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Abstract: In order to improve the driving performance of four-wheel drive electric vehicles and
realize precise control of their speed, a Chaotic Random Grey Wolf Optimization-based PID in-wheel
motor control algorithm is proposed in this paper. Based on an analysis of the structural principles
of electric vehicles, mathematical and simulation models for the whole vehicle are established. In
order to improve the control performance of the hub motor, the traditional Grey Wolf Optimization
algorithm is improved. In particular, an enhanced population initialization strategy integrating sine
and cosine random distribution factors into a Kent chaotic map is proposed, the weight factor of the
algorithm is improved using a sine-based non-linear decreasing strategy, and the population position
is improved using the random proportional movement strategy. These strategies effectively enhance
the global optimization ability, convergence speed, and optimization accuracy of the traditional Grey
Wolf Optimization algorithm. On this basis, the CR-GWO-PID control algorithm is established. Then,
the software and hardware of an in-wheel motor controller are designed and an in-wheel motor bench
test system is built. The simulation and bench test results demonstrate the significantly improved
response speed and control accuracy of the proposed in-wheel motor control system.

Keywords: micro-electric vehicle; in-wheel motors; Chaotic Random grey wolf control algorithm;
speed control

1. Introduction

With the ability to cater to daily commuting needs, micro-electric vehicles designed for
urban mobility have gained significant public favor. When compared to the conventional
propulsion systems of electric vehicles, the approach utilizing four in-wheel motors to
drive the electric vehicle stands out [1]. This design—which integrates the motor with the
wheel—allows for direct motor-driven wheel movement, thereby negating the need for
components such as the engine, clutch, main reducer, and differential. However, achieving
widespread adoption of in-wheel motors in the automotive industry still requires more
in-depth research at present. Due to current limitations in material development, in-wheel
motors still face issues related to quality and durability. However, with continuous techno-
logical advancements, new materials capable of withstanding demanding road conditions
and environmental factors are emerging, providing fundamental solutions to these issues.
Therefore, considering our understanding of development future trends, the prospect of
using four-wheel in-wheel motors to drive micro-electric vehicles holds immense potential
and warrants comprehensive exploration. The distinctive merits of such a configuration,
including compact structure, high power transmission efficiency, and exceptional electric
control performance, have garnered substantial attention in both domestic and interna-
tional automotive industries. Given these combined advantages, the prospect of employing
a four-wheel in-wheel motor to drive micro-electric vehicles holds significant potential
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and is deserving of comprehensive exploration. For example, Vishnu et al. [2] proposed
a brushless DC in-wheel motor drive mode in 2020 and developed hardware equipment
for practical applications, providing a new drive mode for electric vehicles. In addition,
Li et al. [3] have proposed multi-modal driving force distribution strategies to improve the
reliability and independence of four-wheel in-wheel drive electric vehicles. Their results re-
vealed that such an approach can meet the expected requirements. Subroto et al. [4] contend
that one of the key challenges in Four-Wheel Independent Drive Electric Vehicles (4WID
EV) is how to allocate torque to each wheel effectively to improve the vehicle’s dynamic
stability. To address this issue, scholars have designed a novel sliding mode controller with
an adaptive proportional-integral (PI) sliding surface for more precise control. Similarly,
Leng et al. [5] proposed a torque control method for a Four-Wheel Drive Electric Vehicle
based on an allocation algorithm, and the stability of in-wheel motors were enhanced. The
torque distribution strategy of a four-wheel independent-drive electric vehicle with optimal
energy consumption proposed by Guo et al. [6] pays more attention to saving energy on
the basis of improving the vehicle’s performance. In 2021, Silva et al. [7] proposed an opti-
mized fuzzy logic control for application to four-wheel independent-drive electric vehicles.
Through cooperative calculation in a genetic algorithm, the optimal combination of steering
angle and sideslip angle can be found, thus reducing the processing time and error. When
Jeong et al. [8] studied the automatic driving of electric vehicles, they proposed a tracking
control strategy to drive four-wheel in-wheel motors. Dhamija et al. [9] have developed a
torque vector control scheme for the in-wheel motor of four-wheel drive electric vehicles
based on non-linear model predictive control. Later, Saleeb et al. [10] developed a driving
strategy based on an artificial neural network for direct torque control to drive electric
vehicles, which reduced the core loss and improved the driving efficiency.

Indeed, an examination of the domestic and international literature reveals that schol-
ars have put forward an array of strategies and control approaches for the four-wheel
in-wheel motor drive. However, there remains a dearth of studies focused on motor speed
control to enhance the overall dynamic performance of vehicles. A well-designed control
scheme has the potential to increase the vehicle’s driving performance while simultane-
ously curbing energy consumption. This underscores the necessity of further research in
this particular direction.

To maintain the reasonable acceleration and driving speed of electric vehicles, there
have also been relevant studies using PID control. Rohan A. [11] proposed a strategy
based on fuzzy PID control to improve the response performance of the PID controller.
Savnani et al. [12], after modeling a four-wheel drive vehicle, proposed that a continuous
PID can be used to control the error, which is the best control strategy. Through calcula-
tions, the drive can be controlled within a short time to achieve the best motor control
effect. Traditional PID control has the problem of inaccurate adjustment parameters, which
affect the accuracy of the PID controller. In 2021, Altbawi et al. [13] designed a fractional
order PID controller based on a gradient optimization algorithm, which has better control
characteristics than the traditional PID controller. Muqeet et al. [14] also proposed a PID
controller based on the meta-heuristic optimization algorithm. The test results indicated
that the robustness and stability were improved. Later, Zhang et al. [15] applied adaptive
PID control to the speed control of an in-wheel motor. Due to the reliability, universal
applicability, and maturity of PID control, this study proposes a PID controller based on
an optimization algorithm, applying the improved PID controller to a four-wheel-drive
electric vehicle driven by in-wheel motors.

In order to solve the shortcomings of poor robustness and slow convergence inherent
to the PID controller, Wang et al. [16] proposed a modified firefly swarm optimization
algorithm based on the original firefly swarm optimization algorithm. Their results showed
that the performance of the controlled brushless DC motor was improved, thus illustrating
that the group optimization algorithm has a good effect on the optimization of the PID
controller. In addition, Mittal [17] proposed the modified grey wolf optimizer (MGWO)
algorithm, which is used for the image segmentation calculation problem. In order to obtain



Sensors 2023, 23, 8311 3 of 25

the optimal solution, they showed the universality of the application of the optimization
algorithm. Mirjalili et al. [18] proposed a meta-heuristic Grey Wolf Optimization (GWO)
algorithm inspired by the collective behavior of wolves. However, the GWO algorithm
has the disadvantages of premature convergence and poor global search ability. In view
of these shortcomings, different researchers have proposed various strategies. In 2022,
Biabani et al. [19] developed a new optimization algorithm combining the gravity search
algorithm, particle swarm optimization algorithm, and Gray Wolf optimization algorithm
(HGPG) is developed. The HGPG algorithm provides significant improvements, in terms
of exploration and development. Duan et al. [20] have also detailed the advantages of
hybrid algorithms in terms of improving the performance of GWO and developed a new
algorithm called GWO-SCA. The exploration ability of the sine cosine algorithm (SCA)
was used to optimize the Grey Wolf Optimization algorithm, in order to make up for its
weak global search ability. This strategy also inspired a new idea for the optimization of
the GWO algorithm, as detailed in this paper.

