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Abstract: A visual camera system combined with the unmanned aerial vehicle (UAV) onboard edge
computer should deploy an efficient object detection ability, increase the frame per second rate of
the object of interest, and the wide searching ability of the gimbal camera for finding the emergent
landing platform and for future reconnaissance area missions. This paper proposes an approach to
enhance the visual capabilities of this system by using the You Only Look Once (YOLO)-based object
detection (OD) with Tensor RTTM acceleration technique, an automated visual tracking gimbal camera
control system, and multithread programing for image transmission to the ground station. With
lightweight edge computing (EC), the mean average precision (mAP) was satisfied and we achieved a
higher frame per second (FPS) rate via YOLO accelerated with TensorRT for an onboard UAV. The OD
compares four YOLO models to recognize objects of interest for landing spots at the home university
first. Then, the trained dataset with YOLOv4-tiny was successfully applied to another field with a
distance of more than 100 km. The system’s capability to accurately recognize a different landing
point in new and unknown environments is demonstrated successfully. The proposed approach
substantially reduces the data transmission and processing time to ground stations with automated
visual tracking gimbal control, and results in rapid OD and the feasibility of using NVIDIA JetsonTM

Xavier NX by deploying YOLOs with more than 35 FPS for the UAV. The enhanced visual landing
and future reconnaissance mission capabilities of real-time UAVs were demonstrated.

Keywords: UAV; YOLO; object detection

1. Introduction

Unmanned aerial vehicles (UAVs) have undergone rapid development in the consumer
market in recent years. Originally used for military purposes, UAVs are now applied in a
variety of industries, including photography, agriculture, search and rescue, surveying and
mapping, patrol inspection, and express delivery. Owing to technological advancements,
this development in UAV technology has provided the consumer market with smaller,
more economical, more advanced, and safer UAVs.

The key technology of UAVs is their ability to hover while maintaining a stable position,
a process commonly known as “hovering”. Realized through advanced sensors and control
systems, this technology enables UAVs to maintain a stable position under varying wind
speeds and altitudes, and other changes in the external environment. With hovering
technology, UAVs can execute various tasks, including aerial photogrammetry, surveying,
and surveillance. In addition, UAVs are equipped with autonomous takeoff and landing
technologies, which enable them to safely operate in a range of environments. Autonomous
takeoff technology allows UAVs to automatically complete testing and preparation tasks
prior to takeoff, thereby increasing their operational safety and convenience. Furthermore,
the autonomous landing technology of UAVs employs high-precision sensors and smart
algorithms to detect and identify the surrounding environment, select a suitable landing
point, and achieve a stable and precise autonomous landing. Of these two technologies,
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autonomous landing technology is the more difficult to realize. Because this technology
involves the selection of suitable landing points, this study developed the landing point
detection technology for UAVs by integrating artificial intelligence recognition technology
for landing point detection. Due to any possible environmental disturbance or missing
communication signal, the returned UAVs with a better landing place should be assisted
by their onboard visual recognition system when the command of return-to-takeoff-place
is absent.

In recent years, research in You Only Look Once (YOLO)-based object detection (OD)
has seen widespread application in the field of UAVs. In [1], the application of machine-
learning-based OD algorithms to locate hovering UAVs was proposed. That study tested the
overall efficiency, accuracy, and consistency of five image detection models—namely, SSD
MobileNet v1, SSD Inception v2, Faster RCNN Inception v2, YOLOv2, and Tiny YOLO—in
UAVs. The experimental results revealed that YOLOv2 exhibited the highest accuracy
when flying over a white background, whereas Faster RCNN Inception v2 demonstrated
the most satisfactory results in three indicators and two different backgrounds for detecting
a target UAV. In [2], YOLOv4 was employed to recognize four types of drones—namely,
multirotor, fixed-wing, helicopters, and VTOLs—and to distinguish drones from birds. By
changing the number of convolutional layers in the YOLOv4 model, that study obtained
more precise and detailed semantic features. Subsequently, the mean average precision,
confusion matrix, intersection over union, precision, accuracy, F1-score, and recall were all
used to evaluate the modified YOLOv4 network. Relative to the YOLOv4 basic model, the
modified YOLOv4 model exhibited a slight overall improvement of 4% in these evaluation
criteria. In [3], the performances of multiple versions of the YOLO algorithm for detecting
UAVs were used, and distance-wise analysis (i.e., for close, mid, and far ranges) was
performed to measure distance-wise image recognition accuracies. The YOLOv5 model
successfully differentiated birds from drones in close and mid ranges. By contrast, the
newer YOLOv7 model demonstrated a lower drone detection accuracy than the YOLOv5
model in harsh backgrounds, inferring that the YOLOv5 model exhibited superior drone
detection performance compared to the YOLOv7 model. In [4], the GGT-YOLO algorithm
was proposed as a novel OD technology for drone-based maritime cruising. That study
introduced transformers to enhance the feature extraction capability of the model and to
improve its detection of small or occluded objects. Additionally, GhostNet was employed
to replace the ordinary convolution in the backbone network with linear transformations,
thereby reducing the required parameters and computation cost. Under the combined
enhancements of the two technologies, the performance of the GGT-YOLO algorithm for
drone-based maritime cruising was improved. In [5], a dataset of visual images taken from
a UAV with RGB imaging and thermal infrared information was used for detection. That
study employed YOLOv5 as the basic network model and a new model with pre-trained
model transfer learning from the MS COCO dataset to improve YOLOv5 for human–
object detection in an RGBT image dataset. In [6], co-operative navigation was applied to
unmanned swarms. After the co-ordinates of the targets were obtained from the YOLO
algorithm, visual vectors were constructed by connecting the targets in the covisibility
graph of the nodes in the swarm. That study conducted a field test by using two-wheeled
robots and one UAV, and the results revealed that the relative attitude error between the
nodes was less than 4◦. After filtering, the attitude divergence of the low-precision IMU
device could be effectively reduced to increase the precision of the attitude estimation in an
unmanned co-operative navigation swarm. In summary, the literature indicates that the
integration of YOLO-based OD technology in UAVs is presently the trend in research.

