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Abstract: Visual geo-localization plays a crucial role in positioning and navigation for unmanned
aerial vehicles, whose goal is to match the same geographic target from different views. This is a
challenging task due to the drastic variations in different viewpoints and appearances. Previous
methods have been focused on mining features inside the images. However, they underestimated the
influence of external elements and the interaction of various representations. Inspired by multimodal
and bilinear pooling, we proposed a pioneering feature fusion network (MBF) to address these
inherent differences between drone and satellite views. We observe that UAV’s status, such as flight
height, leads to changes in the size of image field of view. In addition, local parts of the target scene
act a role of importance in extracting discriminative features. Therefore, we present two approaches
to exploit those priors. The first module is to add status information to network by transforming them
into word embeddings. Note that they concatenate with image embeddings in Transformer block to
learn status-aware features. Then, global and local part feature maps from the same viewpoint are
correlated and reinforced by hierarchical bilinear pooling (HBP) to improve the robustness of feature
representation. By the above approaches, we achieve more discriminative deep representations
facilitating the geo-localization more effectively. Our experiments on existing benchmark datasets
show significant performance boosting, reaching the new state-of-the-art result. Remarkably, the
recall@1 accuracy achieves 89.05% in drone localization task and 93.15% in drone navigation task in
University-1652, and shows strong robustness at different flight heights in the SUES-200 dataset.

Keywords: cross-view image matching; geo-localization; UAV image localization; multimodal;
transformer; bilinear pooling; deep learning

1. Introduction

Unmanned aerial vehicles (UAVs) have been developed rapidly over the past few
decades, and the flexibility and stability of UAVs are continuously improved. Currently,
they are widely used in national defense, agriculture, mapping, and other fields [1–4].
Hassan et al. [5] detect and count rice plants by using an unmanned aerial vehicle. Oh et al. [6]
proposed an autonomous UAV smart search system method to search for persons in disas-
ter sites. However, positioning UAVs in the GNSS-denied environment is still a significant
challenge. Visual geo-localization technology is the key to solving this problem. Geo-
localization aims to match an image from one perspective to the most similar image from
another perspective that represents the same geographic target. There are two main tasks
for drones: 1. Drone Localization 2. Drone Navigation. As the name shows, drone localiza-
tion intends to predict the location of the target place via drone-view images. On the other
hand, given a satellite-view image as a query image, drone navigation is to drive the drone
to the area of the target in the query. Cross-view image matching is still a challenging task
due to the viewpoints between drone image and satellite image are different. Moreover,
their image styles can also be far apart because their from various source. As a result,
finding the corresponding image in another view can be really challenging. In recent years,
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deep learning-based methods have been applied to geo-localization, showing competitive
results. Existing deep neural network regards the geo-localization task as an image retrieval
task, and the aim of the network is to make the corresponding image pair closer to each
other in high dimension space. Most conventional approaches focused on applying spatial
attention mechanisms to extract geographic features. Those features describe the main
target or contextual information around the target, but they neglect the extra information
from the drone itself. In fact, the drone’s flight status has high relevance to the image
capture. In addition, average pooling is used to extract global features after the backbone
network, ignoring the interaction between inter-layer local features and global features.
These shortcomings make previous methods not robust enough when facing diverse scenes
and environmental conditions. Our method mainly establishes two modules to address
those problems. Firstly, we apply a multimodel to consider the status of the drone, such as
flight heights, and camera pose. The potential status’ information is collected from an exist-
ing geo-localization dataset and transformed into word embeddings by BERT. To help the
model learn other dimension data, we adopt progressive fusion to link image embeddings
and word embeddings. Secondly, we develop an HBP-based feature aggregation module
to extract local-aware features. Precisely, our HBP module fuse local and global features
from cross-layer to reinforce each other to distinguish similarly. Consequently, our exten-
sive experimental results demonstrate that our method achieves superior geo-localization
performance to the state-of-the-art. Remarkably, the recall@1 accuracy achieves 89.05%
in the drone localization task and 93.15% in the drone navigation task in University-1652.
It shows strong robustness at different flight heights in the SUES-200 dataset, with only
a 6.5% decrease in drone localization task and 7.5% decrease in drone navigation task in
SUES-200 dataset. The code is available at https://github.com/Reza-Zhu/MBF (accessed
on 24 November 2022).

