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Abstract: Thermal imaging cameras and infrared (IR) temperature measurement devices act as state-
of-the-art techniques for non-contact temperature determination of the skin surface. The former is
cost-intensive in many cases for widespread application, and the latter requires manual alignment
to the measuring point. Due to this background, this paper proposes a new method for automated,
non-contact, and area-specific temperature measurement of the facial skin surface. It is based on
the combined use of a low-cost thermopile sensor matrix and a 2D image sensor. The temperature
values as well as the 2D image data are fused using a parametric affine transformation. Based on
face recognition, this allows temperature values to be assigned to selected facial regions and used
specifically to determine the skin surface temperature. The advantages of the proposed method
are described. It is demonstrated by means of a participant study that the temperature absolute
values, which are achieved without manual alignment in an automated manner, are comparable to a
commercially available IR-based forehead thermometer.

Keywords: non-contact temperature measurement; thermopile sensor; data fusion; intelligent access
control system

1. Introduction

The non-contact measurement of skin temperature enables the early detection of
potential signs of illness without the need for unwanted direct interaction with individuals.
Additionally, it offers a practical solution for efficiently scanning large groups of people,
supporting effective screening measures in both public and private spaces. Currently, there
are two state-of-the-art non-contact methods:

• measurement of the forehead skin temperature using an infrared (IR) temperature
measuring device;

• deployment of a thermal imaging camera at an exposed location for measuring the
skin temperature.

Existing state-of-the-art approaches have certain limitations. The majority of these
systems are based on IR temperature measurement sensors [1–9]. IR thermometer-based
approaches do not allow for tracking the contour of the face. This requires the person’s
face to be positioned within a predetermined frame, which can be error-prone and less
convenient. As a result, they are unsuitable for deployment in crowded areas and are
economically unviable due to the extensive need for personnel.

Systems based on IR thermal imaging [10–12] offer facial recognition and tracking, but
they are significantly more expensive than conventional image sensors, rendering them
economically impractical for many manufacturers of integrated systems. Current systems
only provide temperature measurements based on the overall facial outline or non-specific
facial regions. Specific facial areas are not considered or detected, making it impossible to
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determine temperature reliably and consistently in the same facial regions. This is crucial
since facial skin temperature can vary significantly [13,14]. Furthermore, various capabili-
ties for a fully automated solution are lacking. Some solutions have relay outputs which are
indirectly controlled via Wi-Fi, requiring additional peripheral electronics. Current systems
offer limited capabilities for remote reconfiguration, such as adjusting calibration data or
individual measurement logic. Some researchers are combining RGB and thermal imagery
for various applications, such as traffic monitoring and interdisciplinary inventory [15–17].

Only a few state-of-the-art approaches employ inexpensive thermopile sensors [18,19].
Thermopile-based systems currently lack facial recognition and/or tracking capabilities
due to their limited resolution.

Given this context, the objective of this paper is to present an automated approach
for contactless and facial area-specific skin temperature measurement. This method relies
on the unique combination of an inexpensive thermopile sensor array and a 2D image
sensor. Temperature and 2D image data are fused using a parametric affine transformation.
A special calibration target is designed to determine this transformation. Through facial
recognition, specific facial areas can be assigned with temperature values, which are then
used to determine the skin surface temperature. Algorithms for detecting facial features
and fusing data from the thermopile sensor array and 2D image sensor are described. Fur-
thermore, the distributed system architecture and its components are introduced. Finally,
the feasibility of the approach is demonstrated by a small participant study and the results
are discussed.

2. Materials and Methods
2.1. Thermopile Sensor and Data Readout

For this study, a thermopile sensor with 60 × 40 pixels (HTPA60 × 40, from Heimann
Sensor GmbH, Dresden, Germany) was chosen. Thermopiles are temperature sensors
based on thermocouple elements consisting of two different conductor materials. One
junction is opposed to the thermal radiation, generating a voltage signal proportional to
the temperature difference to the other junction by the Seebeck effect [20].