Under consideration of the future development and applications of UAVs, a high
density of UAV flights may result in airspace traffic congestion. Given that UAVs currently
have limited battery life during flight, the development of technology to enable UAVs to
autonomously select suitable landing sites in any given environment is essential. Therefore,
to prevent damage to the UAV and to the public caused by crashes during UAV flight, the
purposes of this study were as follows: (1) to develop image recognition and automated
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gimbal tracking control technologies in order to support the UAVs’ hovering in unfamil-
iar environments, and (2) using a multithread programming technique to incorporate
OD technology and an allowable time slot for computation to search and determine the
nearest and most suitable landing points. In [7,8], image recognition technologies were
incorporated into UAVs for landing, and heliports were used as targets for landing point
recognition. Accordingly, the present study employed the YOLO model to recognize open
areas and heliports. Because the recognition of open areas must involve the simultaneous
detection of whether crowds are present within the vicinity of the landing point, the open
space recognition characteristics used in this study differed from those used for general
image recognition. To facilitate the emergency landing process of UAVs, the open space
recognition characteristics must simultaneously serve as a basis for evaluating whether
the open area is suitable for landing, detecting multiple landing points, and selecting the
optimal landing point. Alternatively, gimbal control can be applied to search for landing
points in order to reduce the power consumption caused by UAVs turning and enable the
scanning of landing points when the battery is low.

The remainder of this paper is organized as follows: Section 2 describes the fundamen-
tals of the image recognition technology by using YOLO deep-learning networks. Section 3
presents the experimental results. Finally, Section 4 concludes this paper.

2. Fundamentals of YOLO Deep-Learning Networks

The development in computer vision technology can be classified into conventional
image processing techniques and deep-learning technology. Prior to the invention of graphic
processing units, the classification, feature extraction, and region segmentation of images
relied on conventional image-processing techniques, which employed inferences based on
mathematical theories to accomplish the objective [9]. In convolution-based image processing,
the image is fuzzified, and edge detection is conducted to extract features from the image; the
extracted features are subsequently employed to facilitate the identification of information in
images by the computer. In [10], a noise-filtering method was proposed for quality control
in an automated production line. In [11], meter reading was achieved after the position of
the pointer was detected using the Hough transform. However, the difficulty of conventional
image processing lies in the need to determine which features are crucial in each image. As the
number of classification categories increases, the definition of features becomes more complex,
and, thus, engineers are required to fine-tune the parameters.

Deep learning refers to a data-driven neural network model in which a labeled image
dataset is used for machine training. Given that deep neural networks are generally
composed of multiple convolutional layers, many low-level features can be merged into
high-level features. This merging process enables the machine to automatically compute
the most descriptive and significant feature for any given classification [12]. The YOLO
system combines convolutional layers, pooling layers, and fully connected layers to form a
backbone to achieve real-time OD [13]. In [14], the updated version, YOLOv2, was proposed
using batch normalization in the backbone with reference to the architectural design of
VGG19. In [15], YOLOv3, using Darknet-53, was proposed. YOLOv3 contains a ResNet
structure as the backbone. In [16], YOLOv4 was proposed; its architecture comprised
a CSPDarknet-53 backbone [17], SPP additional module, and PANet path-aggregation
neck. Compared with the previous versions of the YOLO system, YOLOv4 demonstrated
considerably higher object recognition and positional accuracy for objects of varying sizes.