1.1. Related Work of Geo-Localization Methods

In the early stage, most geo-localization studies were based on hand-craft features
to find the most relevant image [7–11]. However, these methods are less robust and
susceptible to unfavorable factors such as lighting and occlusion. With the development
of deep learning, neural networks have replaced hand-craft methods. Lin et al. [12] built
a dataset of 78K aligned cross-view image pairs and proposed an approach named Where-
CNN. Tian et al. [13] mainly collected lots of locations in the city, constructed image pairs
using the “bird” view and the street view, and then presented a Siamese network to find the
correct target for each query image. CVUSA [14] is a standard cross-view dataset consisting
of panoramic street view and satellite view image pairs. Many previous works have been
conducted based on this dataset. CVACT [15] is a larger panoramic dataset than CVUSA,
with improved satellite image resolution and several test sets. Liu et al. [15] also designed
novel network endowed deep neural networks with commonsense orientation. Some other
works focused on the matching between drone-view and satellite-view. Zheng et al. [16]
innovatively collected a new dataset, University-1652, which contains street-view, drone-
view, and satellite-view images. Because of University-1652, cross-view geo-localization
achieved remarkable progress in the past two years. Ding el at. [17] proposed LCM, which
utilized ResNet [18] as the backbone network and trained the image retrieval problem as
a classification problem. LCM also added a data augmentation method to balance the
number of drone-view and satellite-view images. Wang el at. [19] designed LPN after
considering the contextual information of neighboring regions, which applied the square-
ring partition strategy to divide feature maps. Zhuang et al. [20] proposed MSBA based
on a local pattern network designed to make different branches learn from each other.
Tian et al. [21] adopted conditional generative adversarial nets to synthesize the drone-
view image with a vertical style. Transformer architectures have obtained spectacular
success in recent years, Dai et al. [22] used ViT [23] as the model’s backbone to extract
images’ context information and divided regions based on heat distribution of feature map
(FSRA), and then FSRA aligned multiple specific areas into a set of feature representations.

https://github.com/Reza-Zhu/MBF
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In geo-localization, they can be subdivided into two groups including Street ↔ Aerial,
and Drone↔ Satellite. Table 1 gives an overview of existing approaches.

Table 1. Overview of geo-localization approaches.

Approach Author

Street↔ Aerial -
CVUSA Workman et al. [14]
CVACT Liu et al. [15]
L2LTR Yang et al. [24]
VIGOR Zhu et al. [25]

Drone↔ Satellite -
University-1652 Zheng et al. [16].

LCM Ding et al. [17]
LPN Wang et al. [19]
PCL Tian et al. [21]

FSRA Dai et al. [22]
MSBA Zhuang et al. [20]

1.2. Related Work of Multimodal

With the development of multimodal, progress has been made in the past year in
deep learning [26–28]. Tan et al. [29] proposed the LXMERT framework to solve the VQA
task, which understood the connections between visual concepts and linguistic semantics.
For large-scale datasets, Radford et al. [30] collected nearly 400 million image text pairs and
designed two encoders to extract their features (CLIP). The result showed CLIP had strong
robustness in zero-shot classification and downstream vision tasks. The fusion of features
can be divided into the following categories in practical works: (1) early fusion, which
means multi-modality data would be fused before inputting model [31]. (2) late fusion or
feature-level fusion. It gathers the multi-modality features extracted by the corresponding
branch to obtain the final feature representation [32]. (3) progressive fusion. It fuses the
multi-modality features progressively instead of at once, which can improve the positive
effects of complementary information and better aggregate details from each modality [33].

1.3. Related Work of Pooling

The aggregation of representation is another significant spot in computer vision.
Previously, some classical approaches have been used, e.g., max pooling [34], average
pooling [35], and hybrid pooling [36]. Radenovic et al. [37] proposed a novel pooling layer
based on generalized-mean (GeM) that has learning parameters to fuse features. In order
to obtain an informative image descriptor, Lin et al. [38] designed bilinear models that
can model pairwise features, which is especially useful for fine-grained categorization.
Gao et al. [39] developed compact bilinear pooling (CBP) to extract representations through
a kernelized analysis method. Fukui et al. [40] relied on CBP [39], and proposed mul-
timodal compact bilinear pooling (MCB) to combine multimodal features and applied
MCB on the visual question answering. Yu et al. [41] presented a hierarchical bilinear
pooling (HBP) framework to integrate multiple cross-layer bilinear features to enhance
their representations capability.

