
Citation: Rajagopal, S.R.; Ke, L.;

Sandoval, K.; Rosenberger, A.T.

Confirmation of Dissipative Sensing

Enhancement in a Microresonator

Using Multimode Input. Sensors 2023,

23, 8700. https://doi.org/10.3390/

s23218700

Academic Editors: Vittorio M.

N. Passaro, Nikolay Kazanskiy and

Yuliya Semenova

Received: 12 September 2023

Revised: 12 October 2023

Accepted: 13 October 2023

Published: 25 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Confirmation of Dissipative Sensing Enhancement in a
Microresonator Using Multimode Input †

Sreekul Raj Rajagopal , Limu Ke, Karleyda Sandoval and Albert T. Rosenberger *

Department of Physics, Oklahoma State University, Stillwater, OK 74078, USA
* Correspondence: atr@okstate.edu
† This paper is a substantially extended and revised version of our conference paper: Rajagopal, S.R.;

Sandoval, K.; Rosenberger, A.T. Multimode input for dissipative sensing enhancement in whispering-gallery
microresonators. In Proceedings of SPIE 11700, Optical and Quantum Sensing and Precision Metrology,
San Francisco, CA, USA, 5 March 2021; p. 117002T.

Abstract: Optical microresonators have proven to be especially useful for sensing applications. In
most cases, the sensing mechanism is dispersive, where the resonance frequency of a mode shifts
in response to a change in the ambient index of refraction. It is also possible to conduct dissipative
sensing, in which absorption by an analyte causes measurable changes in the mode linewidth and
in the throughput dip depth. If the mode is overcoupled, the dip depth response can be more
sensitive than the linewidth response, but overcoupling is not always easy to achieve. We have
recently shown theoretically that using multimode input to the microresonator can enhance the
dip-depth sensitivity by a factor of several thousand relative to that of single-mode input and by a
factor of nearly 100 compared to the linewidth sensitivity. Here, we experimentally confirm these
enhancements using an absorbing dye dissolved in methanol inside a hollow bottle resonator. We
review the theory, describe the setup and procedure, detail the fabrication and characterization of an
asymmetrically tapered fiber to produce multimode input, and present sensing enhancement results
that agree with all the predictions of the theory.

Keywords: microresonator; whispering-gallery modes; dissipative sensing; multimode fiber

1. Introduction

Over the past few decades, optical microresonators have been a topic of much research
and application. They can have ultra-high quality factors (Q) and small mode volumes and
hence have emerged as an extraordinary platform for various sensing applications [1,2]. In
particular, owing to their high sensitivities and low detection limits, optical sensors based
on whispering-gallery mode (WGM) microresonators have been used to monitor changes
in various physical quantities such as pressure, temperature, chemical composition, and
refractive index, as well as other quantities [3,4]. Optical WGM sensors operate by detecting
changes in features of their throughput spectral response such as the resonance frequency,
linewidth, and resonant throughput dip depth, due to perturbations in the environment
probed by the evanescent (or interacting) fraction of the WGM [5]. The sensing principle of
an optical WGM sensor can be broadly classified as dispersive or dissipative. The more
widely used modality, dispersive sensing, is based on measuring the shift in the WGM
resonance frequency due to a change in the ambient refractive index. Dissipative sensing,
in general, entails measuring the change in the linewidth of a WGM due to absorption or
scattering by an analyte in the ambient medium. However, dissipative phenomena can also
induce a change in the resonant throughput dip depth, and hence, dissipative sensing can
be realized by monitoring the change in the throughput dip depth of a WGM.

A tapered optical fiber enables the efficient coupling of light into and out of the
microresonator. Usually, an adiabatically tapered fiber (symmetric tapering) is used, and
hence, a single fiber mode is incident on the microresonator. The resonant throughput dip
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depth in such a system depends on the ratio of the outcoupling loss (T) to the effective
intrinsic loss (αL). For typical systems used at a wavelength of 1550 nm, with a taper
waist radius of 2 µm and a resonator radius of 300 µm, outcoupling into higher-order
waist modes is negligible [6], and the tapered fiber acts as if it were a single-mode fiber.
In earlier work, dissipative sensing was studied in detail in an adiabatically tapered-
fiber-coupled microresonator system, and it was shown that, when overcoupled (T > αL),
dissipative sensing based on the relative change in dip depth can be more sensitive than
either dispersive sensing based on frequency change or linewidth-change-based dissipative
sensing [7,8]. However, it is not always possible to achieve overcoupling, in which case there
is no inherent sensitivity advantage to using the dip-depth sensing method. Recent studies
on dissipative sensing based on the transmittance dip for two different configurations, a
waveguide side coupled to a circular microresonator [9] and a self-interference microring
resonator [10–14], have again confirmed that dissipative sensing can be more sensitive than
dispersive sensing. However, in all the dissipative sensing configurations discussed to date,
the input to the microresonator consists of a single waveguide mode or fiber mode.