Our sensor is controlled by a custom-programmed microcontroller. The integrated
program involves reading calibration data from the sensor, capturing sensor raw data,
and transmitting this data to a mobile PC via USB transfer. The calibration information
is sensor-specific (e.g., sensitivity coefficients, number of defective pixels, etc.) and is
required for the accurate calculation of the object temperature, as well as the configuration
of the sensor’s clock frequency, ADC resolution, and the common mode voltage of the
preamplifier. The calibration data are stored on an electrically erasable programmable
read-only memory (EEPROM) in the sensor.

Since the object temperature calculation takes place on a mobile PC, the calibration
data are transmitted once at the beginning of communication, while temperature raw data
and other values (e.g., thermal drift) are continuously updated during processing.

The mobile PC polls the sensor for raw data and corrects them based on the calibra-
tion information. The sensor raw data either provide a reference voltage proportional to
the absolute temperature (PTAT) and the active pixels raw data or the electrical offsets,
depending on the readout command. The ambient temperature is calculated from the
sensor average measured PTAT value and from EEPROM calibration variables, such as the
PTAT gradient and the PTAT offset. The sensor pixels voltages are subjected to different
compensations before they can be used to determine the object’s temperature; initially, it
is necessary to deduct the sensor’s thermal offset from each pixel to counteract potential
thermal drift. Additionally, the outcome of the thermal gradient multiplied by the PTAT
average is adjusted by the scaling coefficient for the thermal gradient stored in the EEP-
ROM. Next, the electrical offsets are subtracted to compensate for changes in the supply
voltage. Then a second supply voltage compensation (VddComp) is performed using the
supply voltage of the sensor (Vdd) which is measured internally. After that, the sensitivity
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coefficients are calculated using EEPROM data. Finally, the sensitivity-compensated pixel
values are calculated by dividing the pixels voltages by the sensitivity coefficients.

The sensitivity-compensated pixels and the ambient temperature are both needed to
calculate absolute temperature for each pixel with the help of a look-up table, provided
by the manufacturer. The look-up table rows represent the range of ambient temperatures
supported by the sensor, and the columns represent the temperature values. When mapping
the two values, a bilinear interpolation calculates the absolute object temperature for each
pixel. As a result, temperature data matrices (thermopile images) of the captured scene are
generated.

The measured temperature is also dependent on the emissivity [20]. Charlton et. al.
have shown that the emissivity for human skin is nearly constant for all skin types of
the Fitzpatrick scale [21]. Thus, in the following, the emissivity of skin is assumed to be
constant with a value of ε = 0.972, close to an ideal black body radiator. The result scales
by 4
√

ε = 4
√

0.972 = 0.993 (see [20]), meaning it is only slightly influenced by the skin
color. However, the measured skin temperature fluctuates due to changing ambient and
physiological conditions.

2.2. Thermopile Sensor Characterization

An artificial head was built to characterize the sensor (see Figure 1). The head is
constructed of sheet metal and painted with black paint to mimic a black body radiator
with an emissivity close to 1. The head includes heating resistors inside at the bottom plate.
External electronics allow the head to be set to a targeted temperature. The setup is used to
characterize the sensor noise, the signal-to-noise ratio (SNR), and the frame rate.
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Figure 1. (a): backside of the artificial head showing the control electronics; (b): front side of the 
heated head, measured by the thermopile sensor. The artificial head provides a constant surface 
temperature and an emissivity similar to human skin. 

The pixel noise measured as mean squared error (MSE) using the jth sensor image 𝑆௝(𝑥, 𝑦) with discrete co-ordinates (𝑥, 𝑦) of a homogeneous area with constant tempera-
ture 𝜇, is ([22]): MSE = ଵெே ∑ ∑ ൫𝑆௝(𝑥, 𝑦)  − 𝜇൯ଶே௬ୀଵெ௫ୀଵ   (1)

We extend this definition by taking a number of J temporal images into account: MSE = ଵ௃ெே ∑ ∑ ∑ ൫𝑆௝(𝑥, 𝑦)  − 𝜇൯ଶே௬ୀଵெ௫ୀଵ௃௝ୀଵ   (2)

Figure 1. (a): backside of the artificial head showing the control electronics; (b): front side of the
heated head, measured by the thermopile sensor. The artificial head provides a constant surface
temperature and an emissivity similar to human skin.

