by the red curve, in-phase force
frequency difference control constrains the increment in the frequency difference offset
with the increasing angular rate. This effect is achieved without resorting to electrostatic
voltage control.

Figure 10. The input angular rate has a notable influence on the frequency difference. The controlled
frequency difference (red curve) exhibits a reduced offset compared to the uncontrolled result (blue
curve), leading to an improvement in sustaining the desired frequency difference. The control action
is initiated at the 1 s mark.
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Equation (18) indicates that factors such as stiffness coupling, anisodamping error,
system phase error, demodulation phase shift, and velocity amplitude mismatch contribute
to ZRO and SF. The ZRO of the LFM operation reflects the gyroscope’s zero bias level.
With frequency difference control and demodulation phase matching as the foundation,
Items 1 to 5 of (18) are significantly mitigated. Nevertheless, stiffness coupling and phase
error can amplify the residuals in Item 1, Item 3, and Item 5. Figure 10 illustrates a compari-
son of the results obtained from four sets of experiments, where each case examines the
ZRO from start-up to output stabilization over a 3 s duration. The results are smoothed to
aid in the visual comparison of the bias. The results indicate that the individual suppression
of stiffness coupling can significantly reduce the ZRO. Compensating for the system phase
error can further reduce the ZRO, although the reduction is not substantial. On one hand,
(18) reveals that the phase error is in the form of a tangent, and the tangent of a few degrees
is quite small. On the other hand, when stiffness coupling is mitigated, the phase error
appears in the form of a product with the anisodamping error in Item 3, further constraining
their impact. Moreover, Figure 11 presents a stable start-up time of less than 0.7 s.

Figure 11. The ZRO results are compared for four cases: Case 1, without stiffness coupling sup-
pression and phase error compensation; Case 2, with stiffness coupling suppression; Case 3, with
phase error compensation; and Case 4, with both suppression and compensation. The enlarged graph
highlights the optimal outcome achieved by simultaneously eliminating both stiffness coupling and
the phase error.

Furthermore, despite the general belief that anisodamping in LFM mode does not
interfere with the output, the simulation results confirm the existence of the anisodamping
error’s impact, albeit small. Item 2 and Item 3 of (18) reveal its presence in the form of
interactions with other errors. Previous research has oversimplified the theory, overlooking
these subtle effects, thereby constraining further enhancements in the LFM gyroscope accu-
racy. Naturally, the quality factor of a symmetrical structure resonator can be intentionally
designed to be exceptionally high, thereby effectively mitigating this effect.

In the process of suppressing stiffness coupling, the azimuth of the principal stiffness
axis can be estimated using (19). As illustrated in Figure 12a, the discrimination results for
azimuths of 1°, 1.5°, 2°, 3°, 5°, and 10° are obtained through numerical simulation. There
is a notable agreement between the set values and the discrimination results, with the
estimation error decreasing as the azimuth increases. This phenomenon can be attributed
to the approximate 0.03° error present in each discrimination. The magnitude of this error
is dependent on the accuracy of frequency detection and the resolution of the voltage that
can be applied. Likewise, Figure 12b illustrates the outcomes of detecting 10 phase errors
ranging from 0.5 degrees to 5 degrees at intervals of 0.5 degrees with an identification error
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of approximately 0.045°. This is attributed to the negligible variation in the control force as
the phase error approaches zero, limiting the improvement in the identification accuracy.

Figure 12. (a) The identification results of the azimuth of the principal stiffness axis and the er-
rors of identification. There is an approximate 0.03° error present in each discrimination. (b) The
identification results of the system phase error with a residual error of approximately 0.045°.

To elucidate the factors influencing SF nonlinearity, we conducted simulations to
assess the output performance in four cases set earlier. Figure 13a illustrates the results
of different angular rate inputs and outputs for them, ranging from −500°/s to 500°/s.
The data were fitted using the least squares method, and the results are color-coded in
the figure. These fitting results can be further employed to correct the output SF and bias.
The comparison between Case 1 and Case 4 reveals that both stiffness coupling and phase
error notably impact the SF and the constant bias. Moreover, the comparison between
Case 2 and Case 3 reveals that the impact of stiffness coupling on bias is more pronounced
than that of phase error. Simultaneously addressing both aspects can optimize the accuracy
of the output.