We have recently shown theoretically that dissipative sensing in a microresonator
can be enhanced by using two-mode input [15]. With two-mode input, dip-depth-based
sensing can be two orders of magnitude more sensitive than linewidth-based sensing,
and two-mode versus one-mode dip-depth sensing can be enhanced by three orders
of magnitude. In the current paper, we experimentally confirm these results using an
absorbing dye dissolved in methanol inside a hollow bottle resonator. The Section 2
presents a summary of the theory, a description of the experimental setup and procedure,
and the specifics of achieving multimode input to the microresonator by using asymmetric
tapering of the coupling fiber (nonadiabatic downtaper and adiabatic uptaper) to couple
light into and out of the microresonator. It details the fabrication and modeling of, and beat
length measurements made on, the asymmetric tapered fiber, along with delineation-curve
arguments for its nonadiabaticity. The Section 3 presents experimental results and analysis,
followed by a Section 4. The two enhancement factors that are measured in this work
and compared to theory are η21, the two-mode dip-depth sensing response relative to the
one-mode dip-depth sensing response, and ηdl, the two-mode dip-depth sensing response
relative to the linewidth sensing response. These enhancements are independent of Q, but
absolute sensitivity increases with Q, so we also compare our system to an ideal one-mode
system and show that a mode with an intrinsic quality factor Qi at least two orders of
magnitude larger (~109) would be needed to provide the same sensitivity, whether the
single-mode system uses dip-depth or linewidth sensing.

2. Materials and Methods
2.1. Summary of Theory

As described in more detail in our theoretical treatment [15], the fiber that couples
light into and out of the microresonator is tapered to a thin waist upon which two modes
are excited owing to the nonadiabatic downtaper transition. The incoupling strength
and outcoupling loss are assumed to be equal (we showed in [15] that this assumption
is not restrictive) and given by T1 for the fundamental fiber mode and by T2 for the
higher-order fiber mode. The two fiber modes have the same frequency and couple to a
single microresonator WGM that has intrinsic loss αL, but they have different propagation
constants and different amplitudes. The ratio of amplitudes, higher-order to fundamental,
is denoted by m. When the frequency is tuned to WGM resonance, the throughput power
depends on the relative phase of the two input modes, which can be selected by moving
the microresonator along the fiber waist. The throughput power relative to the input power
is given, on resonance, by

R± =

(
T1 − T2 − αL± 2

√
T1T2m

)2

(T1 + T2 + αL )2 , (1)
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where R+ and R− denote the relative throughput with the two fiber modes in phase and
out of phase, respectively. These throughput powers relative to the input power in the
fundamental fiber mode are measured by comparing to the value far off resonance, where
no light couples into the WGM; the light in both fiber modes then encounters the adiabatic
uptaper in which light cannot couple between modes, so only the light in the fundamental
mode gets transmitted into the single-mode untapered fiber, and thus, R = 1 [15]. Under the
conditions that lead to large sensing enhancement, a shallow dip is observed for in-phase
coupling (R+ slightly less than 1), and a small peak occurs with out-of-phase coupling (R−
slightly greater than 1). This means that

T1 ≈
√

T1T2m ≈ T2 + αL, (2)

with values of the three parameters increasing from left to right. Sensing is carried out with
in-phase coupling, where the relative dip depth is given by M = 1− R+. As a function of
the intrinsic loss, the dip depth is

M(αL) =
4
[(

T1 +
√

T1T2m
)(

T2 + αL−
√

T1T2m
)]

(T1 + T2 + αL )2 . (3)

The introduction of an absorbing analyte changes the effective intrinsic loss, resulting
in a fractional change in the dip depth. For our case of a hollow bottle resonator [16,17]
filled with methanol, the effective intrinsic loss is

αL = αiL + f αsL, (4)

which, upon introducing the analyte, becomes

α′L = αiL + f αsL + f αaL = αL + dαL, (5)

where αi is the intrinsic loss coefficient of the microresonator that includes scattering,
absorption, and radiation losses, αs is the absorption coefficient of the solvent that contains
the analyte in a typical sensing experiment, and αa is the absorption coefficient of the
analyte. The microresonator circumference is L, and f is the internal evanescent (interacting)
fraction [5] of the WGM that interacts with the solvent and analyte. The change in effective
internal loss is due to the addition of the analyte: dαL = fαaL.

When the fractional change in the throughput, |∆R+/R+|, is small, the change in M
will be linear in dαL, and the fractional change in the dip depth is positive (the dip gets
deeper with an increasing analyte concentration) and can be written as

1
M

dM
dαL

=

(
T1 − T2 − αL + 2

√
T1T2m

)
(T1 + T2 + αL )

(
T2 + αL−

√
T1T2m

) . (6)

This will be the case for two-mode input, where R+ remains near 1. Note, however, that for
one-mode input using an adiabatically tapered fiber with the same waist radius, setting
m = 0 in Equation (1) results in R� 1. For small enough analyte concentrations (as will be
seen in the Section 3), the change in M will also be linear in the one-mode case, and thus,
the sensitivity enhancement will be given by the ratio of Equation (6) with arbitrary m to
Equation (6) with m = 0:

η21 =

∣∣∣∣∣ (T2 + αL)
(
T1 − T2 − αL + 2

√
T1T2m

)
(T1 − T2 − αL )

(
T2 + αL−

√
T1T2m

) ∣∣∣∣∣, (7)

where η21 is the sensitivity enhancement factor for two-mode input relative to one-mode
input. Given the conditions of Equation (2), this enhancement can be quite large (>1000).
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The enhancement factor of Equation (7) can be written in more compact form in terms of
the values of R+ and R−:

η21 =

∣∣∣∣∣1− 1
2
(√

R+ −
√

R−
)

√
R+ −

√
R−

∣∣∣∣∣ 2
√

R+

1−
√

R+
. (8)

If |∆R+/R+| is not small, or if we wish to check the linearity of the dip-depth response,
we insert Equation (5) into Equation (3) and replace the dM/M found as in Equation (6) for
m 6= 0 with

∆M
M

=
M(α′L)−M(αL)

M(αL)
. (9)