1.4. Contributions

To fill the existing gaps, we mainly made the following contributions:
1. Different from former geo-localization works, which are based on a single architec-

ture backbone. We divide the backbone into two parts; the first part adopts ResNetV2 [42]
to learn fine-grained features, and the second part uses Vision Transformer (ViT) [23] to
extract global features from images.

2. We introduce a pioneering multimodal method for geo-localization. To fuse extra
vehicle information, e.g., flying height, camera angle, etc., we treat them as multi-modality
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data and use a sentence to describe that information. Then, that semantic information is
converted into a word embedding and learned by the network with image embeddings.

3. A feature fusion mechanism based on HBP is proposed to integrate local parts and
global features from the same viewpoint. Specifically, the fusion module fuses cross-layer
representations in a mutually reinforced way, improving the robustness of the final feature.

The remainder of the paper is organized as follows: Section 2 describes the datasets
applied in the experiments. Section 3 introduces the implementation of multimodel and
bilinear pooling and presents the structure of the MBF. Section 4 displays the experiments
and results. The discussion and conclusion are given in Sections 5 and 6.

2. Datasets
2.1. University-1652

One dataset used in this study is University-1652, collected by Zheng et al. [16].
University-1652 contains 1652 locations from 72 universities. Each site has several street-
view images, 54 drone-view images, and one satellite-view image. The street images
were collected from Google Maps and the image search engine. For drone-view images,
because it was unaffordable to collect a large number of real drone-view images, the authors
leveraged the 3D models provided by Google Earth to simulate the actual drone flying
(height of view from 256 m to 121.5 m). Satellite-view images with GNSS information were
from Google Maps.

In our study, the matching between drone-view and satellite-view is selected as
the main tasks. Specifically, we denote the above two tasks as: 1. Drone → Satellite.
2. Satellite→ Drone. The dataset is split into the training set and the testing set. There are
701 target locations in the dataset for learning or query and 951 for reference. The drone
flight path is shown in Figure 1a. The details of University-1652 are shown in Table 2.

Table 2. Statistics of University-1652 training and testing sets, including the image number of query
set and gallery set.

Training Dataset

Views Classes Images

Drone 701 37,854
Satellite 701 701

Testing Dataset

Views Classes Images

Drone Query 701 37,854
Satellite Query 701 701
Drone Gallery 951 51,355

Satellite Gallery 951 951

2.2. SUES-200

Another dataset implemented in experiments is SUES-200, released by Zhu et al. [43].
SUES-200 is also a cross-view matching dataset with only two views, drone-view and
satellite-view. It pays attention to the flying height of the drone and selects a boarder
range of scene types. There are four heights in SUES-200, 150 m, 200 m, 250 m, and 300 m.
In addition, the camera angles at the four heights are 45°, 50°, 60°, and 70°. Concretely,
SUES-200 collected 50 images for drone-view and one image for satellite-view at each
location. The drone-view images were captured by the drone in the real world, and the
flight trajectory is one circle around the target scene with a fixed height. The satellite images
were collected from AutoNavi and Bing Maps in corresponding target locations.

We also denote two tasks as 1. Drone → Satellite. 2. Satellite → Drone. There are
120 locations in SUES-200 for training and query and 80 locations for reference. The drone
flight path is shown in Figure 1b. The statistics of the dataset are shown in Table 3.
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256m
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(a)

  300m

  250m
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Figure 1. The fight path of the drone. (a) University-1652. (b) SUES-200.

Table 3. Statistics of SUES-200 training and testing sets, including the image number of query set and
gallery set.

Training Dataset

Views Classes Images at
Each Height Images

Drone 120 6000 24,000
Satellite 120 _ 120

Testing Dataset

Views Classes Images at
Each Height Images

Drone query 80 4000 16,000
Satellite query 80 _ 80
Drone gallery 200 10,000 40,000

Satellite gallery 200 _ 200

2.3. Evaluation Indicators

University-1652 and SUES-200 both support Recall@K(R@K) and average precision(AP).
Therefore, R@K and AP are mainly used to evaluate the performance of our model.

R@K is very sensitive to the position of the first true-matched image appearing in
the ranking of the matching result. Therefore, it is suitable for a test dataset that contains
only one true-matched image in the candidate gallery. The equation for R@K is presented
as follows:

Recall@K =

{
1, i f ordertrue < K + 1
0, otherwise

(1)

curve, which considers the position of all true-matched images in the evaluation. The equa-
tions for AP are shown as follows:

AP =
1
m

m

∑
h=1

ph−1 + ph
2

, where p0 = 1, ph =
Th + 1
Th + Fh

(2)

where m is the number of correct matching images, Th and Fh are the numbers of correct
matching images and incorrect matching images before the (i + 1) correct matching image.