In the realm of engineering applications, Mahdis et al. [21] harnessed Grey Wolf Opti-
mization to address engineering challenges. Concurrently, researchers such as Precup [22]
have proposed robot path-planning approaches based on the grey wolf optimizer. Ad-
dressing specific scenarios, scholars such as Wen [23] have developed grey wolf optimizers
augmented by random opposition learning. Dutta [24] and Nayak [24] have also presented
enhanced methods for optimizing PID controllers using the GWO algorithm. However,
these approaches have not yet addressed the limitations of the GWO algorithm. Given the
potential for enhancing the GWO optimization algorithm and the limited exploration of its
application in optimizing motor PID parameters within the new energy engineering context,
this paper introduces a Chaotic Random Grey Wolf Optimization-based PID (CR-GWO-
PID) control algorithm. The proposed algorithm aims to improve the overall operability,
safety, and reliability of vehicles through the optimization of motor speed control.

2. Modeling and Simulation of Four-Wheel In-Wheel Motor Drive Electric Vehicles
2.1. Structure and Principle of Four-Wheel Drive In-Wheel Motor Electric Vehicles

The in-wheel motor drive is utilized to directly integrate the motor assembly with
the reducer in the in-wheel, and all four wheels of a vehicle can be directly driven by
four brushless DC motors. Compared with traditional electric vehicles, the use of an in-
wheel motor drive eliminates the differential, half-shaft, and even secondary transmission
device. The advantages of simple mechanical structure, environmental protection, and
high transmission efficiency have led in-wheel motors to be considered in the industry
as the final drive form of electric vehicles [1]. As shown in Figure 1, when the stator and
rotor move while energized, the electronic commutator (switching circuit) controls the
sequence and time of stator winding energization, according to the position sensor signal,
and generates a rotating magnetic field to drive the rotor to rotate. The electronic control
unit (ECU) provides the controller that outputs the control signal to each motor through the
CAN bus. The controller provides the motor commutator position signal according to the
position sensor inside the motor, such that the motor can continue to run, reach the target
speed, and drive stably. At the same time, the battery management system monitors and
manages the battery pack in real-time, while the energy management system distributes
electrical energy to each motor in real-time.
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Figure 1. Structural diagram of a four-wheel drive in-wheel motor electric vehicle.

2.2. Vehicle Modeling

Dynamics model. According to longitudinal force analysis of the vehicle during
driving and the resistance that the vehicle must overcome on the road [25], the driving
equation of the vehicle is as follows:

Ft = Ff + Fw + Fi + Fj, (1)

where Ft is the driving force, Ff is the rolling resistance, Fw is the air resistance, Fi is the
slope resistance, and Fj is the acceleration resistance.

Ff = f m g, (2)

where f is the rolling resistance coefficient, m is the vehicle’s mass and g is gravitational
acceleration. The rolling resistance coefficient is affected by road conditions and vehicle
speed changes.

Fw =
ρCD Av2

a
2

, (3)

where ρ is the air density, CD is the air resistance coefficient, A is the windward area of the
vehicle, and Fw is calculated according to the speed of the vehicle va (m/s).

Fi = mgsinα, (4)

where α is the slope of the ramp.

Fj = δm
dva

dt
, (5)

where δ is the mass–ratio coefficient. The motor and the in-wheel are rigidly connected,
and the in-wheel directly obtains the driving force, Ft, as shown in Equation (6):

Ft = f mg +
ρCD Av2

a
2

+ mgsinα + δm
dva

dt
. (6)

Battery model. The battery can be seen as an ideal voltage source and a resistor
in series.

E0 = U + Ir, (7)
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where U is the working voltage, I is the working current, and r is the internal resistance of
the battery. The discharge power of the battery is:

Pb = (
E0

R + r
)

2
R, (8)

where R is load resistance Then, a new variable x is introduced, indicating the ratio of the
internal resistance to the load resistance. The discharge power equation of the battery is
replaced by:

Pb = (
E0

1 + x
)

2
R. (9)

The actual maximum output power can be calculated by Equation (10):

PbMAX =
E0

2

4R
, (10)

where PbMAX is the maximum output power of a single cell. When x = 1, that is, R = r, the
maximum power is output. The parameters of the battery depend on the target mileage
of the car and the maximum power of the motor. The number of battery packs can be
determined based on the maximum power of the motor:

n1 =
PeMAX

PbMAXηeηec
, (11)

where PeMAX is the maximum power of the motor; ηe and ηec are the working efficiency
of the motor and the efficiency of the motor controller respectively. Through calculation,
n1 ≈ 120, and they are connected in series to achieve the maximum operating voltage for
the vehicle’s in-wheel motor. The number of batteries required to meet the vehicle’s target
driving mileage (150 km) is:

n2 =
1000LW

cbvb
, (12)

where L is the target cruising range, W is the energy consumed when the car travels 1 km,
cb is the capacity of a single lithium battery, and vb is the voltage of a single lithium battery.
The calculation shows that n2 ≈ 615, and these should be connected in parallel to achieve
the target range of 150 km for the vehicle.

N = SUM(n1, n2). (13)

Therefore, the final number of batteries in the battery pack is N = 735. The state of the
battery pack during vehicle operation and charging is:

SOC = SOC0 −
∫ t

0 Idt
Cn

. (14)

where SOC0 is the battery’s initial SOC, I is the working current, and Cn is the battery rating.
Motor model. In this paper, a four-wheel in-wheel motor-driven urban mini-electric

vehicle is studied. The motor power is 8 kW, 25.6 N·m. The relationship between vehicle
speed and motor speed can be expressed by Equation (15). By simulating the road condi-
tions and knowing the vehicle’s maximum driving speed va, we can calculate the maximum
speed of the motor nmax.

nmax =
va

0.377r
, (15)
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The maximum power of the motor can be calculated by Equations (16), where a is the
vehicle’s acceleration. The in-wheel motor map, generated based on motor speed, torque,
and efficiency, is depicted in Figure 2.