Then, η21 is equal to the ratio of Equation (9) to the dM/M of Equation (6) with m = 0.
To compare the two-mode dip-depth sensing response to the linewidth sensing re-

sponse, which is the same in the two-mode and one-mode cases, begin with the relationship
between the linewidth and the total loss:

∆ν =
c

4π2na
(T1 + T2 + αL ), (10)

where c is the speed of light, n is the effective refractive index of the WGM, and a is the
microresonator radius. From this, it is clear that

1
∆ν

d∆ν

dαL
=

1
T1 + T2 + αL

, (11)

and so the enhancement of dip-depth sensing relative to linewidth sensing in the two-mode
case is given by the ratio of Equation (6) to Equation (11):

ηdl =
T1 − T2 − αL + 2

√
T1T2m

T2 + αL−
√

T1T2m
=

2
√

R+

1−
√

R+
, (12)

which can be on the order of 100.
Finally, we note that neither enhancement factor, η21 or ηdl, depends on the quality

factor Q. However, the absolute sensitivity will increase as Q does, as is evident from the
inverse dependence on the total loss in Equations (6) and (11). In [15], we showed that in
the ideal one-mode case (m = 0, T2 = 0), the intrinsic Q1i would have to be at least ~100 times
larger than the loaded two-mode Q2 to have the same absolute dip-depth sensitivity:

Q1i =

∣∣∣∣1 + x
1− x

∣∣∣∣ 2
√

R+

1−
√

R+
Q2, (13)

where x = T1/αL. Similarly, for the ideal one-mode case to have a linewidth sensitivity
equal to the two-mode dip-depth sensitivity, the criterion is even stronger:

Q1 =
2
√

R+

1−
√

R+
Q2, (14)

meaning that the loaded one-mode Q1 needs to exceed the loaded two-mode Q2 by two or-
ders of magnitude.

2.2. Experimental Setup and Procedure

As noted earlier, we detect the response (change in the dip depth or in the linewidth of
a WGM) resulting from absorption by various concentrations of an analyte (SDC 2072 dye
from H. W. Sands Corp., Jupiter, FL, USA) dissolved in methanol and interacting with the in-
ternal fraction f of a 1550 nm WGM in a hollow bottle resonator (HBR) [16,17]. Before using
the microresonator, the absorption coefficients of the solvent and analyte were measured in
a 2 mm cuvette. We found that αs = 8.76 cm−1, and that αa = 4.02 cm−1 at a concentration
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of 1 micromolar (µM), varying linearly with the concentration. Since this value of αs would
not allow for the observed Q values on the order of 107, the methanol absorption must be
saturating in the microresonator. We checked this by focusing the laser beam through the
cuvette, producing a peak intensity that we estimated to be less than that of the interacting
fraction of the WGM. Under these conditions, we found αs = 2.2 × 10–2 cm−1, confirming
the saturation; αa was unchanged.

An illustration of the experimental setup for dye absorption sensing is shown in
Figure 1. A tunable diode laser spanning a wavelength range from 1508 nm to 1580 nm
is used as the light source. A function generator FG is used to scan the laser in frequency.
Before the light passes through a set of waveplates (WP), the beam passes through an
anamorphic prism (AP) and an optical isolator (OI). The waveplates are used to select
WGMs of one polarization. A fiber coupler (FC) is used to couple light into the tapered
fiber, and a fiber isolator is used to prevent any back reflections arising from the tapered
fiber. The light then travels through the tapered fiber and couples into and out of the
microresonator. The signal is extracted at the other end of the tapered fiber and fed into a
detector. The power meter receiving the detector signal is coupled to an oscilloscope that is
triggered by the synchronization output of FG.
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Figure 1. Illustration of the experimental setup.

The tapered fiber in Figure 1 can be asymmetric, with a nonadiabatic downtaper
and an adiabatic uptaper, for two-mode input, or symmetric, adiabatically bitapered, for
one-mode input. The design, modeling, fabrication, and testing of the asymmetric fiber
is described in detail in the next subsection. The symmetric fiber is fabricated to have the
same waist radius as the asymmetric fiber.

Initially, an asymmetric tapered fiber was used to couple light into and out of a
microresonator filled with methanol, and a WGM that showed a shallow throughput dip
with the two input modes in phase and a small peak with the input modes out of phase was
selected. Then, with the input modes in phase, an analyte at predetermined concentrations
was added to the methanol, and changes in the dip depth and linewidth were recorded.
Then, the asymmetric tapered fiber was replaced by a symmetric tapered fiber of the same
waist radius, and, for the same WGM, changes in the dip depth and linewidth for different
analyte concentrations were recorded for one-mode input. Tightly capped plastic vials were
used as reservoirs for the analyte. The two ends of the microresonator were connected to
the reservoirs, and the analyte inside one reservoir was pushed through the microresonator
using a syringe feed at the top of that reservoir. A photograph of the part of the setup
showing the tapered fiber, microresonator (HBR), and reservoirs is shown in Figure 2.



Sensors 2023, 23, 8700 6 of 17

Sensors 2023, 23, x FOR PEER REVIEW 6 of 17 
 

 

for different analyte concentrations were recorded for one-mode input. Tightly capped 
plastic vials were used as reservoirs for the analyte. The two ends of the microresonator 
were connected to the reservoirs, and the analyte inside one reservoir was pushed through 
the microresonator using a syringe feed at the top of that reservoir. A photograph of the 
part of the setup showing the tapered fiber, microresonator (HBR), and reservoirs is 
shown in Figure 2. 