The pixel noise measured as mean squared error (MSE) using the jth sensor image
Sj(x, y) with discrete co-ordinates (x, y) of a homogeneous area with constant temperature
µ, is ([22]):

MSE =
1

MN ∑M
x=1 ∑N

y=1

(
Sj(x, y)− µ

)2 (1)

We extend this definition by taking a number of J temporal images into account:

MSE =
1

JMN ∑J
j=1 ∑M

x=1 ∑N
y=1

(
Sj(x, y)− µ

)2 (2)

The root mean squared error (RMSE) is the square root of Equation (2). For a single
pixel, the RMSE corresponds to the temporal standard deviation of that pixel.
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The actual SNR is calculated using the signal (the constant temperature µ) and the
MSE ([22]):

SNR = 10 · log10
µ2

MSE
= 20 · log10

µ

RMSE
(3)

For correlation analysis, we use the definition of the correlation coefficient r for two
discrete lists of values, pi and qi, and their respective averages, p and q [23]:

r = ∑((pi − p) · (qi − q))√
∑(pi − p)2 ·∑(qi − q)2

(4)

2.3. Multimodal Sensor Setup and System Calibration

The imaging part of our system is comprised of the 60 × 40 thermopile sensor and
a 2D color camera. The thermopile sensor array and the 2D image sensor are positioned
closely together and are mechanically fixed. Although the camera is full-HD capable, we
use a resolution of 600 × 400 in this study to have a better alignment to the thermopile
resolution.

Both sensors image the same scene from a slightly different perspective. Consequently,
calibration procedures used for stereo imaging might seem obvious. However, due to the
completely different wavelength regions (~10 µm for the thermal sensor and 0.4 µm–0.7 µm
for the visible range), commonly used methods fail. As the two sensors are based on
different principles, have different resolutions, have different fields of view, and provide
different types of data, feature-based algorithms cannot be applied. Intensity-based image
approaches fail as the thermopile sensor provides temperature data and does not measure
the scene’s visible light intensity.

We propose a modified calibration approach here. We identify correspondences
between the data from the two sensors based on a contrast-rich calibration scene with
distinct features. A custom calibration device is developed. It is used to generate circular
features that exhibit significant temperature variations compared to the surroundings and
emit light at the same time. This approach allows both sensors to capture these circular
features with sufficient SNR for subsequent calibration algorithms. Figure 2 illustrates the
sensor and calibration target.
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of approximately 60 cm. Figure 3 illustrates the images captured by each respective sensor. 
The temperature data from the thermopile sensor are color coded. 

  

Figure 2. A thermopile sensor and a 2D color sensor image the calibration target.

The calibration target consists of a vertically oriented surface with four integrated,
self-heated light sources. The two sensors are aligned to the calibration target at a distance
of approximately 60 cm. Figure 3 illustrates the images captured by each respective sensor.
The temperature data from the thermopile sensor are color coded.
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Figure 3. Image data with circular features, captured by the thermopile sensor (a), and by the 2D
color image sensor (b).

The displayed circular features can be detected and matched to each other. The image
from the 2D image sensor serves as reference, and corresponding circular features are
searched in the image data from the thermopile sensor. Based on this information, an equa-
tion for a parametric affine transformation can be determined, taking into account scaling,
rotation, shear, and translation of the data. In this manner we obtain a transformation,
which allows us to match the thermopile image with the rgb image.

The steps of the algorithm for determining corresponding circular features and calcu-
lating a transformation matrix are in detail:

1. capturing the thermopile image It and the camera image Ic;
2. converting It and Ic into binary images to remove redundant information;
3. detecting the contours of the circular features in It and Ic;
4. determining the center points of the circular features, It0, It1, It2, and It3 in It, as well

as Ic0, Ic1, Ic2, and Ic3 in Ic;
5. spatially sorting the detected center points from It and Ic to ensure correct correspon-

dence;
6. calculating the real-valued coefficients a0, a1, a2, b0, b1, and b2 of the transformation

matrix based on the centers of the circular features and the linear transformation
equations:

xc = a0xt + a1yt + a2
yc = b0xt + b1yt + b2

Result: transformation matrix T =

a0 a1 a2
b0 b1 b2
0 0 1

, which is used to transform the

co-ordinates of a data point from the thermopile sensor into the co-ordinate system of the
2D image sensor.