PeMAX =
va

3600ηe

(
mg f +

ρCD Av2
a

2
+ δma

)
. (16)
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2.3. Vehicle Model Simulation and Analysis

For the designed simulation model of the micro-electric vehicle driven by a four-wheel
in-wheel motor, the battery capacity is approximately 30.26 kWh. the motor power is
8 kW, and the vehicle parameters are provided in Table 1. Figure 3 shows the vehicle
simulation model, incorporating kinematics, motor, and battery models. By simulating
this vehicle model, we can derive the road condition requirements for the motor. The
simulation model was tested under the road conditions of New York City (CYC_NYCC).
CYC_NYCC road condition data is typically used for vehicle simulations and testing to
assess the performance of various vehicles under real urban road conditions. One cycle’s
total simulation time is 598 s, the waiting time is 210 s, the driving distance is 1.9 km, the
maximum speed is 44.58 km/h, the maximum acceleration is 2.68 m/s2, and the average
acceleration is 0.62 m/s2. Figure 4a,b shows the changes in battery SOC and mileage
during 80 driving cycles. Overall, it is found that SOC and mileage are approximately
linearly correlated with time. That is to say, in the 80 driving cycles, the SOC as a whole is
decreasing with time; the mileage shows a continuous increase over time. The total driving
time of the car was 47,840 s (13 h 16 min), the driving distance was 1.51278 × 105 m (about
151.3 km), and the remaining battery capacity was 9.53% (about 9.5%). Figure 5a,b shows
the required speed of the vehicle under the CYC_NYCC road conditions and the actual
speed of the model simulation, from which it can be seen that the results were basically
consistent. Figure 5c,d shows the required torque of the vehicle under the CYC_NYCC
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road conditions and the actual torque obtained from the model simulation. The actual
torque was greater during braking, but the results were basically consistent, indicating
that the model can meet the requirements of vehicle urban driving. In summary, the
Simulink simulation model of the whole vehicle was correct and can meet the requirements
of the New York City Road conditions. From the simulation results, the simulation model
of the urban mini electric vehicle was considered correct, and the target mileage value
was basically consistent with that in the simulation results. These demonstrate that the
designed vehicle model can meet the basic requirements of general urban road conditions
and personal driving.

Table 1. Vehicle parameter table.

Vehicle Parameters Values

vehicle mass 665 kg
Length × width × height 2920 mm × 1493 mm × 1621 mm

Wheelbase 1940 mm
Wheel pitch 1290 mm

Minimum ground clearance 125 mm
Rolling damping coefficient 0.015

Air drag coefficient 0.35
Tire radius 385 mm

Area of the windward zone 2.178 m2
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3. Research on Brushless DC Motor and Its Control Algorithm
3.1. Brushless DC Motor Model

A three-phase six-state inductive (Hall sensor) brushless DC motor is considered
here [26]. The mathematical model for the brushless DC motor is as follows:

u = Reqi + L
di
dt

+ Eeq. (17)

In particular, Equation (17) is the voltage balance equation, in which u is the voltage
instantaneous value matrix of each phase stator, i is the current instantaneous value matrix
of each phase stator, Req is the equivalent resistance value matrix of each phase armature, L
is the inductance matrix, and Eeq is the instantaneous value matrix of each phase-induced
electromotive force.

Td =
GD2

375
dn
dt

+ Tl + BN
nπ

30
, (18)

GD2

375
= Z. (19)
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Equation (18) is the mechanical kinetic equation, in which Td is the electromagnetic
torque of the motor, n is the actual speed of the motor, GD2 is the flywheel torque, Tl is
the load torque, BN is the mechanical damping, and ω is the rotor angular velocity. For
simplicity, Equation (19) can be substituted into Equation (18). The inductance L can be
calculated by Equation (20):

L =

Laa Lab Lac
Lba Lbb Lbc
Lca Lcb Lcc

. (20)

The brushless DC motor is a three-phase motor, in which the three-phase winding of
the three-phase motor is symmetric. In an electric cycle, the mutual inductance between
adjacent two phases is the same, and the self-inductance of each phase is the same [27].
This can be expressed by Equations (21) and (22), as follows:

Lab = Lac = Lba = Lbc = Lbc = Lbc = M, (21)

Laa = Lbb = Lcc = L. (22)

Req =

r 0 0
0 r 0
0 0 r

, (23)

where r is the equivalent resistance of each phase winding. The voltage balance equation
can be described by Equation (24):uA

uB
uC

 =

r 0 0
0 r 0
0 0 r

iA
iB
iC

+

 L M M
M L M
M M L

ρ

iA
iB
iC

+

EA
EB
EC

. (24)

where ρ denotes that the current of each phase is differentiated from time. The induced
electromotive force of each phase winding can be calculated by Equation (25):

Ei = ∑N/2a
x=1 Bxlv = Bavglv

N
2a

, (25)

where N/2a represents the total number of conductors on a branch, Bavg represents the
average magnetic density which can be calculated by Equation (26), l is the length of the
conductor, and v is the speed of the conductor cutting the magnetic induction line, which
can be calculated by Equation (27):

Bavg =
φm

lτ
, (26)

v = 2Pτ
n
60

. (27)

where φm is the unipolar magnetic flux, and τ is the polar distance. P is the number of
pole-pairs. The expression of induced electromotive force in Equation (28) can be obtained
from Equations (25)–(27):

Ei = Cen. (28)

The back electromotive force constant Ce can be calculated by Equation (29):

Ce =
pN
60a

φm. (29)

The electromagnetic torque Td can be calculated by Equation (30):

Td = ∑N
x=1 Tx = TavgN, (30)
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where Tavg is the average torque of a conductor, which can be calculated by Equation (31):

Tavg = favg
D
2

, (31)

where favg is the average electromagnetic force on a conductor. This can be calculated by
Equation (32):

favg = Bavgli′, (32)

where i′ is the current through a single conductor. The electromagnetic torque Td can also
be calculated by Equation (33):

Td = Cdi, (33)

Cd =
pN
2aπ

φm. (34)

Using the formula above, the torque constant Cd can be obtained. At the same time, i
can be obtained from Equations (18), (19), and (33) as:

i =
Z dn

dt + Tl + BNω

Cd
. (35)

Ignoring the disturbed magnetic field BN and bringing Equation (35) into the voltage
balance equation, we obtain:

u = Req
Z dn

dt + Tl

Cd
+ Lρ

Z dn
dt + Tl

Cd
+ Cen. (36)

The Laplace transform and deformation can be obtained by Equation (37):

N(s) =
Cd

ZLs2 + ZReqs + CdCe
U(s)− Ls + R

ZLs2 + ZReqs + CdCe
Tl(s). (37)

3.2. Chaotic Random Grey Wolf Proportional Integral Differential (CR-GWO-PID)
Control Algorithm

The Grey Wolf Optimization (GWO) algorithm is a meta-heuristic optimization algo-
rithm that simulates the biological behavior of a grey wolf population [18]. The algorithm
is primarily used to simulate and solve the optimization problem through cooperative and
competitive biological predation within the grey wolf population. However, the GWO algo-
rithm has the disadvantages of low accuracy, poor global search ability, and falling into local
optima. In view of this, a Chaotic Random Grey Wolf Optimization (CR-GWO) algorithm
has been developed to address these shortcomings [28]. The essence of the CR-GWO-PID
algorithm also lies in its simulation of swarm intelligence through natural behaviors.