The ratio of fractional changes in the dip depth, asymmetric (two-mode) to symmet-
ric (one-mode), for the same analyte concentration, gives the value of the enhancement 
η21, and the ratio of the fractional change in the dip depth (two-mode) to the fractional 
change in the linewidth (either case) gives the value of the enhancement ηdl. The two-mode 
dip-depth data are ( )M Lα ′  for various values of αa, which allows the value of the inter-
acting fraction f to be determined. Note, however, that both enhancement factors are only 
weakly dependent on f, unlike the absolute sensitivity, which increases approximately 
linearly with f. The internal interacting fraction of a WGM will be, for absorption meas-
urements, somewhat greater than the ratio of the power circulating in the inner region to 
the total power circulating in the mode [5]. In addition to having large internal interacting 
fractions, another advantage of the HBR is that it requires only a very small volume of the 
solvent and analyte [17]. 

 
Figure 2. Closeup of the coupling region with the HBR microresonator and the tapered fiber (high-
lighted in red). In this photograph, the fiber and HBR have been separated for clarity. The reservoirs 
for the solvent and analyte are also shown. 

2.3. Fabrication, Modeling, and Testing of Asymmetric Tapered Fiber 
A tapered fiber is made by stretching a heated optical fiber, and it consists of a thin 

filament called the taper waist, each end of which is linked to the unstretched fiber by a 
section known as the taper transition. These taper transitions can be classified as adiabatic 
or nonadiabatic [18]. If the light propagating in the tapered fiber remains in the local fun-
damental mode (HE11) at all points along the taper transition, the transition is adiabatic; 
however, in a nonadiabatic taper transition, higher-order fiber modes are also excited, and 
hence, the light gets distributed among the local fundamental mode and higher-order 
modes as it travels along the tapered fiber. 

In our lab, the well-known “flame brush” technique is used to fabricate both sym-
metric and asymmetric tapered fibers. An optical fiber (SMF-28) with its jacket removed 
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lighted in red). In this photograph, the fiber and HBR have been separated for clarity. The reservoirs
for the solvent and analyte are also shown.

The ratio of fractional changes in the dip depth, asymmetric (two-mode) to symmetric
(one-mode), for the same analyte concentration, gives the value of the enhancement η21,
and the ratio of the fractional change in the dip depth (two-mode) to the fractional change
in the linewidth (either case) gives the value of the enhancement ηdl. The two-mode dip-
depth data are M(α′L) for various values of αa, which allows the value of the interacting
fraction f to be determined. Note, however, that both enhancement factors are only weakly
dependent on f, unlike the absolute sensitivity, which increases approximately linearly
with f. The internal interacting fraction of a WGM will be, for absorption measurements,
somewhat greater than the ratio of the power circulating in the inner region to the total
power circulating in the mode [5]. In addition to having large internal interacting fractions,
another advantage of the HBR is that it requires only a very small volume of the solvent
and analyte [17].

2.3. Fabrication, Modeling, and Testing of Asymmetric Tapered Fiber

A tapered fiber is made by stretching a heated optical fiber, and it consists of a thin
filament called the taper waist, each end of which is linked to the unstretched fiber by a
section known as the taper transition. These taper transitions can be classified as adiabatic
or nonadiabatic [18]. If the light propagating in the tapered fiber remains in the local
fundamental mode (HE11) at all points along the taper transition, the transition is adiabatic;
however, in a nonadiabatic taper transition, higher-order fiber modes are also excited,
and hence, the light gets distributed among the local fundamental mode and higher-order
modes as it travels along the tapered fiber.

In our lab, the well-known “flame brush” technique is used to fabricate both sym-
metric and asymmetric tapered fibers. An optical fiber (SMF-28) with its jacket removed
is attached to two motorized translation stages of a homemade fiber puller. Underneath
the stripped area of the fiber, the flame of a hydrogen torch on another translation stage
continuously brushes the stripped fiber along its length back and forth over a distance
known as the brushing length L. While fabricating an asymmetric (nonadiabatic) tapered
fiber, the two translation stages are pulled at different speeds, whereas a symmetric (adi-
abatic) tapered fiber is fabricated by pulling the two stages with the same speed. Much
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previous work has been conducted on the fabrication and characterization of asymmetric
tapered fibers [19–29]. A schematic diagram of the asymmetric tapered fiber is shown in
Figure 3, where light propagates from left to right. The downtaper transition (nonadiabatic)
is relatively abrupt, whereas the uptaper transition (adiabatic) is more gradual. Thus, both
fundamental and higher-order fiber modes will travel down the taper waist. However,
the higher-order fiber modes will not survive the adiabatic uptaper and will be lost in
the cladding.
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To explain the labeling in Figure 3, first consider a symmetric tapered fiber. The fiber
radius in the transition region is given by [22]

r(z) = r0 exp
(
−z/L′′

)
, (15)

where r0 is the radius of the untapered fiber, z is the distance into the transition region, and
L′′ is the effective brushing length, i.e., the length of the taper waist. The waist radius is

rw = r(z0) = r0 exp
(
−z0/L′′

)
, (16)

where z0 is the transition length; in the symmetric limit of Figure 3, z2 = z1 = z0. As Figure 3
indicates, the waist length is not equal to the brushing length (L′′ 6= L), and the transition
length is not equal to the pulling distance (z0 6= p0). The explanation for these effects is
based on the following assumptions [30]: (i) the hydrogen flame has a finite width and,
hence, the heated region L′ extends 0.26 mm beyond the brushing length L on each end
(L′ = L + 0.52 mm); (ii) the end of the uniform waist is not at the end of the limit of the
heated region, but is recessed inside it by a distance estimated to be s = 0.13 mm for the
symmetric taper (so L′′ = L′ − 2s), also implying that z0 = p0 + s. For a standard symmetric
taper, L = 6.50 mm and p0 = 26.88 mm, so that

rw = (62.5 µm) exp(−27.01/6.76) = 1.15 µm. (17)