The described algorithm is applied once before using the skin temperature measure-
ment to determine the transformation matrix T. The calibration remains valid as long as the
alignment between the two sensors is not altered. Thereafter, it can be employed within the
sensor data fusion in combination with facial region detection and tracking, as described in
the following section.

2.4. Skin Temperature Measurements and Signal Processing

The temperature of the facial skin can vary significantly in different areas, i.e., by more
than 1 ◦C [13,14]. Therefore, for accurate determination of skin temperature, especially
across different individuals, it is crucial to conduct targeted and consistent temperature
measurements in specific facial regions.

Furthermore, during the measurement of a person’s temperature, it is essential to
ensure that head movements do not distort the temperature measurement result. To detect
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facial contour points and specific facial regions, available state-of-the-art methods can be
used [24]. Therefore, facial contour tracking is employed for dynamically adjusting the
temperature determination.

Figure 4 shows how this facial contour tracking is done. The face contour is detected
with the help of Mediapipe Face Mesh, a machine learning framework provided by Google.
Face Mesh determines characteristic landmarks within the face, making it possible to
identify eyes, mouth, nose, and also forehead. The forehead region (red quadrilateral in
Figure 4) is selected by using the proper Face Mesh nodes (node numbers 68, 103, 297, and
333 are used in this work). The red quadrilateral covers an area of approximately of 8 cm ×
1.5 cm = 12 cm2, measured at a working distance of 50 cm.
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Figure 4. Mediapipe Face Mesh map of a person’s face detected by the color sensor. Each line in the
image connects one of the 478 nodes. The eyes are marked by colored squares. The red quadrilateral
marks the measured area on the forehead.

With the help of the transformation matrix T, the thermopile image is transformed
to match the rgb image. All mapped thermopile temperature values within the forehead
region are averaged spatially. The landmarks are continuously tracked, even during slight
face movements. Thus, it is possible to identify the same area within consecutive frames.
These areas are then also averaged temporally over a time interval (e.g., 1 s, 5 s), depending
on the settings of the software. All steps are performed in real time, which allows for
continuous detection and tracking of the corresponding region. Ultimately, temperature
data for the entire facial area are always available during the measurement process and can
be evaluated accordingly.

The steps of the algorithm for combined sensor data fusion with facial region detection
and tracking are, in detail:

1. capturing the thermopile image It and the camera image Ic;
2. determining the transformed image It’ from It. For each point (xt and yt) in It, the

following transformation equation applies:x
′

y
′

1

 = T

xt
yt
1


The transformation matrix T is obtained from the initial sensor calibration shown
above; x’ and y’ represent the transformed points in It’;

3. identifying the forehead landmark points Gc based on Ic (using Face Mesh);
4. estimating the temperature data within the area enclosed by Gc using It’;
5. spatially averaging the temperature data from It’ within the respective area;
6. temporally averaging the temperature data from It’ within the respective area;
7. visualization of the fused image with corresponding facial features in Ic.

2.5. Distributed System Architecture and Components

This section presents the system architecture used. It is designed to be fundamentally
re con figurable, enabling flexible adaptation to different requirements of various ap pli
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ca tion scenarios. The corresponding system architecture consists of five fundamental
components:

• mobile PC with an integrated touchscreen [25];
• thermopile sensor: Heimann HTPA60 × 40d sensor with ARM Cortex M0 (Pyramid

Computer GmbH, Freiburg, Germany);
• binocular camera with two lenses: 2MP AI dual lens camera module (1920 × 1080,

RGB and IR camera, Hampo Electronic Technology, Dongguan, China);
• electronic relays which can be connected to further actuators;
• RFID reader;
• edge server system for providing configuration parameters.