3. Method
3.1. Backbone

Because we concentrate on drone-view and satellite-view matching, the proposed
model, MBF, contains two main branches, which is similar to the Siamese network [44].
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Most mainstream methods applied ResNet-50 [18] as their backbone network and designed
an effective attention mechanism to extend the model’s contextual information extraction
capacity. The newly elaborated backbone differs from previous practice in that we employ
Hybrid ViT [23] architecture as the model’s feature extractor. Specifically, MBF’s backbone
has two shared-weight branches, and each branch’s structure consists of ResNetV2 [42]
and ViT [23]. ResNetV2 demonstrated the significance of identity mapping, He et al. [42]
proposed a new residual block that moved the activation function and batch normalization
layer before the convolution layer. In MBF’s Backbone, ResNetV2 is designed to have
three bottlenecks. Each bottleneck owns 3, 4, and 9 residual blocks, respectively. Follow-
ing, we employ ViT to process the feature map, the patch layer partitions the map into
patch embeddings, and the Transformer layer extracts the contextual semantic relationship
between each embedding.

In visual geo-localization, the ResNet-based network can capture the target’s fine-
grained feature from a small-scale dataset. Researchers usually add attention modules
after the backbone to enforce the model’s global feature extraction ability. A ViT-based net-
work delivers a more comprehensive solution due to patch embeddings and self-attention
mechanism. However, training a ViT-based model highly relies on large-scale datasets,
for example, ImageNet. Therefore, we select a Hybrid ViT as MBF’s backbone. It shows
powerful representation extraction ability and expansibility in cross-view matching.

The overview structure of MBF is shown in Figure 2, apart from the backbone structure.
The Multimodal block will be detailed in Section 3.2. The HBP block will be described
in Section 3.3. The Feature Partition Strategy(FPS) and Loss function will be detailed in
Section 3.4.

3.2. Multimodal

Multimodal deep learning has achieved great success in recent years, e.g., Image Text
Retrieval, and Visual Grounding. Moreover, the proposal of Transformer [45] gives the
community a novel direction due to Transformer’s expansibility. In geo-localization, some
methods [15,21] also tried to use extra information beyond the image, e.g., orientation,
and spatial position, to boost the matching performance. The question is how to introduce
other details such as flying height and camera angle though an end-to-end manner?

Intuitively, we can concatenate that information with an image feature map or input it
directly to the backbone. However, we have to redesign the network according to different
data forms. In MBF, we present a more elegant way. In short, we collect extra data from
existing datasets and merge them into the model. Taking University-1652, for example, it
details the drone’s flying height in the paper [16]. Hence, we describe that information in
a sentence. Referring to SUES-200 presents not only the height but also the camera’s shot
angle, but a sentence can still easily cover that information.

To align the feature’s dimension with the image’s patch embedding, we utilize
a pre-trained NLP model BERT [46] to transform the sentence to the word embedding. Fur-
thermore, the timing of fusing the word embedding to the backbone should be considered.
As shown in Figure 3, we adopt progressive fusion to link the text model data. The purpose
of this module is to help the network learn external information in an implicit way. Fusion
experiments will be detailed in Section 4.3.
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Figure 2. Overview of the proposed method. MBF contains two branches, i.e., the satellite-view
branch, and the drone-view branch, respectively, to process different inputs. The above two branches
share weights since their patterns are similar. Given one image, ResNet first extracts its feature map.
Then, the semantic feature from BERT is input to the Transformer block with the map. (See Figure 3).
Next, HBP (See Figure 4) and Partition Strategy are applied to the output of the backbone (Block
stands Transformer block). Finally, all these feature descriptors are fed into MLP to calculate loss
or distance.

3.3. Bilinear Pooling

An adequate representation fusion method is needed because of the importance of
the feature’s robustness and discrimination. Inspired by research findings from Personal
ReID [47], the bilinear pooling is applied to fuse the feature maps. MBF’s backbone has
two stages, ResNetV2 focuses on the target’s local feature, and ViT focuses on the global
feature. We designed a hierarchical feature fusion block based on HBP to enhance the final
feature’s capability.