(1) Hybrid Optimization of Population Initialization Improvement Strategy Population
initialization significantly influences the convergence speed of global optimization. The
purpose of initialization is to generate an initial set of solutions within the search space,
typically by random means, designed to cover the entire search space. This allows the
algorithm to explore a diverse range of potential solutions. At present, Tent, Chebyshev,
Gauss, and other chaotic maps are widely used in group optimization algorithms, due
to their randomness, repeatability, and non-recombination [29]. On the basis of these
advantages, the Kent chaotic map uses a mixed sine and cosine random assignment [30]
to initialize the population. The objective is to introduce a degree of randomness into
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the population initialization process, thereby reducing the risk of convergence to a local
optimal. The mathematical model is as follows:

xk+1 =


xk
µ 0 < xk ≤ µ

1−xk
1−µ µ < xk < 1

, (38)

xk+1 = [u× cos(p× π)× sin(v× π)]× xk. (39)

In order to avoid falling into a short period during initialization, it is necessary to
ensure that the initial value is not equal to the control parameter µ in Equation (38);
furthermore, µ 6= 0.5 and µ ∈ (0, 1). At the same time, in order to avoid the emergence
of repeated populations, a strategy of sine and cosine random allocation can be adopted
on the basis of the Kent chaotic map. In Equation (39), the weight coefficient u = 2, the
random coefficient p ∈ [0, 1], and the random coefficient v ∈ [0, 1]. Then, xk is the chaotic
sequence value obtained in the kth iteration. As shown in Figure 6, first, the region of the
sampled value was divided into 10 × 10 grids (the grid is the calculation method program
running is the simulation step) to calculate the number of midpoints of each unit grid,
following which the density distribution value was calculated by kernel density estimation
(KDE). The density distribution value for the CR-GWO algorithm was 0.020737, while the
density distribution value for the GWO algorithm was 0.0015117. Therefore, compared
with the GWO algorithm, the CR-GWO algorithm had a more uniform distribution, higher
randomness, and less repeatability.
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(2) Non-Linear Inertia Decreasing Improvement Strategy with Weight Factors. When
searching for prey, wolves are affected by a distance weight A. When |A| > 1, the grey wolf
is far away from the prey, and a large-scale search allows for finding the optimal solution
in a more global manner. When |A| < 1, the search range shrinks and the pursuit of the
prey begins [31]. Compared with the linear decreasing strategy in the GWO algorithm, the
improved CR-GWO algorithm introduces a sinusoidal non-linear decreasing factor, which
enhances the global search ability in the early stage, improves the local search ability in the
later stage, and improves the accuracy of the optimal solution of the algorithm [32]. At the
same time, it helps the algorithm explore a wide range of solution Spaces and increases
the possibility of finding promising regions. The expression of the sinusoidal non-linear
decreasing factor is:

p =


2− (sin(π(t−1)

tmax−1 ))
n

0 < t < 2
tmax

(sin(π(t−1)
tmax−1 ))

n 2
tmax
≤ t ≤ tmax

. (40)

where t is the current number of iterations, tmax is the maximum number of iterations and n
is the decreasing weight; n = 2 was selected for this study and the maximum number of
iterations was set to 100. The GWO algorithm was compared with the CR-GWO algorithm,
and the results are shown in Figure 7.

(3) Random Proportional Displacement Strategy. A random proportional weight was
added to the CR-GWO algorithm [33]. By introducing randomness within the population,
the algorithm can converge more swiftly toward potential solutions, reducing unnecessary
iteration cycles during the search process and thereby enhancing convergence speed.
Simultaneously, the random proportional displacement strategy somewhat reduces the
positional disparities among individuals within the population. This aids in accelerating
the local search process, enabling the algorithm to converge more rapidly toward the
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vicinity of local optima, thereby enhancing the algorithm’s precision in local search. The
mathematical model expression is:

m1 =
|X1|

|X1|+ |X2|+ |X3|
, (41)

m2 =
|X2|

|X1|+ |X2|+ |X3|
, (42)

m3 =
|X3|

|X1|+ |X2|+ |X3|
, (43)

X(t + 1) =
m1 × X1 + 2× ρ×m2 × X2 + ρ×m3 × X3

3
. (44)

when the mathematical model is abstracted as a plane image, X1, X2, and X3 are the
coordinates of the three vertices of the triangle, where m1, m2, and m3 represent the weight
of the distance ratio at any point within the triangle. X1, X2, and X3 correspond to three
grey wolves, denoted alpha, beta, and delta, respectively. They determine the location of
omega wolves that are constantly close to their prey for attack. The random expansion of
the weight factor ρ ∈ (0, 1) expands the distance ratio of X2 and X3 to the internal point,
which means that the internal point is closer to X1. In the algorithm, the position of omega
is closer to that of alpha, and alpha’s position is closer to the prey, such that the algorithm
needs fewer iterations when seeking the optimal solution and the convergence speed is
faster. Based on this improvement, the implementation steps for the CR-GWO algorithm
are shown in Figure 8.
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In order to verify its optimization ability six test functions (three unimodal benchmark
functions and three multimodal benchmark functions) were selected to test the global
solution ability of CR-GWO algorithm and the ability to jump out of local optima, in
comparison with the GWO algorithm. The test functions are detailed in Table 2.
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Table 2. Description of benchmark functions.