Both the variation in the SF and bias with the angular rate can lead to the nonlinearity
of the full measurement SF. The output exhibits rate dependence, which can be quantified
by the SF linearity error. To illustrate the impacts of different factors on the SF nonlinearity,
we conducted a comparison of linearity errors in four cases as well. Figure 13b illustrates
that the results of Case 2 exhibited a noteworthy improvement in comparison to Case 1.
This change can be primarily attributed to the substantial magnitude of stiffness coupling
in Item 5 of (18), coupled with the residual demodulation phase shift, leading to zero bias
disturbances. It is worth noting that the curve of Case 1 exhibits even symmetry and that
of Case 2 displays odd symmetry. This is due to the fixed sign of Item 5, whereas the
sign for Item 3 varies in accordance with the sign angular rate. The results of Case 3
compared to Case 1 and Case 4 compared to Case 2 are both flatter and have the same trend.
This indicates that a slight phase error can also contribute to nonlinearity. The maximum
linearity error is defined to represent the SF nonlinearity of the gyroscope. Within the
measurement range of ±500°/s, the SF nonlinearity for Case 1 and Case 4 is 500 ppm and
15 ppm, respectively. These results suggest that the interaction effect analysis and error
correction can enhance the gyroscope’s linearity by approximately 33 times.
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Figure 13. (a) The solid line represents the least squares fit of data in each case, and the results are
color-coded. Additionally, the changes in the bias and SF were magnified. The best accurate output
is obtained by suppressing both the stiffness coupling and phase error. (b) The linearity error of
the SF is evaluated for the four cases within the measurement range of ±500°/s, and a magnified
comparison between Case 2 and Case 4 is provided. Suppression of stiffness coupling drastically
reduces the SF nonlinearity, and compensation of phase error further optimizes the results.

Due to the correlation between the results of nonlinearity and the measurement
range, numerical simulations were conducted for different measurement ranges. A total
of eighteen measurement ranges were selected, ranging from ±100°/s to ±1000°/s with
an interval of 100°/s and from ±1440°/s (±4Hz) to ±3600°/s (±10Hz) with an interval
of 360°/s. As illustrated in Figure 14a, after obtaining the SF nonlinearity within the
corresponding measurement range, fitting is conducted. Numerically, nonlinearity at
100 ppm corresponds to ±1150°/s, meeting high precision requirements, while 1000 ppm
corresponds to ±2450°/s, meeting consumer-grade stability requirements. The maximum
tested measurement range is approximately ±10 Hz, corresponding to a 10 Hz bandwidth.
From a trend perspective, as the measurement range increases, the SF nonlinearity rapidly
rises. This can be attributed to the rapid decline in the amplitude control and the frequency
difference control capabilities at large rates, leading to a significant increase in the velocity
amplitude mismatch. Additionally, as the angular rates approach the bandwidth, they
may cause disturbances akin to modulation frequencies in the system, resulting in a rapid
performance degradation.

To confirm this conjecture, the nonlinearity of the SF was tested at a range of 1000°/s
across different frequency splits, ranging from 10 Hz to 30 Hz. The results, displayed in
Figure 14b, depict the linearity errors for nine distinct frequency splits, specifically 30 Hz,
25 Hz, 20 Hz, and 15 Hz to 10 Hz. Each group comprises 21 data points, collected in the
range from −1000°/s to 1000°/s, with increments of 100°/s. For each set of simulations,
the parameters of the filters in the calculation module were adjusted accordingly, forming
the foundation for normal system operation. The simulation results suggest that, within a
certain range, scale factor nonlinearity is correlated with the frequency split setting. Larger
splits result in less nonlinearity, but there is a limit beyond which increasing the split does
not further reduce nonlinearity. Since the control parameters remained constant, controller-
related factors were ruled out. Therefore, this phenomenon may be attributed to rates
deviating from the range of system modulation frequency perturbations. This observation
can assist with the selection of LFM’s frequency split.
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Figure 14. (a) The numerical simulation results demonstrate the SF nonlinearity for various measure-
ment ranges. The orange area represents a measurement range of ±1150°/s, which corresponds to a
nonlinearity below 100 ppm. Similarly, the green area represents a measurement range of ±2450°/s,
corresponding to a nonlinearity of below 1000 ppm. (b) The comparison results for the scale factor
linearity errors at different frequency splits within a measurement range of ±1000°/s. The results
indicate that, as the frequency split approaches the measurement range, its effect on limiting the
linearity becomes more pronounced. Conversely, when the frequency split is sufficiently distant from
the measurement range, this limitation dissipates.