As shown in Figure 2, we add a Transformer block at the ending of ViT. There are
three feature maps from different training phrases. We perform a pairwise fusion of those
features between global and local features. There are two steps in HBP’s pipeline, bilinear
transformation, and spatial global pooling. In the first step, we denote f j as extracted
feature of input image xj and Fconv as CNN block, that contains the Convolution layer,
Batch Normalization layer, and Relu layer, as in Figure 4. The formula is calculated
as follows:

f j = Fconv( f j) (3)

In the second step, where f 1
j is the global feature, f 2

j is the local feature, × stands as
the outer product of two vectors:

f p
x,y = f 1

j × f 2
j (4)
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f p
x =

n

∑
y=1

f p
x,y (5)

Then, the fusion feature f p
x is normalized to generate the final feature vector f̃ , and

ε = 1× 10−12:

f p
x =

√
f p
x (6)

f̃ =
f p
x

max(‖ f p
x ‖, ε)

(7)
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Figure 3. The architecture details of Multimodal block. On the left side of the picture, the descriptive
sentence is transformed to word embedding using BERT and aligned with image patch embeddings.
Then, those embeddings are fed into Transformer Encoder to extract deeper features. On the right
side of the picture, the Transformer block’s detailed architecture is shown.
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Figure 4. The architecture details of HBP block.
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3.4. Improvement and Loss Function

To maximize MBF’s potential, we apply FPS to explicitly take advantage of contextual
information. LPN [19] has shown its breakthrough results in the field of cross-view geo-
localization. However, unlike LPN’s part number, we deploy n = 2 because MBF’s
backbone has paid attention to contextual information.

Each part of the features is followed by an MLP block, and softmax processing is
performed on the output of that block to normalize the value range from 0 to 1. We adopt
cross-entropy as the loss function, which is typical in multi-classification tasks. The cross-
entropy is mainly used to determine how close the actual output is to the expected output.
zi

j(y) is the logarithm of ground-truth y, and p̂(y|xi
j) is the probability of the predicted

outcome of the model equal to ground-truth y. The mathematical formula is shown:

p̂(y|xi
j) =

exp(zi
j(y))

∑C
c=1 exp(zi

j(c))
(8)

Lossce = ∑
i,j
−log( p̂(y|xi

j)) (9)

When testing the model’s accuracy, cosine distance is used to judge the similarity
between features. Triplet loss is widely used in deep metric learning as a supervisor
to narrow the distance between the same targets from different backgrounds. In the
cross-view matching task, drone-view and satellite-view images describe the same geo-
graphical location from different views. In order to differentiate them between similar
scenes, Triplet loss is applied in MBF to learn discriminative features. Where d denotes the
distance between two feature, a stands anchor sample, p and n represents positive sample
and negative sample, respectively, M is the value of margin. The mathematical formula
is shown:

d(x, y) =

√
n

∑
i=1

(xi − yi)2 (10)

Losstriplet = max(d(a, p)− d(a, n) + M, 0) (11)

In the two-branch backbone network, both outputs of the model need to be compared
with the label. We let the loss of drone-view be Ld and the loss of satellite-view be Ls. These
two loss values are added to obtain Ltotal . We optimize the whole network through Ltotal .
The equation expression is shown as follows:

Losstotal = Ls + Ld, (12)

4. Experiments
4.1. Implement Details

We employ a Hybrid ViT (ResNetV2-50 and ViT-Base) pre-trained on ImageNet
as MBF’s backbone initialization weight. We resize each input image to a fixed size
384× 384 pixels and perform image augmentation, e.g., random crop, random perspective,
random affine, and random horizontal flip. In training, SGD is chosen as the optimizer
with a momentum of 0.9 and weight decay of 5× 10−4 with a mini-batch of 16. The initial
learning rate is 0.01 for the backbone layer and 0.1 for the classification layer, it decays by
0.25 every 25 epochs, and the drop out rate is 0.35. In the inference stage, the cosine distance
is utilized to measure the similarity between the query image and candidate images in
the gallery. Our model is built basing Pytorch, and all experiments are conducted on
an NVIDIA RTX Titan GPU.
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4.2. Comparison with the State-of-the-Art

As shown in Table 4, we compare the proposed method with other methods on
University-1652. MBF has achieved 89.05% Recall@1 accuracy, 90.61% AP on
Drone → Satellite, 93.15% Recall@1 accuracy and 88.17% AP on Satellite → Drone with
384 × 384 image input size. The performance of MBF has greatly surpassed that of the
existing state-of-the-art model and outperforms the best method, MSBA with about 3%
overall improvement.