Function Dim Range fmin

f1 = ∑n−1
i=1

[
100(xi+1 − xi

2)
2
+ (xi − 1)2

]
30 [−30, 30] 0

f2 = ∑n
i=1 [(xi + 0.5)2] 30 [−100, 100] 0

f3 = ∑n
i=1 (ix

4
i ) + random[0, 1] 30 [−1.28, 1.28] 0

f4 = −20 exp(−0.2
√

1
n ∑n

i=1 (x2
i ))− exp( 1

n ∑n
i=1 (cos(2πxi)))+ 20+ e 30 [−5.12, 5.12] 0

f5 = 1
4000 ∑n

i=1 (x2
i )−∏n

i=1 (cos( xi√
i
)) + 1 30 [−600, 600] 0

f6 = π
n {10 sin(πy1 ) + ∑n−1

i=1 (yi − 1)
2
[10 sin2(πyi+1)] + (yn − 1)2}

+ ∑n
i+1 u(xi, 10, 100, 4)

yi = 1 + xi+1
4

u(xi, 10, 100, 4) =


k(xi − a)m xi > a

0 −a < xi < a
k(−xi − a)m xi < −a

30 [−50, 50] 0

The number of populations was set to 50 and the maximum number of iterations
was 100. In order to fully verify the convergence accuracy and evaluation stability of the
proposed algorithm to avoid randomness, the CR-GWO and GWO were each run 50 times,
and the average and standard deviation of the optimal fitness were taken to measure the
performance of the algorithms. The results and data are shown in Figure 9.
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The data results after 50 runs are provided in Table 3. Compared with the GWO
algorithm, the solution accuracy of the CR-GWO algorithm was improved by about 25.13%,
13.68%, 32.65%, 39.20%, 30.82%, and 34.46% on the six test functions, respectively, with an
average increase of about 29.323%. In addition, compared with the GWO algorithm, the
CR-GWO algorithm consistently obtained the optimal solution with fewer iterations. These
results demonstrate that the CR-GWO algorithm has faster convergence speed, higher
convergence accuracy, and stronger stability.

Table 3. Analysis of test results.

Function
GWO CR-GWO

AVG STD AVG STD

f1 1.2971927 0.623971 0.97100573 0.12340483
f2 5.83278437 0.402126723 5.034828256 0.320877835
f3 0.002948175 0.025320668 0.001975758 0.001219342
f4 1.0237778202 1.8486 × 10−10 0.623297658 1.70004 × 10−15

f5 1.388772273 1.347839087 0.935870771 0.163039133
f6 1.482505429 2.815509853 0.972366285 0.046705182

On this basis, the parameters for the PID controller of the in-wheel motor were adjusted
using the CR-GWO optimization algorithm, and a motor simulation experiment was carried
out using the optimized parameters [34,35]. The parameters for the brushless DC motor are
shown in Table 4. The preset range of PID parameters was [0, 10], the number of iterations
of the algorithm was 100, and the number of populations was 30. In order to test the
superiority of the improved CR-GWO-PID control algorithm, compared with other control
strategies, open-loop control, self-designed PID parameter value control (PID parameters
tuned based on engineering experience), and GWO-PID control were compared in the
test. The test was carried out at different speeds (600 rpm, 500 rpm, and 400 rpm) [25].
The motor simulation process is shown in Figure 10, and the self-designed PID parameter
values were KP = 0.5, KI = 0.005, and KD = 0.001 [36,37]. The effects of the four different
control methods are shown in Figure 11.

Table 4. Brushless DC motor parameters.

BLDC Motor Parameters Values

BLDC Motor rating 48 V, 2000 W
Rated speed 3000 rpm
Rated torque 6.4 N·m

Moment of inertia 14.6 × 10−4 kg·m2

Weight 7 kg
Torque constant 0.123 N·m/A

Armature resistance 0.4605 Ω
Armature inductance 3.226 mH
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According to Tables 5–7, CR-GWO-PID control demonstrated significant advantages
over the other control methods in the simulations at three different speeds. Specifically,
when compared with the open-loop control, the rise time of the CR-GWO-PID control was
reduced by about 41.25% on average, while the settling time was reduced by 41.92% on
average; compared with the self-designed PID control, the rise time of the CR-GWO-PID
control was reduced by about 1.587% on average, the settling time was reduced by 20.97%
on average, and the peak time was reduced by 27.96% on average. Compared with the
GWO-PID control, the rise time of the CR-GWO-PID control was reduced by about 0.957%
on average, the settling time was reduced by 9.32% on average, and the peak time was
reduced by 1.90% on average. In addition, during simulations at three different speeds,
the overshoot of the CR-GWO-PID control did not exceed the range of 10–20%, indicating
excellent control accuracy. Open-loop control does not have an effective control effect.
While the self-designed PID control exhibits good acceleration performance, it suffers from
excessive overshoot. Additionally, manually tuning PID parameters requires extensive
testing to achieve the desired results. Compared to the optimized algorithm-calculated PID
parameters, it shows significant disadvantages and is therefore not suitable. In contrast
to the first two control methods, under GWO-PID control, the system shows relatively
good results in terms of overshoot and settling time calculation. However, under CR-GWO-
PID control, the system can achieve better acceleration performance and stability with
lower overshoot.
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Table 5. The 600 rpm simulation results. (Rise Time: The time it takes for the signal to transition
from the initial value of 10% to the first time it reaches the stable value of 90%. Overshoot: The
magnitude by which a signal exceeds its stable value for the first time, typically near the beginning
of its response. Settling Time: The duration required for a signal, after overshooting, to ultimately
stabilize near its stable value. Peak Time: The time taken for a signal to reach its maximum overshoot
value. “\” indicates ellipsis.).

Algorithm Rise Time (s) Overshoot (%) Settling Time (s) Peak Time (s)

Open-loop 0.0898 0 0.153 \
PID 0.0196 47.75 0.104 0.0231

GWO-PID 0.0192 14.075 0.0539 0.0199
CR-GWO-PID 0.0189 12.5 0.0521 0.019

Table 6. The 500 rpm simulation results.

Algorithm Rise Time (s) Overshoot (%) Settling Time (s) Peak Time (s)

Open-loop 0.0832 0 0.2153 \
PID 0.0195 53.10 0.0829 0.0293

GWO-PID 0.019 17.68 0.2252 0.0191
CR-GWO-PID 0.0193 10.40 0.06492 0.0192

Table 7. The 400 rpm simulation results.

Algorithm Rise Time (s) Overshoot (%) Settling Time (s) Peak Time (s)

Open-loop 0.0743 0 0.2736 \
PID 0.0195 53.23 0.1126 0.0362

GWO-PID 0.0191 12.717 0.0712 0.0187
CR-GWO-PID 0.0192 11.133 0.0548 0.0175

The results above demonstrate that the CR-GWO-PID control algorithm presents
excellent dynamic performance in the case of simulating different speeds, with a faster rise
time, shorter settling time, and lower overshoot, while maintaining excellent acceleration
performance and stability.

4. Bench Test of In-Wheel Motor Control System
4.1. Construction of Motor Test Bench

The MCU for actual motor speed acquisition and motor control was composed of elec-
tronic components including an ARM processor (model GD32F103VCT6), analog switch IC
(DG408DY), and drive signal IC (LJ245A). The MCU also incorporates peripheral functions
such as PWM signal output and SDIO protocol support. For the test, a brushless DC motor
with a three-phase bridge rectifier circuit (output 48 V control voltage), a sensor (Hall
sensor), and a magnetic powder brake (model EL-PB-5; to provide a load for the drive
motor) were used. At the same time, a speed sensor (model DYN-200) was used to measure
the speed of the motor in the bench test.