For the asymmetric taper, we further assume [30] that the recession distance is inversely
proportional to the pulling distance, or linearly dependent on the speed at which the other
side of the taper is being pulled; this means that si = sp0/pi (i = 1, 2), and so

zi = pi + si = pi + sp0/pi (18)

and
L′′ = L′ − s1 − s2 = L1 + L2. (19)

The two parts of the waist length have the same ratio as the lengths of the correspond-
ing transition regions (L1/L2 = z1/z2), and so the waist radius is given by

rw = r0 exp(−zi/2Li), (20)

for either transition (i = 1 or 2). Support for this model is found when it is used in the
fabrication of asymmetric and symmetric tapered fibers with the same waist radius, using
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them to couple light into the HBR. When the asymmetric fiber shows a shallow dip with
the incident fiber modes in phase and a small peak with the incident modes out of phase,
the symmetric fiber exhibits a resonance dip that goes nearly to zero throughput. Further
confirmation through beat length measurements will be given below.

To see how adiabatic and nonadiabatic tapers can be differentiated, consider the local
cladding taper angle Ω, defined as the angle between the fiber axis and the tangent to the
taper profile at the point of interest:

Ω(z) =
∣∣∣∣dr(z)

dz

∣∣∣∣ = 1
2Li

r(z). (21)

For a taper transition to be adiabatic, Ω must be less than some maximum value [20,31] at
all values of the inverse taper ratio r(z)/r0. Strictly speaking, the condition to be satisfied is

Ω(z) =
∣∣∣∣dr(z)

dz

∣∣∣∣ <<
[
k f (z)− kh(z)

]
r(z) (22)

for all z in the taper transition, where kf and kh are the propagation constants of the funda-
mental and the higher-order fiber modes. These propagation constants can be calculated
for the fiber (step-index dielectric waveguide) by solving the characteristic equation [32] at
various taper radii in the taper transition.

As mentioned earlier, the relative phase of the fundamental and higher-order fiber
modes varies with propagation, making the throughput profile of a nonadiabatic tapered-
fiber-coupled microresonator system no longer a symmetric Lorentzian dip [33–38]. The
distance between successive points where they are in phase is a beat length that can
easily be measured by translating the fiber-HBR point of contact and finding the distance
from one symmetric throughput dip (or peak) to the next. A practical implementation
of Equation (22) is thus found by defining the maximum taper angle for the transition to
be adiabatic:

Ωmax(z) =

[
k f (z)− kh(z)

]
r(z)

2π
=

r(z)
zb

, (23)

where the beat length zb is given by:

zb =
2π

k f (z)− kh(z)
. (24)

Ωmax[r(z)/r0] thus provides a delineation curve with which Ω(z) can be compared to
determine the adiabaticity. Knowing the propagation constants at various taper radii
allows us to calculate the beat length zb.

As light propagates down a taper transition, it makes a transition from core guidance
(total internal reflection, TIR, at the core-cladding interface) to cladding guidance (TIR at the
cladding-air interface). While it is core-guided, the light remains in the fundamental mode
(HE11, also known as LP01); in this single-mode region, the propagation constant of the
higher-order mode, kh, is taken to be the vacuum propagation constant times the cladding
refractive index. Once the light becomes cladding-guided, we allow three possibilities for
the higher-order mode, since the taper waist is multimode with a typical radius of 1.16 µm.
These are: first, the LP11 family, consisting of TE01, TM01, and HE21; second, the LP21 and
LP02 family, made up of HE31, EH11, and HE12, represented in the calculations by HE12;
and third, the LP31 family (EH21 and HE41, represented by HE41).

Since we have three choices for kh, we will have three delineation curves. To plot each
delineation curve, the larger of the Ωmax values for core guidance and cladding guidance
at different values of the inverse taper ratio is used. These Ωmax values corresponding to
different inverse taper ratios are fitted to polynomials and are shown in Figure 4, along
with the Ω[r(z)/r0] for the adiabatic transition of a typical symmetric tapered fiber with a
waist radius of 1.15 µm.
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Figure 4. Delineation curves and plot of the cladding taper angle Ω as a function of the inverse taper
ratio for an adiabatic taper to a waist radius of 1.15 µm.

In Figure 4, the red, green, and yellow lines represent the different delineation curves.
The red line is the delineation curve assuming the higher-order mode to be LP11 under the
cladding guidance condition. In contrast, the green and yellow lines are the delineation
curves assuming the higher-order mode to be HE12 and HE41, respectively. For all values
of the inverse taper ratio, the orange line in Figure 4 representing the adiabatic taper will
remain below the delineation curves, whereas for a non-adiabatic taper, the plot of the
taper angle will pass above a delineation curve for at least some values of the inverse taper
ratio. The correct delineation curve is determined by the experimental measurement of the
beat length, as will be described below.