In this context, the mobile PC plays a central role. Besides providing an interactive
display to visualize the measurement process, it takes charge of the entire measurement
and evaluation logic. The thermopile sensor with an integrated microcontroller is con-
nected to the mobile PC via a USB serial interface. The processing of raw sensor data is
conducted in real time on the mobile PC, using the Python programming language, along
with the software frameworks OpenCV (v 4.6.0) and Google Mediapipe (v 0.8.2). The
acquisition of the raw sensor data from the thermopile sensor on the ARM Cortex-M0 is
accomplished using the C programming language. Additionally, the system architecture
can be optionally incorporated into a broader cloud/edge system. This enables remote and
location-independent adjustments of both (sensor-specific) configuration parameters and
individual measurement logic. Furthermore, the mobile PC features an RFID reader and
universal switching outputs (relays) which can be utilized to control automated processes
such as actuators based on temperature measurements for access control tasks.

3. Results
3.1. Sensor Characteristics

The sensor was characterized by imaging the artificial head, which was heated to
a constant temperature of ~33 ◦C. Figure 4 shows the mean and standard values of the
thermopile sensor over a time interval of 5 s.

The averaged temperature values in Figure 5a are showing a fixed pattern noise
imposed on the image. The temperature values of the head slightly increase towards
the lower end where the heating resistors are located. The pixels in the upper, more
homogeneous part show a pixel noise between σ = 0.45 ◦C− 0.7 ◦C (Figure 5b), on average
approximately σ = 0.53 ◦C, which is quite high for most applications.
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Figure 5. Averaged temperature image (a) and temporal standard deviation of 10 × 10 pixels in the
upper homogeneous region of the image (b). Both images were taken over a time interval of 5 s. The
frame rate of the thermopile sensor is 22 frames per second. The exposure time of the sensor is not
controllable by us, it is set internally in the sensor.

Pixel noise, determined according to Equation (2), can be improved by spatial and
temporal averaging, shown in Figure 6. The noise can be decreased by spatial averaging,
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assuming a homogeneous surface area is measured. The noise is reduced by 50% by
averaging 4 pixels (see Figure 6). By averaging a few dozen pixels, the statistical noise
is dramatically reduced, also eliminating variations due to fixed pattern noise. A further
noise reduction is possible by additional temporal averaging. The statistical temperature
noise reaches levels of σ = 0.01 ◦C by averaging over 64 pixels for 5 s. The SNR of a
single temperature pixel is 36.6 dB. Averaging 64 pixels over 5 s increases the SNR value
to ~70 dB. In this manner, spatial and temporal averaging allows for precise temperature
measurements even with noisy thermopile sensors.
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3.2. System Characteristics

Figure 7a illustrates the overall implemented system. The mobile PC is equipped with
an integrated camera and the thermopile sensor is added on top. The system prototype
can be connected via an electronic relay to an actuated door, which served as a use-case
scenario for temperature-based access control.
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Figure 7. (a): System prototype; (b): exemplary illustration of the combined sensor data fusion with
facial region detection and tracking.

The Figure 7b shows the detection of both the facial contour and specific facial regions,
such as the forehead. The face is tracked continuously. The skin surface temperature is
visualized through a colormap. The red quadrilateral shows the area used for determining
forehead temperature. The region is identified with the help of Face Mesh and mapped to
the thermopile image, consisting of roughly 25 thermopile pixels. The pixels are spatially
averaged to one temperature value. Furthermore, the area is tracked during several seconds
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(5 s, in this case) and averaged over this time interval to the final temperature value. The
system is capable of performing all necessary calculations in real time.

Inside and outside temperature as well as physical activities influence the measured
skin temperature. We performed some qualitative measurements and found that the
ambient temperature has a correlation coefficient of r ≈ 0.35 (calculated by Equation (4)).
The distance to the subject also influences the result and has a correlation coefficient of
r ≈ 0.27. However, these influences are difficult to reproduce.

Foreign objects located near the face or covering specific facial areas can adversely
affect the measurement of skin temperature. Examples of such objects include wearing a
mask or glasses. The proposed approach enables the indirect detection of these objects by
assuming that skin areas covered by a foreign object have lower temperatures than uncov-
ered areas. In this way, foreign objects can be identified by detecting cooler temperature
regions on the face. The described principle is exemplified in Figure 8.
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Figure 8. Temperature measurements and identification of foreign objects, such as glasses, mask, or
hot objects. (a,b): Each image pair shows the rgb image and the corresponding thermopile image
before registration. (c): The image shows the fused rgb and thermopile image after registration.