The bench test process is illustrated in Figure 12. During the whole experiment, the
brushless DC motor and the magnetic powder brake simulated the in-wheel motor drive
system. The DYN-200 sensor collected the speed signal and transmitted it to the MCU. A
program written using MATLAB software was used to read the speed signal and preset the
expected speed, then control the motor speed through the PID controller optimized using
the CR-GWO-PID control algorithm. At the same time, the MATLAB program also outputs
control instructions, such that the MCU could output the corresponding PWM signal to the
motor controller, thus realizing a series of acquisition, optimization, and control operations.
An image of the physical test bench is shown in Figure 13.
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4.2. Test Results and Analysis

The analysis of the results from the motor simulation indicates that the CR-GWO-
PID control algorithm exhibits excellent control performance. Consequently, to validate
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the real-world performance of the in-wheel motor test bench based on the CR-GWO-
PID control algorithm, bench tests were conducted at speeds of 400 rpm, 500 rpm, and
600 rpm, respectively.

The PID parameters, as shown in Tables 8–10, were calculated for motor simulation
at different speeds. However, it is necessary to select the optimal parameters for the PID
controller to meet the requirements of different speeds. Therefore, tests were conducted
at different speeds for each set of PID parameters., and the test results are depicted in
Figures 14–16.

Table 8. PID parameter table for 400 rpm bench test motor (Test Group 1).

Algorithm KP KI KD

GWO-PID 1.035 0.3565 0.0029605
CR-GWO-PID 1.01 0.38985 0.002655

Table 9. PID parameter table for 500 rpm bench test motor (Test Group 2).

Algorithm KP KI KD

GWO-PID 1.016 0.41862 0.00235
CR-GWO-PID 1.105 0.41985 0.0029605

Table 10. PID parameter table for 600 rpm bench test motor (Test Group 3).

Algorithm KP KI KD

GWO-PID 1.308 0.3497 0.002089
CR-GWO-PID 1.017 0.3565 0.0029605
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Figure 14. In Test Group 1, the Simulation curve diagram of motor speed under the four control
strategies: (a) Target speed 400 rpm; (b) target speed 500 rpm; and (c) target speed 600 rpm.
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Figure 15. In Test Group 2, the Simulation curve diagram of motor speed under the four control
strategies: (a) Target speed 400 rpm; (b) target speed 500 rpm; and (c) target speed 600 rpm.
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Figure 16. In Test Group 3, the Simulation curve diagram of motor speed under the four control
strategies: (a) Target speed 400 rpm; (b) target speed 500 rpm; and (c) target speed 600 rpm.

In the PID parameter testing conducted in Test Group 1, as indicated by Tables 11–13,
under the three different speed test conditions, when the CR-GWO-PID control was com-
pared with open-loop control, the rise time was shortened by 29.04% on average, while the
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settling time was shortened by 35.47% on average; compared with the GWO-PID control,
the rise time was shortened by 5.41% on average, and the settling time was shortened by
14.72% on average. The peak time was shortened by 9.63% on average. In addition, the over-
shoot of CR-GWO-PID control was stable within 5% under the three working conditions.

Table 11. Test Group 1, the 400 rpm bench test data sheet.

Algorithm Rise Time (s) Overshoot (%) Settling Time (s) Peak Time (s)

Open-loop 1.25 0 2.45 \
GWO-PID 0.808 3.623 1.825 1.46

CR-GWO-PID 0.794 3.775 1.57 0.98

Table 12. Test Group 1, the 500 rpm bench test data sheet.

Algorithm Rise Time (s) Overshoot (%) Settling Time (s) Peak Time (s)

Open-loop 1.22 0 2.15 \
GWO-PID 0.973 3.525 1.986 1.217

CR-GWO-PID 0.897 3.429 1.495 0.996

Table 13. Test Group 1, the 600 rpm bench test data sheet.

Algorithm Rise Time (s) Overshoot (%) Settling Time (s) Peak Time (s)

Open-loop 1.08 0 1.98 \
GWO-PID 0.813 7.5 1.886 1.314

CR-GWO-PID 0.819 4.723 1.685 1.209

In the PID parameter testing conducted in Test Group 2, as indicated by Tables 14–16,
under the three different speed test conditions, when the CR-GWO-PID control was com-
pared with open-loop control, the rise time was shortened by 33.02% on average, while the
settling time was shortened by 29.97% on average; compared with the GWO-PID control,
the rise time was shortened by 3.92% on average, and the settling time was shortened by
24.81% on average. The peak time was shortened by 6.07% on average. In addition, the over-
shoot of CR-GWO-PID control was stable within 5% under the three working conditions.

Table 14. Test Group 2, the 400 rpm bench test data sheet.

Algorithm Rise Time (s) Overshoot (%) Settling Time (s) Peak Time (s)

Open-loop 1.25 0 2.45 \
GWO-PID 0.796 3.04 1.825 1.364

CR-GWO-PID 0.802 3.09 1.57 1.08

Table 15. Test Group 2, the 500 rpm bench test data sheet.

Algorithm Rise Time (s) Overshoot (%) Settling Time (s) Peak Time (s)

Open-loop 1.22 0 2.15 \
GWO-PID 0.85 4.125 2.06 0.95

CR-GWO-PID 0.75 4.529 1.49 0.97

Table 16. Test Group 2, the 600 rpm bench test data sheet.

Algorithm Rise Time (s) Overshoot (%) Settling Time (s) Peak Time (s)

Open-loop 1.08 0 1.98 \
GWO-PID 0.725 3.05 2.26 1.06
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In the PID parameter testing conducted in Test Group 3, as indicated by Tables 17–19,
under the three different speed test conditions, when the CR-GWO-PID control was com-
pared with open-loop control, the rise time was shortened by 32.45% on average, while the
settling time was shortened by 23.86% on average; compared with the GWO-PID control,
the rise time has remained nearly unchanged, and the settling time was shortened by 17.32%
on average. The peak time was shortened by 0.85% on average. In addition, the overshoot
of CR-GWO-PID control was stable within 5% under the three working conditions.

Table 17. Test Group 3, the 400 rpm bench test data sheet.

Algorithm Rise Time (s) Overshoot (%) Settling Time (s) Peak Time (s)

Open-loop 1.25 0 2.45 \
GWO-PID 0.807 4.043 2.025 1.289

CR-GWO-PID 0.803 4.05 1.803 1.256

Table 18. Test Group 3, the 500 rpm bench test data sheet.