Table 4. Comparison with the state-of-the-art in University-1652.

Method Image Size Drone→ Satellite Satellite→ Drone
Recall@1 AP Recall@1 AP

Baseline [16] 384 × 384 62.99 67.69 75.75 62.09
LCM [17] 384 × 384 66.65 70.82 79.89 65.38
LPN [19] 384 × 384 78.02 80.99 86.16 76.56

LDRVSD [48] 384 × 384 81.02 83.51 89.87 79.80
SGM [49] 256 × 256 82.14 84.72 88.16 81.81
PCL [21] 512 × 512 83.27 87.32 91.78 82.18

FSRA [22] 384 × 384 85.50 87.53 89.73 84.94
MSBA [20] 384 × 384 86.61 88.55 92.15 84.45

MBF 384 × 384 89.05 90.61 93.15 88.17

For additional evaluation, in Table 5, we also test MBF on SUES-200. In
Drone→ Satellite, compared with LPN [19], the Recall@1 accuracy increases from 61.58%,
70.85%, 80.38%, and 81.47% to 85.62%, 87.43%, 90.65%, and 92.12% in four heights. In
Satellite→ Drone, The Recall@1 accuracy raises from 83.75%, 88.75%, 92.50 %, and 92.50%
to 88.75%, 91.25%, 93.75%, and 96.25% in four heights with 384 × 384 image input size.
The result to emerge from the data is that MBF has excellent and stable performance at
different flight heights.

Table 5. Comparison with the state-of-the-art in SUES-200.

Drone→ Satellite

Method 150 m 200 m 250 m 300 m
Recall@1 AP Recall@1 AP Recall@1 AP Recall@1 AP

Baseline [43] 55.65 61.92 66.78 71.55 72.00 76.43 74.05 78.26
ViT [43] 59.32 64.94 62.30 67.22 71.35 75.48 77.17 80.67

LCM [17] 43.42 49.65 49.42 55.91 54.47 60.31 60.43 65.78
LPN [19] 61.58 67.23 70.85 75.96 80.38 83.80 81.47 84.53

MBF 85.62 88.21 87.43 90.02 90.65 92.53 92.12 93.63

Satellite→ Drone

Method 150 m 200 m 250 m 300 m
Recall@1 AP Recall@1 AP Recall@1 AP Recall@1 AP

Baseline [43] 75.00 55.46 85.00 66.05 86.25 69.94 88.75 74.46
ViT [43] 82.50 58.88 87.50 62.48 90.00 69.91 96.25 84.10

LCM [17] 57.50 38.11 68.75 49.19 72.50 47.94 75.00 59.36
LPN [19] 83.75 66.78 88.75 75.01 92.50 81.34 92.50 85.72

MBF 88.75 84.74 91.25 89.95 93.75 90.65 96.25 91.60

4.3. Ablation Study of Methods
4.3.1. Effect of the Fusion Timing

In multimodal, the timing of fusion features from different modals is vital [50]. We
divide the opportunity of fusion into early, progressive, and late fusion. However, the early
fusion has to discard enormous amounts of information to align dimensions. Figure 5
shows the network architectures. Hence, we test progressive fusion and late fusion in our
experiments. As shown in Table 6, late fusion obtains higher Recall@1 accuracy and AP.
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Figure 5. The fusion timing of modals. (a) Progressive Fusion. (b) Late Fusion.

Table 6. Effect of the fusion timing.

Timing Drone→ Satellite Satellite→ Drone
Recall@1 AP Recall@1 AP

Progressive 86.27 88.25 91.73 85.92
Late 85.65 87.71 90.58 85.28

4.3.2. Effect of the HBP Design

To find the best representation fusion form, we design it in three different ways.
Figure 6 shows those architectures. We carry out the following comparative experiments
to study the influence of different HBP designs. The matching accuracy is set to be our
evaluation metric. According to Table 7, it is clear that when Triplet HBP fusion form is
settled as our method, the model has the highest matching accuracy.

ResNetV2 Transformer HBP

(a)

Block

ResNetV2 Transformer

HBP

HBP

(b)

Block

ResNetV2 Transformer

HBP

HBP

HBP

(c)

Figure 6. The different designs of HBP block. (a) Basic HBP. (b) Double HBP. (c) Triplet HBP.
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Table 7. Effect of the HBP design.