To detect specific foreign objects, certain facial regions (e.g., chin, mouth, nose, and
cheek areas, corresponding to the position of a mask) can be defined. Each facial region
corresponds to a set of temperature values. To identify a foreign object in a facial region,
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the number of temperature values is counted which deviate from the expected temperature
range. If the number is too high, the person is asked to remove any objects present in the
facial region. Otherwise, temperature values below the defined threshold are filtered out
and are not considered in the temperature measurement.

Even larger objects do not disturb the temperature measurement. The last example of
Figure 8 shows that despite the presence of a hot cup with a temperature of approximately
66 ◦C, the face is recognized, and the surface temperature of the forehead (34 ◦C) is
accurately determined.

3.3. Participant Study and Quantitative Measurement Results

To validate the temperature measurement approach, especially regarding the surface
forehead temperature, a participant study was conducted. The system was calibrated as
described in Section 2.3. The calibrated system was validated by holding a hot object (e.g.,
a hand or a cup) at different points in the image and ensuring that both image sources
matched in the fused image. The temperature data were compared to those produced
by a commercially available, manually operated forehead thermometer (Medisana TM
A79). The study involved five participants with skin types I, II, and V according to the
Fitzpatrick scale. Five measurements were conducted for each individual under room
temperature conditions (22 ◦C). For better repeatability, all measurements were conducted
without any physical activities of the participants. All subjects had approximately the same
distance of 50 cm–60 cm to the sensor. The participants remained immobile to provide
more stable results. Approximately 50 images from the thermopile sensor were captured
and subsequently spatially as well as temporally averaged over a five-second period. The
reference measurements with the forehead thermometer were performed manually.

For each participant, the time, reference temperature as well as thermopile temper-
ature were measured. The five participants were measured one after each other, and the
procedure was repeated five times. The raw data of the thermopile system were corrected
by the emissivity factor of 0.99, as mentioned in Section 2.1. The average values and
the standard deviations have been calculated for each participant, as shown in Table 1.
The standard deviation fluctuates approximately between 0.07 ◦C and 0.24 ◦C for the
thermopile and reference measurement. The mean 1σ deviation of the reference mea-
surement is σre f = 0.14 ◦C

(
2σre f = 0.28 ◦C

)
and σtp = 0.12 ◦C

(
2σtp = 0.24 ◦C

)
for the

thermopile sensor.

Table 1. Average and standard deviation for all study participants. For each person, five measure-
ments were performed and used for calculating mean and standard deviation (1σ).

Participants µref (◦C) σref (◦C) µtp (◦C) σtp (◦C)

1 34.06 0.174 33.64 0.116
2 33.9 0.237 33.71 0.242
3 35.1 0.071 34.81 0.116
4 33.82 0.133 33.83 0.074
5 33.36 0.08 33.45 0.07

The results of the measurements are presented in Figure 9, illustrating a linear corre-
lation with a slope of approximately 1 (after correction for skin emissivity) between the
data from the commercially available forehead thermometer and the temperature data by
our setup. The correlation coefficient between the reference and thermopile measurements
is calculated to be r = 0.92, indicating a very strong correlation between those values.
The RMSE (compare Equation (2)) between the corrected dataset and reference measure-
ment is calculated to be RMSE = 0.22 ◦C, indicating that the measured absolute values are
comparable to those of the commercial reference system.
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Figure 9. Measurements of the forehead temperature with the Medisana TM reference device
compared to our thermopile sensor. A linear correlation between the measurements was found with
a fitted slope of 1.0. The emissivity of skin was assumed to be ε = 0.972.

4. Discussion

Our thermopile sensor has a native pixel noise of approximately 0.53 ◦C. This noise
value is higher than most manually operated temperature devices. However, through
spatial and temporal averaging, the noise value can be brought into a subordinate range of
<<0.1 ◦C. Averaging also increases the SNR accordingly.