Algorithm Rise Time (s) Overshoot (%) Settling Time (s) Peak Time (s)

Open-loop 1.22 0 2.15 \
GWO-PID 0.736 4.125 1.832 0.98

CR-GWO-PID 0.796 4.029 1.69 1.03

Table 19. Test Group 3, the 600 rpm bench test data sheet.

Algorithm Rise Time (s) Overshoot (%) Settling Time (s) Peak Time (s)

Open-loop 1.08 0 1.98 \
GWO-PID 0.73 7.333 2.26 1.05

CR-GWO-PID 0.79 3.167 1.509 1.02

Based on the comparison of data from the three bench test groups, several key con-
clusions can be drawn. Firstly, it is evident that the performance of the motor under the
CR-GWO-PID control algorithm surpasses that of alternative control methods. Secondly,
recognizing the paramount importance of stability and safety during vehicle operation,
settling time has been selected as a pivotal metric. In Test Group 2, when computed using
the CR-GWO-PID control algorithm, the motor exhibits a significantly reduced settling time,
aligning more closely with the final parameters set by the PID controller. These collective
results underscore the substantial advantages of the CR-GWO-PID control algorithm for
in-wheel motor-driven electric vehicles, effectively enhancing both the maneuverability
and overall safety of the vehicles during linear motion.

5. Conclusions

In order to improve the performance of micro-electric vehicles, this paper studied
the speed control systems of four-wheel drive micro-electric vehicles driven by in-wheel
motors. The following conclusions were drawn: (i) The simulation results demonstrated
that the studied micro-electric vehicle model is reasonable and feasible, allowing for road
condition simulations to obtain comprehensive motor data. The driving range of the
micro-electric vehicle reached about 151.3 km and the remaining power was about 9.5%.
Under general driving conditions, it suits the purpose of urban transportation; (ii) the
simulation results obtained for the six test functions indicated that through the use of
the three different improvement strategies proposed in this paper—namely, integrating a
population initialization approach using sine and cosine random distribution factors in
the Kent chaotic map, algorithm weighting factors that decrease non-linearly through the
use of a sine function, and movement of the population position in a random proportional
manner—the global optimization ability, convergence speed, and optimization accuracy
of the traditional grey wolf algorithm can be improved; and (iii) Simulation and bench
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test results demonstrate that the application of the CR-GWO algorithm to the motor PID
control system improves the speed control effectiveness of the drive motor. Comprehensive
bench test data reveals that the motor, when controlled by the CR-GWO-PID algorithm,
exhibits reduced rise time, settling time, and peak time compared to other control methods.
This results in an overall enhancement of system performance. The development of this
control algorithm, coupled with the fine-tuning of PID parameters, enhances motor stability
across various speed ranges, consequently improving the safety and maneuverability of
micro-electric vehicles equipped with four-wheel in-wheel motor drive systems.

Author Contributions: Conceptualization, X.X. and P.X.; methodology, P.X.; software, M.W., J.D.
and X.Z.; validation, P.X.; formal analysis, X.X.; investigation, M.W., J.D. and X.Z.; resources, M.W.,
J.D. and X.Z.; data curation, M.W.; writing—original draft preparation, M.W.; writing—review and
editing, M.W.; visualization, M.W.; supervision, X.X. and P.X.; project administration, X.X.; funding
acquisition, X.X. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Natural Science Research Projects of Universities in Anhui
Province, grant number KJ2020A0350; Anhui University of Engineering-Jinjiang District Industrial
Collaborative Innovation Special Fund Project, grant number 2022cyxtb9; Key Research and Develop-
ment Projects in Anhui Province, grant number 2022a05020007; National Natural Science Foundation
of China (NSFC), grant number 52375227.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Deepak, K.; Frikha, M.A.; Benomar, Y.; El Baghdadi, M.; Hegazy, O. In-Wheel Motor Drive Systems for Electric Vehicles: State of

the Art, Challenges, and Future Trends. Energies 2023, 16, 3121.
2. Sidharthan, P.V.; Kashyap, Y. Brushless DC Hub Motor Drive Control for Electric Vehicle Applications. In Proceedings of the

2020 First International Conference on Power, Control and Computing Technologies (ICPC2T), Raipur, India, 3–5 January 2020;
pp. 448–453.

3. Li, X.; Peng, J.; Zan, J. Multi-modal Distribution Strategy of Longitudinal Driving Force of Four-wheel-Hub Drive Electric Vehicle.
In Proceedings of the 2020 7th International Conference on Information Science and Control Engineering (ICISCE), Changsha,
China, 18–20 December 2020; pp. 1961–1966.

4. Subroto, R.K.; Wang, C.Z.; Lian, K.L. Four-Wheel Independent Drive Electric Vehicle Stability Control Using Novel Adaptive
Sliding Mode Control. IEEE Trans. Ind. Appl. 2020, 56, 5995–6006.

5. Leng, S.; Jin, L.Q. Distribution Algorithm for Torque Control of New Energy Four-Wheel Hub Motor. Russ. Phys. J. 2022, 64,
1613–1628.

6. Guo, L.; Xu, H.; Zou, J.; Jie, H.; Zheng, G. Torque Distribution Strategy of Four-Wheel Independent Drive Electric Vehicle Based
on Optimal Energy Consumption. In Proceedings of the 2020 IEEE 3rd International Conference on Electronics Technology
(ICET), Chengdu, China, 8–12 May 2020; pp. 252–256.

7. Silva, F.L.J.; Silva, L.C.A.; Eckert, J.; Yamashita, R.; Lourenco, M.A.M. Parameter influence analysis in an optimized fuzzy stability
control for a four-wheel independent-drive electric vehicle. Control. Eng. Pract. 2022, 120, 105000.

8. Jeong, Y.; Yim, S. Path Tracking Control with Four-Wheel Independent Steering, Driving and Braking Systems for Autonomous
Electric Vehicles. IEEE Access 2022, 10, 74733–74746.

9. Dhamija, R.; Basak, S.; Singh, A.; Sengupta, S.; Dinh, T.Q.; Yoon, J.I. Advanced Control Strategies for High Performance Four-
Wheel Drive Electric Vehicle. In Proceedings of the 2022 25th International Conference on Mechatronics Technology (ICMT),
Kaohsiung, Taiwan, 18–21 November 2022; pp. 1–6.

10. Saleeb, H.; Kassem, R.; Sayed, K. Artificial neural networks applied on induction motor drive for an electric vehicle propulsion
system. Electr. Eng. 2022, 104, 1769–1780.

11. Rohan, A.; Asghar, F.; Kim, S.H. Design of Fuzzy Logic Tuned PID Controller for Electric Vehicle based on IPMSM Using
Flux-weakening. J. Electr. Eng. Technol. 2018, 13, 451–459.