An asymmetric tapered fiber with one transition meant to be nonadiabatic and one
meant to be adiabatic was fabricated, and the cladding taper angles are plotted along with
delineation curves in Figure 5. In Figure 5, the red, green, and yellow lines represent the
delineation curves. The blue curve represents the cladding taper angle for the abrupt
downtaper transition. Since the blue curve passes above the minima of the delineation
curves, the downtaper transition is nonadiabatic. The orange curve representing the taper
angle for the uptaper transition passes below the delineation curves, indicating that the
uptaper transition is adiabatic. Figure 5 thus implies that the fabricated asymmetric tapered
fiber has a nonadiabatic downtaper and an adiabatic uptaper.
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The average beat lengths of several asymmetric-tapered-fiber-coupled microresonator
systems were measured using a screw-gauge actuated 3D stage to which the asymmetric
fiber is mounted. The distance of translation of the fiber–HBR point of contact from where
a symmetric throughput dip is observed to where the next symmetric dip is observed is the
beat length. The experimentally measured beat length zb and the waist radius rw predicted
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by the model for three different asymmetric taper profiles are shown in Table 1. Profile 1 is
the fiber whose taper transitions are plotted in Figure 5.

Table 1. Taper profiles and beat length measurements.

Taper Profile p1 (mm) p2 (mm) L (mm) rw (µm) zb (µm)

1 27.64 3.12 4.75 1.16 12.98
2 26.35 3.35 4.78 1.47 20.08
3 28.20 3.45 4.74 1.16 12.76

The experimentally measured beat lengths for the three different asymmetric taper
profiles indicate that: (i) the modes responsible for beating are HE11 and LP11 and, hence,
the delineation curve of interest is the red one in Figures 4 and 5; and (ii) the radii predicted
by the asymmetric taper fiber model for the three different taper profiles were very close
to the radii estimated from the beat length measurements. It is worth noting that in
addition to the HE11 and LP11 modes, other higher-order modes such as HE12 and HE41
may also be excited by light propagating along the nonadiabatic downtaper. Among all
the higher-order modes, LP11 will be the most strongly excited, since the fiber sags during
pulling [39]; this agrees with our beat length measurements shown in Table 1. Previously, it
was shown that [6] by choosing a particular ratio of the resonator size to the diameter of
the tapered fiber, only the HE11 and LP11 modes can significantly interact with the WGMs
of a microresonator, and therefore, any weak excitation of other higher-order modes can
be neglected. Thus, when different asymmetric taper profiles are used to couple light into
the microresonator, only two modes, namely, HE11 and LP11, will significantly interact
with WGMs.

3. Experimental Analysis and Results

The experimental procedure outlined in Section 2.2 was followed in several cases
using each of the three asymmetric tapered fiber profiles of Table 1, accompanied by a
symmetric fiber of the same waist radius. In all cases, the microresonator used was an HBR
with an outer radius of (nominally) 90 µm and a wall thickness of ~14 µm, fabricated by
heating and pressurizing a fused-silica capillary to form a bottle-shaped bulge. The small
radius is what allows for significant coupling between the WGM and the higher-order fiber
mode [6].

A detailed analysis of one such experiment using Profile 1 is presented below. The
analysis consists of three parts. The first part (Section 3.1) compares the experimental two-
mode vs. one-mode enhancement η21 to the theoretical prediction, whereas the second part
(Section 3.2) compares the experimental and theoretical enhancements ηdl for dip-depth
vs. linewidth sensing. The third part (Section 3.3) compares the absolute sensitivity of the
two-mode-input system to that of an ideal single-mode-input system.

3.1. Comparison of Experimental to Theoretical η21

With an asymmetric tapered fiber used to provide two-mode input, WGMs that
showed a shallow dip with the two input modes in phase, a small peak with the two modes
π out of phase, and an increase in the dip depth with an increasing analyte concentration
were the modes of interest for these sensing experiments. The throughput spectra of a
tapered-fiber-coupled HBR system are shown in Figure 6, and a detailed analysis for the
highlighted WGM is given below.
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Initially, with only methanol inside the microresonator, measurements gave the fol-
lowing values: dip depth M = 0.035 ± 0.002, linewidth Δν = 13.52 ± 0.76 MHz, R+ = 0.965 ± 
0.002, and R− = 1.073 ± 0.002. From those measurements, the parameters in Equation (2) 

Figure 6. Throughput WGM spectra with input from tapered fibers of the same waist radius,
rw = 1.16 µm. (a) Asymmetic tapered fiber. Upward displacement indicates an increasing analyte
concentration (the order of traces is same as that in the legend); the bottom trace is for methanol only,
with input modes out of phase. (b) Symmetric tapered fiber. Oscilloscope screenshot showing the
mode of interest in the yellow box (the same mode as highlighted in (a); methanol only), very close to
being critically coupled, as the bottom of the throughput dip is nearly at zero (the red line).

Initially, with only methanol inside the microresonator, measurements gave the
following values: dip depth M = 0.035 ± 0.002, linewidth ∆ν = 13.52 ± 0.76 MHz,
R+ = 0.965 ± 0.002, and R− = 1.073 ± 0.002. From those measurements, the parameters in
Equation (2) were calculated as shown in [15], and the enhancement in sensitivity predicted
by the model was found using Equations (7) or (8) to be η21 = 2135 ± 132.

After adding analyte of predetermined concentrations, the corresponding dip depths
M(α’L) were recorded and fitted to the model, with the interacting fraction f being the
fitting parameter. (The resonant frequency of the WGM varies slightly for different analyte
concentrations in Figure 6a because of small changes in temperature. Since we need to
measure only the relative dip depth and the mode linewidth, this does not affect our results).
By averaging the fitting parameters corresponding to various analyte concentrations, the
interacting fraction f of the mode was found to be 0.062. Knowing f allows us to calculate
the theoretical dip depth M(α′L) and the theoretical fractional changes in the dip depth
∆M/M and dM/M.