HBP Design Drone→ Satellite Satellite→ Drone
Recall@1 AP Recall@1 AP

Basic HBP 84.55 86.70 90.30 83.97
Double HBP 86.39 88.38 91.58 85.34
Triplet HBP 86.95 88.93 91.87 86.24

4.3.3. Effect of the Part Feature Numbers

The number of part features is an essential indicator in PFS. When n = 1, the network
will use the full feature map. In the experiments, we change the number of parts for the
feature map, i.e., 1, 2, 3, and 4. The matching results can be seen in Table 8. We note that
the parts cannot improve the quality of the final feature map as we intuitively think. When
n = 3, 4, the performance gains slightly degrades. Therefore, we set n = 2 for our model.

Table 8. Effect of the part feature numbers.

Numbers Drone→ Satellite Satellite→ Drone
Recall@1 AP Recall@1 AP

1 85.96 88.02 91.30 85.93
2 87.49 89.30 91.87 87.53
3 87.27 89.13 91.44 87.32
4 87.28 89.16 91.44 87.39

4.3.4. Effect of the Proposed Methods

As shown in Table 9, methods ablation experiments for methods are performed.
In those methods, Multimodal and HBP are two main tricks to improve the performance,
contributing nearly 3% for both tasks. Additonally, the FPS still plays a significant role in
our approach, which helps the model enhance 2% matching accuracy. Compared with the
baseline model, the methods proposed in this paper provide +6% Recall@1 and +5% AP on
the task Drone→ Satellite, and +3% Recall@1 and +4% AP on the task Satellite→ Drone.
The experimental results demonstrate the efficiency of Multimodal and HBP; MBF can
grasp more information from various data sources, and a well-designed pooling block also
extracts powerful features.

Table 9. Results of ablation experiments of the proposed method.

Method Drone→ Satellite Satellite→ Drone
Recall@1 AP Recall@1 AP

Baseline 83.52 85.94 90.30 84.38
+ Triplet Loss 84.63 86.79 90.30 84.39
+ Multimodal 86.27 88.25 91.73 85.92

+ HBP 87.34 89.15 92.87 87.50
+ Part Feature 89.05 90.61 93.15 88.17

4.4. Shifted Query

To verify the performance of MBF in the natural environment, we use flip padding
transform on query images for testing. Flip padding flips n pixels on the left side of the
images and crops n pixels on the right side of the image(See Figure 7). This process explores
whether MBF could cope with the offset of the target location in the true-matched image
pair. Table 10 shows the experimental results. Additionally, 0 indicates the original image
(384 × 384), and 10, 20, 30, and 40 are the shifted pixels n, respectively. The results show
that MBF can tolerate the sightly distraction of the query image. However, when the query
image is shifted by more pixels, both tasks’ performance decreases more.
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Figure 7. Flip padding. We pad 0, 10, 20, 30, and 40 pixels on the left of query images, respectively.

Table 10. Effect of the shifted query.

Shifted Pixel Drone→ Satellite Satellite→ Drone
Recall@1 AP Recall@1 AP

0 89.05 90.61 93.15 88.17
10 88.83 90.44 92.58 88.01
20 87.91 89.69 92.30 87.25
30 86.45 88.50 92.01 86.05
40 84.81 87.11 91.58 84.41

4.5. Multi Query

It is hard to comprehensively describe the target location with a single drone-view
image. However, University-1652 provides images from different viewpoints and angles
for each area. This means that for Drone → Satellite, we can use multiple drone-view
images as queries simultaneously to explore whether these multi-view queries can improve
the performance of matching. We average the features obtained from multiple images in
the evaluation and adopt them as a query. The results can be seen in Table 11. We set the
number of images to 54, 27, 18, 9, 3, 2, 1, and the experimental outcomes clearly show that
the matching accuracy of multiple queries can be greatly improved by about 5% in both
Recall@1 and AP. It also shows that multi-angle features are beneficial for drone localization
task in future practice.

Furthermore, we also compared our results with other competitive methods, as shown
in Table 12. It can be seen that the AP value of our method is 3% higher than other methods
in University-1652.

Table 11. Matching accuracy of multiple queries.

Query Drone→ Satellite
Recall@1 Recall@5 Recall@10 AP

54 93.15 96.58 97.86 94.02
27 93.08 96.65 97.79 93.96
18 92.72 96.81 97.86 93.70
9 92.70 96.81 97.79 93.68
3 91.85 96.67 97.65 92.99
2 91.21 96.42 97.47 92.42
1 89.05 95.76 97.04 90.61

Table 12. Comparison with multiple queries in University-1652.