12. Savnani, P.S.; Sisodia, H.S.; Tak, D.; Mecwan, A. Modelling, Design and Control of a Four wheel Holonomic Drive. In Proceedings
of the 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 27–28 February
2020; pp. 879–884.



Sensors 2023, 23, 8311 25 of 25

13. Altbawi, S.M.A.; Mokhtar, A.S.B.; Jumani, T.A.; Khan, I.; Hamadneh, N.N.; Khan, A. Optimal design of Fractional order PID
controller based Automatic voltage regulator system using gradient-based optimization algorithm. J. King Saud Univ.—Eng. Sci.
2021, in press. [CrossRef]

14. Muqeet, A.; Israr, A.; Zafar, M.H.; Mansoor, M.; Akhtar, N. A novel optimization algorithm based PID controller design for
real-time optimization of cutting depth and surface roughness in finish hard turning processes. Results Eng. 2023, 18, 101142.

15. Zhang, J.J.; Li, C.; Jia, Q.B.; Gao, R.Z. Research on the Adaptive PID Speed Control Method for Hub Motors. Mob. Inf. Syst. 2022,
2022, 4979824.

16. Wang, Z.; Zhang, Y.; Yu, P.; Cao, N.; Dintera, H. Speed Control of Motor Based on Improved Glowworm Swarm Optimization.
Cmc-Comput. Mater. Contin. 2021, 69, 503–519.

17. Mittal, N.; Singh, U.; Sohi, B.S. Modified Grey Wolf Optimizer for Global Engineering Optimization. Appl. Comput. Intell. Soft
Comput. 2016, 2016, 7950348.

18. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61.
19. Biabani, F.; Shojaee, S.; Hamzehei-Javaran, S. A new insight into metaheuristic optimization method using a hybrid of PSO, GSA,

and GWO. Structures 2022, 44, 1168–1189.
20. Duan, Y.; Yu, X. A collaboration-based hybrid GWO-SCA optimizer for engineering optimization problems. Expert Syst. Appl.

2023, 213, 119017.
21. Banaie-Dezfouli, M.; Nadimi-Shahraki, M.H.; Beheshti, Z. R-GWO: Representative-based grey wolf optimizer for solving

engineering problems. Appl. Soft Comput. 2021, 106, 107328.
22. Precup, R.E.; Voisan, E.I.; Petriu, E.M.; Tomescu, M.L.; David, R.C.; Szedlak-Stinean, A.I.; Roman, R.C. Grey Wolf Optimizer-Based

Approaches to Path Planning and Fuzzy Logic-based Tracking Control for Mobile Robots. Int. J. Comput. Commun. Control 2020,
15, 3844.

23. Long, W.; Jiao, J.; Liang, X.; Cai, S.; Xu, M. A Random Opposition-Based Learning Grey Wolf Optimizer. IEEE Access 2019, 7,
113810–113825. [CrossRef]

24. Dutta, P.; Nayak, S.K. Grey Wolf Optimizer Based PID Controller for Speed Control of BLDC Motor. J. Electr. Eng. Technol. 2021,
16, 955–961.

25. Zhai, R.; Xiao, P.; Zhang, R.; Ju, J. In-wheel motor control system used by four-wheel drive electric vehicle based on whale
optimization algorithm-proportional–integral–derivative control. Adv. Mech. Eng. 2022, 14, 16878132221104574.

26. Mohanraj, D.; Aruldavid, R.; Verma, R.; Sathiyasekar, K.; Barnawi, A.B.; Chokkalingam, B.; Mihet-Popa, L. A Review of BLDC
Motor: State of Art, Advanced Control Techniques, and Applications. IEEE Access 2022, 10, 54833–54869.

27. Murali, M.; Arulmozhiyal, R. Investigation on modeling and simulation BLDC motor fed universal actuation system. Rev. Int.
Metodos Numer. Calc. Diseno Ing. 2021, 37, 10.

28. Meidani, K.; Hemmasian, A.; Mirjalili, S.; Farimani, A.B. Adaptive grey wolf optimizer. Neural Comput. Appl. 2022, 34, 7711–7731.
29. Liu, J.; Shi, D.; Wu, G. Hybrid chaotic optimization algorithm based on Kent map. Comput. Eng. Appl. 2015, 36, 1498–1503.
30. Zhang, Z.; He, X.; Yu, Q. Cuckoo algorithm combining sine cosine and population initialization strategies. Basic Sci. J. Text. Univ.

2021, 34, 102–109.
31. Hu, P.; Chen, S.; Huang, H.; Zhang, G.; Liu, L. Improved Alpha-Guided Grey Wolf Optimizer. IEEE Access 2019, 7, 5421–5437.
32. Wang, Q.; Wang, M.; Wang, X. Improved grey wolf optimizer with convergence factor and propor-tional weight. Comput. Eng.

Appl. 2019, 55, 60–65, 98.
33. Zhang, X.; Zhang, Y.; Ming, Z. Improved dynamic grey wolf optimizer. Front. Inf. Technol. Electron. Eng. 2021, 22, 877–890.
34. Agarwal, J.; Parmar, G.; Gupta, R.; Sikander, A. Analysis of grey wolf optimizer based fractional order PID controller in speed

control of DC motor. Microsyst. Technol.-Micro-Nanosyst.-Inf. Storage Process. Syst. 2018, 24, 4997–5006.
35. Zhang, Y.C.; Zhou, J.Z.; Zheng, Y.; Xu, Y.H. Control optimisation for pumped storage unit in micro-grid with wind power

penetration using improved grey wolf optimiser. Iet Gener. Transm. Distrib. 2017, 11, 3246–3256.
36. Kashyap, A.K.; Parhi, D.R. Particle Swarm Optimization aided PID gait controller design for a humanoid robot. ISA Trans. 2021,

114, 306–330.
37. Shaheen, M.A.M.; Hasanien, H.M.; Alkuhayli, A. A novel hybrid GWO-PSO optimization technique for optimal reactive power

dispatch problem solution. Ain Shams Eng. J. 2021, 12, 621–630.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.jksues.2021.07.009
https://doi.org/10.1109/ACCESS.2019.2934994

	Introduction 
	Modeling and Simulation of Four-Wheel In-Wheel Motor Drive Electric Vehicles 
	Structure and Principle of Four-Wheel Drive In-Wheel Motor Electric Vehicles 
	Vehicle Modeling 
	Vehicle Model Simulation and Analysis 

	Research on Brushless DC Motor and Its Control Algorithm 
	Brushless DC Motor Model 
	Chaotic Random Grey Wolf Proportional Integral Differential (CR-GWO-PID) Control Algorithm 

	Bench Test of In-Wheel Motor Control System 
	Construction of Motor Test Bench 
	Test Results and Analysis 

	Conclusions 
	References