With the asymmetric taper of waist radius 1.16 µm being used to couple light into and
out of the resonator, the fractional change in the dip depth is plotted as a function of the
analyte concentration in Figure 7. In Figure 7, the green curve represents the best fit to
the experimental data points, whereas the orange and red curves represent the theoretical
models. It is worth recalling that the dip depth M = 1 – R+ is found by measuring the
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throughput power (∝R+) collected on the detector. Note that |∆ R+| = |∆M|, so even
if ∆M/M is large, ∆R+/R+ will be small, and the experimental data ∆M/M will depend
linearly on the concentration. The linear fit to the data points (green) was found using a
Python program incorporating the experimental error shown by the error bars. The orange
curve ∆M/M–theory represents the theoretical fractional change in the dip depth allowing
for nonlinearity, and the red curve dM/M–theory represents the theoretical fractional change
in the dip depth assuming linearity. At these low concentrations, the theoretical curves
lie on top of each other, whereas this may no longer be true at higher concentrations. In
Figure 7, our experiment agrees with the theory, well within the error limits.
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Figure 7. Fractional change in the dip depth plotted as a function of the analyte concentration, with
the asymmetric tapered fiber used to couple light into and out of the microresonator.

To experimentally demonstrate two-mode vs. one-mode enhancement η21, instead
of the asymmetric tapered fiber a symmetric tapered fiber of approximately the same
waist radius was used to couple light into and out of the HBR filled with methanol. In
this case, the throughput spectrum for the WGM highlighted in Figure 6a shows near-
critical coupling, as in Figure 6b. The linewidth of this WGM was measured and found
to be ∆ν = 13.36 ± 0.15 MHz. This is equal (within experimental uncertainty) to the
linewidth measured using the asymmetric fiber, indicating that the losses are the same
in both cases, and confirming that both fiber waists have very nearly equal radii. The
near-critical coupling necessitated the introduction of an offset voltage and scale expansion
to follow changes in the bottom of the dip on the oscilloscope trace as analytes of various
concentrations were added to the HBR. The fractional change in the dip depth is plotted as
a function of the analyte concentration in Figure 8.
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In Figure 8, the green curve represents the best fit to the experimental data points,
whereas the theoretical curves are in orange and red. Since the mode of interest is close
to critical coupling and has a dip depth M > 0.96, the relative throughput R < 0.04, and
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even if ∆M/M is very small, ∆R/R may be large, so quadratic fits to the experimental data
and to ∆M/M–theory are performed. The red curve dM/M–theory represents the theoretical
fractional change in the dip depth assuming linearity, and for very low concentrations, all
three curves coincide. At higher concentrations, the experimental curve follows the trend
of the ∆M/M–theory curve, indicating reasonable agreement.

Recall that the predicted enhancement factor is η21 = 2135± 132. At low concentrations,
the experimental enhancement factor is calculated by taking the ratio of the slopes of the
green curves shown in Figures 7 and 8, giving η21 = 2616 ± 945. The uncertainties arise
from system noise (mechanical, detector, and amplifier) on the measured throughput and
are larger for the experimental value, which depends on the small R in the symmetric-fiber
data, whereas the predicted enhancement has a smaller uncertainty from measuring the
much larger values R+ and R−. Thus, the experimental enhancement agrees with the
theoretical enhancement within the limits of uncertainty.

3.2. Comparison of Experimental to Theoretical ηdl

This subsection contains the result of this work with the greatest practical signifi-
cance: the sensitivity enhancement provided by two-mode dip-depth-change dissipative
sensing relative to the standard linewidth-change sensing. The theoretical value of this
enhancement is given by Equation (12), where the far right-hand side is approximately
equal to 4/M, giving ηdl = 114.3 ± 6.5. The fractional change in the dip depth is predicted
to be approximately two orders of magnitude more sensitive than the fractional change in
the linewidth.

Since the linewidth is linearly proportional to the total loss, as we increase the analyte
concentration, the effective intrinsic loss αL increases, which in turn increases the total loss
and the linewidth. Once again, knowing f and αa allows us to determine the theoretical
linewidth using Equations (5) and (10). The fractional change in the linewidth is plotted as
a function of the analyte concentration in Figure 9.
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the asymmetric tapered fiber used to couple light into and out of the microresonator.

In Figure 9, the green line represents the best fit to the experimental data points,
whereas the red line represents the theory. Since the linewidth is linearly proportional to
the total loss, linear fits are performed to the experimental data points and theoretical values.
The experiment and theory agree within the error limits, but there is huge uncertainty in
measuring the very small change in the linewidth.

When the asymmetric tapered fiber is being used to find the fractional change in the
linewidth, the experimental value of dip-depth vs. linewidth sensing enhancement is given
by the ratio of the slopes of the green lines in Figures 7 and 9. This gives ηdl = 36.9 ± 109,
which agrees with the theoretical prediction of 114.3 ± 6.5 within the huge error limit.

A better experimental value of this enhancement factor can be found by using the sym-
metric tapered fiber of the same waist radius, since the predicted change in the linewidth
of the mode of interest will be the same for the same change in the analyte concentration.
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In this case, we measure the linewidth only twice, once with an analyte concentration of
zero (only methanol inside the HBR) and again at the highest concentration of 0.6 nM,
four times the maximum in Figure 9. The corresponding linewidths were found to be
13.36 ± 0.15 MHz and 13.93 ± 0.21 MHz, respectively, representing a precision about five
times greater because of the greater dip depth. A plot of fractional change in the linewidth
as a function of the analyte concentration is shown in Figure 10.
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Figure 10. Fractional change in the linewidth plotted as a function of the analyte concentration, with
the symmetric tapered fiber used to couple light into and out of the microresonator.