Method Drone→ Satellite
Recall@1 Recall@5 Recall@10 AP

Baseline 69.33 86.73 91.16 73.14
LCM [17] 77.89 91.30 94.58 81.05
PCL [21] 91.63 95.46 97.33 90.84

MBF 93.15 96.58 97.86 94.02
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4.6. Inference Time

In actual application, inference speed is an important evaluation metric for geo-
localization algorithms. Due to the default, the image features in the gallery set are
stored locally in advance in the inference phase. Taking Task 1 (Drone→ Satellite) for an
example, satellite-view images are processed in advance and stored in memory. Therefore,
there are two main steps of inference: 1. The process of extracting query (drone-view)
image feature. 2. Calculate the distances between query (drone-view) feature and local
gallery (satellite-view) features. We test the inference time on an NVIDIA RTX TiTAN GPU.
As shown in Table 13, MBF needs to spend 2.56 s to infer one query image and 3.61× 10−4 s
to calculate distance. Compared with ViT-Basee and LPN, it has to take longer time which
is still hard to apply in the large-scale dataset.

Table 13. Inference time of MBF and other models.

Method Step 1 Step 2

MBF 2.56s 3.61× 10−4 s
ViT-Base 1.68s 2.05× 10−4 s
LPN [19] 1.01s 3.24× 10−4 s

4.7. Visualization

In this section, we visualize the retrieval result of MBF on test datasets from University-
1652. Figure 8 shows the visualization results under rank 5 in two tasks, MBF could correctly
retrieve in some very similar scenes.

The heat map, Figure 9, is generated by MBF from University-1652’s testing set. We
can easily observe that MBF’s activation areas contain the target and background areas
compared with the previous method. MBF shows its strong ability in discriminative feature
extracting and global attention.

Satellite Drone

Drone Satellite

True-matched 
Images

False-matched 
Images

Figure 8. Qualitative image retrieval results.
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Drone

Origin LPN MBFViT

Figure 9. Visualization of heatmaps.

5. Discussion

In our study, we mainly explore two questions, how to introduce external information
to the network in a multimodal manner and how to fuse cross-layer representations.
Compared with other methods, they have tried to design appropriate approaches to mine
valuable information only from images. Our approach proceeds through solving the above
two questions to mine data not only from the image but also from the exterior, for example,
the vehicle itself. First, MBF adopts Hybrid-ViT as its backbone, combining the merits of
CNN and Transformer architecture. Secondly, we use a sentence to describe the status of
the drone and satellite. BERT is applied to convert the semantic information to the word
embedding to input the model. However, the descriptions of the vehicle are still limited
by the dataset. Thirdly, HBP is used to fuse local and global features from different layers,
and we note that it deals with the problem of lack of feature robustness well and shows
enormous potential value in geo-localization. The experiments of this study demonstrate
our proposed method could learn more potential information in the corresponding dataset,
and the matching accuracy is also greatly improved. However, we also observe that the
matching accuracy of Satellite→ Drone is hard to improve due to some very similar scenes
being hard to tell apart. This is a direction in which we will conduct further research.

In addition, the multimodal application in geo-localization is still in its early stages
and it is needed to design more studies and dig deeper. For example, multimodal datasets
are still very lacking. The community also needs cleverly designed networks to incorporate
more information. We hope our approach could serve as a modest spur to induce someone
to come forward with their valuable contributions.

Future work will focus on collecting a comprehensive multimodal geo-localization
dataset for the community. This dataset contains more information about drone status,
satellite status, and even weather conditions. Then, we could apply multimodal-based
model on it to further improve the performance of model in various environments. On the
other hand, the inference time of current model is another big concern. We also will work
on reducing the parameters of backbone to faster the inference speed.
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6. Conclusions

In this paper, we focused on visual geo-localization. It could be applied in GNSS-
denied situations or complex electromagnetic environments to help drones compete in
navigation and localization tasks. Through a summary of previous studies, we pro-
posed a method that has proved the feasibility of multimodal’s application in the geo-
localization field and the reliability of feature fusion based on HBP. MBF absorbs valid
data through the multimodal paradigm and improves the feature map’s quality by
reinforcing representations.

The experimental result validates our method, MBF has achieved state-of-the-art
results on existing datasets, i.e., University-1652, SUES-200. Moreover, the proposed MBF
showed the toleration of shifted query images, which is close to practical application.
The multiple queries also prove the importance of comprehensive viewpoints when the
drone performs localization tasks.
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