While the ratio between thermopile measurements and reference measurements closely
approximates 1 in our scenario, we recommend conducting an initial validation of this factor.
A low-cost generic thermometer produced results that differed slightly from those obtained
with the Medisana reference thermometer. According to our findings, a sample size of
3–5 individuals is sufficient to check the quality and the scaling factor of the thermometer.

In the participant study, a temperature noise of σ = 0.12 ◦C was measured on average
for the individual participants. The temperature noise observed in this study is higher
than statistically anticipated. This means, that this noise is probably caused by systematic
deviations due to, e.g., fluctuations in skin temperature, blood perfusion, varying environ-
mental conditions, or movements of the person which are not corrected properly by the
face tracking. We did not observe relevant differences in the temperature measurements for
different skin phototypes according to the Fitzpatrick scale. This finding is also supported
by other studies [21].

In our study, we mostly used controlled conditions. For example, the distance was
not varied, the subjects were staying at room temperature, and did not move excessively.
Prior to the participant study, we qualitatively investigated skin temperature changes. We
found that temperature slightly increases over distance and is also dependent on ambient
temperature conditions, e.g., coming from the cold outside. This problem affects not only
our measurement methodology, but all non-contact methods based on thermal imaging.

Our system can be used, for example, for contactless temperature measurements in
combination with an access control system. It can be connected directly to further actuators,
such as electronic doors, via an electronic relay interface. We were able to implement such a
temperature-based access control connected to a door as a use case scenario in the lab. The
covid pandemic has shown that such systems are needed at the entrance to critical areas,
like airports, hospitals, nursing homes, or large buildings, such as residential complexes.

However, further studies are necessary to determine the temperature under more
difficult conditions, such as wearing reflective glasses, face masks, headpieces, scarfs or
under changing ambient conditions. Moreover, the accuracy of the measurement can
decrease as the 2D image sensor and thermopile sensor move farther away from the face.
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This is because the captured forehead area in the 2D image covers a smaller area with fewer
pixels due to the increased distance. As a consequence, spatial and temporal averaging
might yield less accurate results. A higher spatial resolution of the thermopile sensor could
potentially reduce this effect and enable better registration results. Additionally, further
noise suppressing techniques, such as bandpass filtering, 2D image filters, etc., might be
helpful to reduce noise. Furthermore, our system features a second, independent infrared
camera, which could be beneficial for operating the system under low light conditions.

Additional work is also needed to understand external influences to skin temperature.
This is a challenging task as it is necessary to understand and monitor more parameters in
the system. A further aspect might be to include heart rate monitoring [26], remote pho-
toplethysmography [26], or blood perfusion detection [27]. Integrating these parameters
into the analysis, along with temperature measurements from extremities like arms, hands,
and toes, could lead to a holistic understanding of the body’s response to different external
stimuli. This knowledge might be used to infer core body temperature, which is an impor-
tant vital sign and used commonly for diagnosing fever. Ultimately, leveraging inverse
heat transfer methods [28–30] in conjunction with these physiological indicators could
significantly enhance the prediction of the thermal state of the human subject. Inverse heat
transfer relies on simulation models, working backward from temperature measurements
to the boundary conditions or heat sources that could have caused those measurements.
This might offer insights into inferring the core body temperature accurately.

5. Conclusions

This paper presents an approach for automated, contactless, and region-specific mea-
surement of skin surface temperature on the face. The method is based on data fusion
from a thermopile sensor and a 2D image sensor. By capturing and tracking the facial
outline, specific temperature values are assigned to selected facial areas, which are used to
determine the skin surface temperature accurately.

The application of the proposed approach was demonstrated. In qualitative terms, the
participation study has shown that facial capture and tracking reduce the susceptibility to
errors in temperature measurement, particularly when foreign objects are in close proximity
to the face. In quantitative terms, the subject study demonstrated that the measured
temperature absolute values have an RMSE of 0.22 ◦C, rendering them comparable to those
of a commercially available, manually operated reference system. As such, our system
holds the potential to become a valuable tool in the future for accurate and automated
non-contact temperature measurements.
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