In Figure 10, the green line is the best fit to the experimental data points, whereas the
red line represents the theoretical model. Now, taking the ratio of the slopes of the green
lines in Figures 7 and 10, we find ηdl = 97 ± 46, which agrees better with the theoretical
prediction of 114.3 ± 6.5. Because of the better precision in measuring the change in the
linewidth, the experimental values of ηdl will be calculated from the symmetric tapered
fiber linewidth measurements.

3.3. Comparison of Absolute Sensitivity and Summary of Results

As discussed in Section 2.1, to achieve the same absolute sensitivity as that found with
dip-depth sensing using two-mode input, but with ideal one-mode input, a greater WGM
quality factor is needed. The ideal case is one in which the coupling is far from critical
and there is negligible loss into higher-order fiber modes. The requirements on Q1 for the
ideal system are given by Equations (13) and (14) for (one-mode) dip-depth and linewidth
sensing, respectively. The best case obtains in the limits of strong overcoupling (x >> 1) or
strong undercoupling (x << 1) when Equation (13) says that the intrinsic Q1i of the ideal
one-mode system must be approximately two orders of magnitude greater than the loaded
Q2 of the two-mode system: (Q1i)min = (4/M) Q2. For the case under consideration, since
4/M = 114.3 and Q2 = 1.43 × 107, then (Q1i)min = 1.64 × 109. An intrinsic quality factor
of the order of 109 is near the limit of what can be achieved in fused silica without taking
extraordinary measures. If the WGM excited in the ideal case is not strongly undercoupled
or overcoupled, the value of Q1i must be even greater.

A summary of a set of experiments (like the one described above) using the three
asymmetric taper profiles of Table 1 is provided below in Table 2. In each case, the in-
teracting fraction f was determined; the values are much larger than typical external
evanescent fractions, showing one advantage of internal sensing in the HBR. Both ex-
perimental enhancement factors agree with their corresponding theoretical enhancement
factors well within the error limits, confirming the theoretical analysis. In particular, the
ηdl enhancement factor shows that dip-depth dissipative sensing with two-mode input is
approximately two orders of magnitude more sensitive than linewidth-based dissipative
sensing. In comparing the absolute sensitivities, we find that an ideal one-mode system
would require a Q1i approximately equal to 109 to have the same absolute sensitivity as our
two-mode dip-depth sensing system with Q2 ~ 107.
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Table 2. Summary of results.

Taper Profile f Enhancement η21 Enhancement ηdl Comparison of Absolute Sensitivity
Theory Expt Theory Expt Q2 (Q1i)min

1 0.062 2135 ± 132 2616 ± 945 114.3 ± 6.5 97 ± 46 1.43 ×107 1.64 × 109

1 0.070 5548 ± 500 4286 ± 1467 149 ± 11 171 ± 71 1.29 × 107 1.92 × 109

1 0.052 1398 ± 62 2258 ± 931 45 ± 1 49 ± 12 1.62 × 107 7.3 × 108

2 0.110 1020 ± 38 956 ± 240 54.8 ± 1.5 43.1 ± 30.1 9.0 × 106 4.9 × 108

2 0.128 639 ± 19 735 ± 159 44.9 ± 1.0 43.4 ± 36.0 1.15 × 107 5.2 × 108

2 0.156 729 ± 23 886 ± 247 43.5 ± 0.9 45 ± 36 8.5 × 106 3.7 × 108

3 0.077 1166 ± 47 1094 ± 331 62.5 ± 2.0 76.6 ± 52.6 1.1 × 107 6.96 × 108

3 0.053 509 ± 33.4 545 ± 151 38 ± 1 37 ± 13 2.5 × 107 9.5 × 108

4. Discussion and Conclusions

The novel technique for enhancing microresonator-based dissipative sensing by using
multimode input that we proposed earlier [15] is confirmed by the experimental work
presented in this report. Multimode input produces an enhancement of approximately three
orders of magnitude in the sensitivity of dissipative dip-depth-based sensing compared
to the sensitivity achieved using single-mode input from a coupling fiber with the same
waist radius. More importantly, this dip-depth-based sensing is enhanced by roughly
two orders of magnitude over dissipative sensing based on the observation of changes in
the WGM linewidth. The highlights of this technique are as follows. (i) The enhancements
are independent of the quality factor Q of the WGM and independent of the value of
the interacting fraction f. (ii) The enhancements do not depend on the input and output
couplings being equal, and the method can be used at any wavelength in a microresonator
of any type, size, or refractive index. (iii) Dip-depth sensing is advantageous because
it is essentially independent of drifts or fluctuations in input power or WGM resonance
frequency. (iv) The limit of detection for dip-depth sensing is enhanced by an additional
factor of about 2.5 over linewidth sensing because the dip depth can be measured more
precisely than the linewidth. (v) When an analyte absorption coefficient is known, this
experimental method provides a means of determining the interacting fraction f. (vi) An
absolute sensitivity comparable to that achievable by using a high-Q (~109) WGM in an
ideal (far from critical coupling) single-mode-input microresonator system can be achieved
with multimode input on a resonator with a much more easily produced value of Q (~107).
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