Proposed in [18] as a simplified version of YOLOv4, YOLOv4-tiny is a lightweight
network architecture designed for low-end GPU devices. As depicted in Figure 1, the
architecture comprises seven CBL modules, three CSP modules, three largest pooling layers,
an upsample layer, two convolutional layers, and two detection layers of two different
dimensions. In YOLOv4-tiny, feature extractions are combined through concatenation
instead of adding to simplify the computation and to remove two of the CSP modules from
the original YOLOv4 architecture, thereby greatly reducing the computational load. This
process enables YOLOv4-tiny to achieve faster execution and training. In the experiment



Sensors 2023, 23, 8999 4 of 16

of this study, the UAV is controlled to fly above a school campus. While in flight, gimbal
control and YOLO image recognition are used for detecting suitable landing points on
campus, as presented in Figure 2.
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3. Experimentation

Although YOLO has enabled real-time object detection, there are still significant chal-
lenges and opportunities for development when applying it to unmanned aerial vehicles.
To enhance the intelligence and real-time decision-making capabilities of UAVs during
flight, the integration of high-performance GPU and CPU chips into UAVs has emerged
as a solution. Consequently, the highly efficient NVIDIA JesonTM edge-computing de-
vices have garnered attention in the UAV community. NVIDIA is a prominent American
technology company specializing in the design of graphics processing units (GPUs) and
edge-computing units. The common NVIDIA edge-computing device specifications are
shown in Table 1.

In the study of various object detection techniques, Lin demonstrated the feasibility of
real-time object detection using the NVIDIA Jetson Nano development kit [19]. In the field
of health-monitoring devices, Ahmad similarly employed the NVIDIA Jetson Nano as an
experimental platform, due to its stable performance during extended monitoring tasks [20].
Therefore, it is evident that utilizing NVIDIA edge-computing devices for UAVs is indeed
feasible. When considering the balance between energy consumption and recognition
efficiency in UAVs during hovering with a payload, these edge-computing devices are
well-suited for the task.
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The NVIDIA Jetson series includes products such as the NVIDIA Jetson Xavier NX,
NVIDIA Jetson Nano, and NVIDIA Jetson AGX Orin. Among them, the NVIDIA Jetson
Nano is the lightest in weight, with the lowest power requirements and relatively lower
computational capability, making it suitable for basic tasks in small UAVs. Although the
computational capabilities of the NVIDIA Jetson Xavier NX are lower than those of the
NVIDIA Jetson AGX Orin, it weighs only 200 g, making it highly suitable for UAVs for
image recognition purposes.

Table 1. Comparison of different edge-computing devices [21].

Type Jetson Xavier NX Jetson Nano Jetson AGX Orin

CPU 8-Core ARM
Cortex-A57

4-Core ARM
Cortex-A57

8-Core ARM
Cortex-A78

GPU NVIDIA Volta NVIDIA Maxwell NVIDIA Ampere
Memory 8 GB LPDDR4 4 GB LPDDR4 32 GB LPDDR5

AI performance 21 TOPS 1 TOPS 200 TOPS
Weight 370 g 100 g 1000 g

The hardware architecture of the experimental UAV in this study comprised the UAV
body, a gimbal camera, and an edge-computing module. The UAV used is an AXM-Q7009
4-rotor UAV (AVIX, Taichung, Taiwan) with a diagonal footprint of 702 mm and weight
of 2.6 kg. The UAV was powered using a LiPo battery of 17,600 mAH (2 kg) and had
a hover time of 30 min, as listed in Table 2. The Pixhawk Cube Orange+ is used as the
flight control system. The UAV is equipped with an AXG-AS03F, a mini 3-axis gimbal
camera weighing 285 g with dimensions of 96 × 79 × 120 mm. Owing to its lightweight
design, the camera is suitable for installation on UAVs with a weight constraint. The
camera has 12.71 megapixels and an optical zoom of 3.5 X for image capturing, as detailed
in Table 3. In addition, the UAV is equipped with a lightweight, high-efficiency NVIDIA
Jetson Xavie NX edge-computing module for YOLO image recognition. Despite having
a lower computational capability than the NVIDIA Jetson AGX Orin, the NVIDIA Jetson
Xavie NX surpassed its weight by only 200 g, while the NVIDIA Jetson AGX Orin weighs 1
kg. Accordingly, the NVIDIA Jetson Xavie NX is more suitable for installation on UAVs
for image recognition. Figures 3 and 4 illustrate the hardware architecture of the UAV and
the wiring diagram of the hardware. In Figure 3, the hardware architecture of the NVIDIA
Jetson Xavie NX serves as an onboard main control system and is connected to the Pixhawk
flight control board through Mavlink for UAV flight. In Figure 4, the NVIDIA Jetson Xavie
NX is connected to the gimbal camera through an EtherNet connection and controls the
filming direction of the camera.