5. Conclusions

To address the limitation of SF nonlinearity in wide measurement ranges of LFM fully
symmetric MEMS gyroscopes, this paper investigates the impact of the interaction between
three typical errors and the velocity amplitude mismatch. Subsequently, a step-by-step error
compensation and control optimization scheme is proposed to mitigate each contributing
factor and achieve a noteworthy reduction in the SF nonlinearity. Initially, a dynamic
model was established, encompassing stiffness coupling, system phase error, readout phase
shift, and velocity mismatch. Meanwhile, we analyzed the mutual interactions among
these factors, along with their impacts on the output. Next, in-phase force frequency
difference control and FIR filter phase matching were implemented as basic conditions,
mitigating the velocity mismatch and demodulation phase shift, respectively. Finally, we
eliminated stiffness coupling and calibrated the phase error using the quadrature voltage
and modification of the PLL reference, respectively. Compared to the original scheme,
the SF nonlinearity decreased from 500 ppm to 15 ppm within the measurement range of
±500°/s, representing a 97% reduction. Furthermore, it was discovered that ensuring a
sufficiently large frequency split effectively suppresses the SF nonlinearity. The simulation
results closely align with the theoretical analysis, offering valuable guidance for enhancing
the SF stability in LFM MEMS gyroscopes, particularly in the context of manufacturing
process limitations.
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Abbreviations
The following abbreviations are used in this manuscript:

MEMS Micro-Electro-Mechanical System
SF Scale Factor
ZRO Zero Rate Output
AM Amplitude Modulated
FM Frequency Modulated
QFM Quadrature Frequency Modulated
IFM Indexed Frequency Modulated
LFM Lissajous Frequency Modulated
ASIC Application-Specific Integrated Circuit
PLL Phase-Locked Loop
AGC Automatic Gain Control
CSWaP Cost, Size, Weight, and Power
NCO Numerically Controlled Oscillator
FIR Finite Impulse Response
ADC Analog-to-Digital Converter
DAC Digital-to-Analog Converter
PI Proportional Integral

Appendix A. Glossary

The list of symbols used in this manuscript. The key parameters in Table 2 are not
repeated here.

Table A1. Symbols used in this manuscript.

Symbol Description Symbol Description

x, y vibration displacements of the X and Y modes α angular gain
fx, fy control forces of the X and Y modes Ω input angular rate
xa, ya amplitudes of the vibration displacements d11, d22 damping of the X and Y modes
ẋa, ẏa change rates of the amplitudes d12, d21 damping coupling between the X and Y modes
φqx, φqy phases of the vibration displacements k11, k22 stiffness of the X and Y modes
φ f x, φ f y phases of the control forces k12, k21 stiffness coupling between the X and Y modes
fxc, fyc in-phase control forces of the X and Y modes 2/τ average damping between the X and Y modes
fxs, fys quadrature control forces of the X and Y modes ∆(1/τ) anisodamping between the X and Y modes
Fxa, Fya amplitude control forces of the X and Y modes ω2 the average stiffness between the X and Y modes
ωx, ωy the instantaneous frequencies of the X and Y modes ∆φxy real-time phase difference in the displacements
vxa, vya amplitudes of the vibration velocity vrrs the reciprocal sum of the velocity ratio
v̇xa, v̇ya change rates of the vibration velocity amplitudes vrrd the reciprocal difference of the velocity ratio

δϕx, δϕy
difference between the displacement phase and the
force phase of the X and Y modes ωΣxy summation of the instantaneous frequencies

Ax, Ay amplified amplitudes of the displacements ω∆xy difference in the instantaneous frequencies
φ1, φ2, φ3 phase lags generated by blocks in the loop δφ phase lag generated by the resonator
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