Table 2. Drone specification.

Type AXM-Q7009

Propellers 4
Diagonal footprint 702 mm

Hover time 30 min
IP rating IP43

Wind tolerance Beaufort scale 4
Max. speed 20 m/s

Payload 4 kg
Weight 2.6 kg
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Table 3. Gimbal specification.

Type AXG-AS03F

Weight 285 g
Size 96 × 79 × 120 mm

Control range Tilt: +70◦~ −110◦, Pan: ±150◦

Sensor CMOS: 1/2.3′′, Resoultion: 4024 × 3036
Frame rate 50 Hz/25 fps

Optical zoom 3.5X
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As in Figure 5, the flowchart by the tracking gimbal control system for the purpose
of searching for a landing point is depicted. The scenarios for the landing point detection
process can be achieved as follows: First, the Yolov4-tiny algorithm is activated to search
for any possible target landing points. After detecting a landing point, the module can
determine whether any humans or other objects are present. If the landing spots are
candidates which would not hinder the UAV during landing, the landing point can be
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recorded as a potential landing point. However, if the algorithm detects humans or other
objects that may hinder UAV landing, the automated gimbal tracking control module can
adjust the detection angle of the camera and continue the detection process. If all landing
spots in the detection direction of the camera is finished, the gimbal control module can
turn the gimbal camera toward the opposite direction and continue the detection process.
Once the search tracking control is completed, the module can compare all the potential
landing points and choose the most suitable one in a future study.
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To enable UAVs to recognize the landing platforms at National Chung Hsing Univer-
sity (NCHU), an edge-computing device (Nvidia Jetson Xavier NX) was equipped on the
UAV and a different YOLO architecture was utilized as the object detection solution.

To identify UAV landing platforms at school, we captured images of lawns, sports
fields, skating rinks, playgrounds, and plazas using the UAV as our training dataset for
YOLO. The dataset was 707, with 637 images for the training set and 70 images for the
validation set. The labeling process is presented in Figure 6.

As mentioned above, the versions YOLOv3 to YOLOv7 are studied in the literature.
Based on the same training dataset, the validation of the different YOLOs’ performance in
the metrics of precision, recall, and mAP are detailed in Table 4. The presumed results, but
with slightly low precision, recall, and mAP, for the test are shown in Table 5. Based on the
issues of the training dataset effort, light weight, and power energy consumption for the
UAV’s onboard hovering, in this study, the YOLO models, including YOLOv4, YOLOv3,
YOLOv4-tiny, and YOLOv3-tiny, are selected and compared by knowing the performance
on the edge computer. The training parameters of the neural network were set to be the
same, where the batch_size was 16, the subdivisions were 16, the width by height were
416 × 416 pixels, and the iteration was 8000.
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Table 4. The validation of different YOLOs’ performance in precision, recall, and mAP.

NN Model

Number of
Parameters

Used in
Model

Precision Recall mAP@.5 mAP@.5:.95

Large Scale

YOLOv3 61.6 M 0.912 0.928 0.935 0.637
YOLOv4 64.4 M 0.92 0.936 0.946 0.628
YOLOv5l 46.5 M 0.926 0.899 0.922 0.612
YOLOv7 36.9 M 0.91 0.914 0.934 0.631

Small Scale

YOLOv3-tiny 8.6 M 0.894 0.898 0.922 0.585
YOLOv4-tiny 6.1M 0.899 0.859 0.895 0.518

YOLOv5n 3.2 M 0.866 0.901 0.927 0.529
YOLOv5s 12.6 M 0.903 0.924 0.93 0.573

YOLOv7-tiny 6.2 M 0.905 0.94 0.933 0.614

Table 5. The test of different YOLOs’ performance in precision, recall, and mAP in Table 4.

NN Model

Number of
Parameters

Used in
Model

Precision Recall mAP@.5 mAP@.5:.95

Large Scale

YOLOv3 61.6M 0.878 0.937 0.923 0.596
YOLOv4 64.4M 0.87 0.928 0.94 0.609
YOLOv5l 46.5M 0.876 0.905 0.921 0.598
YOLOv7 36.9M 0.852 0.941 0.916 0.608

Small Scale

YOLOv3-tiny 8.6M 0.873 0.905 0.898 0.572
YOLOv4-tiny 6.1M 0.878 0.827 0.859 0.508

YOLOv5n 3.2M 0.915 0.817 0.88 0.529
YOLOv5s 12.6M 0.896 0.887 0.938 0.601

YOLOv7-tiny 6.2M 0.876 0.934 0.91 0.59

In order to improve the FPS performance of the YOLO calculation on the edge com-
puter, the four neural networks were optimized and accelerated using TensorRT, and the
recognition time was compared.

4. Results

The loss function of the YOLO training was presented in Figure 7. The average
precision (AP) and mean average precision (mAP) for the labelled categories are presented
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in Table 6. From high to low, the accuracy for the YOLOv4, YOLOv3, YOLOv4-tiny, and
YOLOv3-tiny are 92.6%, 82.2%, 79.6%, and 63.8%, respectively.

After the YOLO models were accelerated using TensorRT, the mAP for each image
recognition on the edge computer was shown in Table 7. As usual, the YOLO-tiny model
exhibited a shorter processing time and higher FPS in Table 7. Although YOLOv4-tiny did
not achieve the same high accuracy as YOLOv4, it demonstrated the faster recognition and
complete labeling of all landing points compared to YOLOv3 and YOLOv3-tiny. In the
case of YOLOv4-tiny, the mAP is slightly lower than that of YOLOv3, but the FPS is more
than three times higher than YOLOv3. This achievement surpasses the camera’s frame
rate limitations while maintaining an almost 80% recognition rate, as presented in Figure 8.
The performance of different YOLO models deploying the actual identification process at
the National Chung Hsing University (NCHU) is presented in Figure 9. The results for
the confidence factor of the actual identification imaging performance at NCHU by (a)
YOLOv4, (b) YOLOv3, YOLOv4-tiny, and YOLOv3-tiny structures are more than 93%.
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Table 6. Comparison of different YOLO architectures’ performance for onboard UAV.

Model Precision Recall F1-Score mAP

YOLOv4 0.9 0.93 0.91 0.926
YOLOv3 0.91 0.77 0.83 0.822

YOLOv4-tiny 0.49 0.87 0.62 0.796
YOLOv3-tiny 0.64 0.70 0.67 0.638

Table 7. Comparison of different YOLO architectures’ performance with TensorRTTM optimization.

Model with Tensor RT Processing Time(s) FPS

YOLOv4 + TRT 0.1378 7.26
YOLOv3 + TRT 0.1123 8.91

YOLOv4-tiny + TRT 0.0274 36.48
YOLOv3-tiny + TRT 0.0271 36.87
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Illustrating the ability to image the actual identification performance in other fields, the
application of the UAV’s OD by developed YOLOs was for the purpose of recognizing the
un-pretrained landing point. This was extended to the Asia UAV AI Innovation Application
R&D Center (AURD) in Chai-Yi, Taiwan. The distance between the NCHU and the R&D
Center is more than 100 km. Although the accuracy may slightly decrease due to the
changes in the environment, the experimental data demonstrate that the developed system
can effectively label the landing points in various locations. The experimental results show
the adaptability to different field conditions by the developed automated tracking gimbal
control camera with the YOLO computation (Figure 10).
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5. Conclusions

This study resolves the solution for the conventional returned UAVs with another
new and better landing policy. The developed onboard visual EC system can assist the
UAV when the original takeoff point is not available. The gimbal-camera tracking control
technology preserves the selection of suitable landing points and we developed a YOLO
OD landing point detection technology for UAVs. The computational capacity of the edge
computer under the UAV’s payload and battery constraints is resolved by TensorRT. A
YOLO-based UAV was deployed with high efficiency and high FPS. In comparison to the
general YOLOv4 model, although the YOLOv4-tiny exhibits less accuracy, its FPS perfor-
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mance satisfies the real-time detection requirements, similar to human visual perception.
The response time of the onboard EC provides the immediate decision for a ground station
when the UAV is on duty. Moreover, the swarm intelligence based on the individual image
of the UAV can be synergized. The applied YOLOv4-tiny achieves a 15% higher accuracy,
enabling the more effective identification of the landing point when it was compared to the
YOLOv3-tiny under the same neural network architecture.

Therefore, in this study, YOLOv4-tiny with the OD system is suggested to be the most
suitable model architecture for object detection for AXG-AS03F UAV. The experimental
results also prove that the onboard UAV’s OD can extend to a different location. Overall,
this study provides evidence supporting the feasibility and effectiveness of employing
YOLO-based object detection and edge computing to enhance the capabilities of the real-
time UAV emergency landing operation.
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