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Abstract: Unmanned aerial vehicles (UAVs) have drawin increasing attention in recent years, and
they are widely applied. Nevertheless, they are generally limited by poor flight endurance because of
the limited energy density of their batteries. A robust power supply is indispensable for advanced
UAVs; thus hybrid power might be a promising solution. State of charge (SOC) estimation is essential
for the power systems of UAVs. The limitations of accurate SOC estimation can be partly ascribed to
the inaccuracy of open circuit voltage (OCV), which is obtained through specific forms of identifica-
tion. Considering the actual operation of a battery under hybrid conditions, this paper proposes a
novel method, “fast OCV”, for obtaining the OCVs of batteries. It is proven that fast OCV offers great
advantages, related to its simplicity, duration and cost, over traditional ways of obtaining OCV. More-
over, fast-OCV also shows better accuracy in SOC estimation than traditional OCV. Furthermore, this
paper also proposes a new method, “batch mode”, for talking-data sampling for battery-parameter
identification with the limited-memory recursive least-square algorithm. Compared with traditional
the “single mode”, it presents good de-noising effect by making use of all the sampled battery’s
terminal current and voltage data.

Keywords: open-circuit voltage; state-of-charge estimation; battery-parameter identification;
unscented Kalman filter; hybrid power; unmanned aerial vehicles

1. Introduction

As flying robots, UAVs are receiving increasing attention, with the advancement of mi-
croprocessor and artificial technologies [1]. Due to their advantages, such as their low cost
and high mobility, UAVs are widely applied in numerous activities, like rescuing, monitor-
ing, delivery, agriculture, and even military investigations, as well as battlefields [2–4], etc.
However, the performances of UAVs are closely related to on-board power capabilities [5].
Generally, batteries are used as the main sources of power for UAVs; hence, the accurate
assessment of the power states of batteries is extremely important for UAV missions [6,7].

The SOC, which means the charge available relative to the full charge capacity of a
battery, is generally taken as a vital indicator for battery management [8,9]. Failures in
SOC estimation can potentially lead to overcharging, over-discharging, or even irreversible
damage to batteries [10]. However, the direct measurement of the SOC of a battery is not
possible. In practical applications, indirect approaches are usually adopted for SOC estima-
tion. Nevertheless, an accurate assessment of the SOC is usually of highly challenging, as it
is complicated and associated with many factors [7,11], such as the charge-and-discharge
efficiency, the charge-and-discharge rate, the temperature [12], etc. Thus far, various meth-
ods, like coulomb counting [13], artificial intelligence [14,15], the fuzzy logic algorithm,
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and Kalman filters [16–18] have been widely investigated and used in SOC estimation.
In comparison, the model-based method is relatively popular due to its simplicity [7,11].
Specifically, equivalent circuit models (ECM) combined with Kalman filters are the most
popular, since they are widely adopted by numerous researchers.

As a function of SOC, the open-circuit voltage (OCV) is crucial for SOC estimation. It
is usually used as a reference for innovation, which helps to improve the accuracy of state
estimation for Kalman-filter-based SOC estimation. The crucial influence of the OCV on
SOC estimation was disclosed in related studied through a large number of ECMs [19,20].
Currently, incremental OCV testing and low-current testing are usually used for OCV-curve
abstraction [21,22]. However, such methods are usually time-consuming, owing to the
battery-relaxation process. Furthermore, the complete measurement of OCV curves is not
exclusive, as changes occur due to temperature and the battery’s rate of aging [23–25].
Moreover, different batteries do not share the same OCV curve, even though they are from
the same production line. All these factors indicate the strong necessity of efficient ways of
obtaining OCV curves for batteries in practical applications.

To address these issues, several studies have been conducted by numerous researchers.
Zhang et al. [26] proposed a non-experiment-based OCV-reconstruction method. However,
it was mainly limited to a partial updating of an OCV curve. Fan et al. [27] introduced a
method for efficiently reconstructing an OCV curve while considering the temperature vari-
ation of a battery by inspecting its charge-and-discharge process. Similarly, Cui et al. [28]
conducted an OCV-curve reconstruction based on an electrode-OCV model; the results
proved its effectiveness under different temperature conditions. However, these methods
involved complex processed and struggled to meet time-efficiency requirements. Some
other relevant studies were presented by many researchers [29–32] in recent years. Despite
their significant achievements, these studied usually tried to establish possible ways of
obtaining OCV curves as universally applicable. However, these methods do not offer
positive solutions as specific conditions were not considered.

According to the idea of configuration, hybrid power systems that assemble en-
gine/fuel cells and batteries can be classified as serial, parallel, or serial-parallel [33–35].
Regardless of the type, however, the engine/fuel cell is usually the primary power source,
while the battery is an auxiliary part [36,37]. Regarding the application of hybrid power
in UAVs, the battery can be better configured when it has a small capacity and, hence,
light weight, as UAVs are weight-sensitive. Importantly, the ability to control charging
and discharging of the battery can be achieved through the hybrid-powered UAV system,
which is very similar to the core function of the professional battery-testing system. With
this consideration, this paper aims to propose a fast and simple method for obtaining
battery-OCV curves by making use of the configuration of the whole system. The obtained
OCV curve is validated by conducting a SOC estimation for a battery with Kalman filters
under different working conditions.

As previously stated, Kalman filters (KFs), extended Kalman filter (EKFs), and un-
scented Kalman filters (UKFs), are the most popular approaches to SOC estimation. In
terms of comparison, UKFs are drastically superior to KFs and EKFs when tackling non-
linear systems due to their unscented transformation [38] and, hence, good robustness
and high accuracy [39,40]. He et al. [41] conducted a comparative investigation of EKFs
and UKFs for SOC estimation. The results showed that the UKF provided much better
predictions. Zhang et al. [42] investigated a UKF for SOC estimation, and good predic-
tions were obtained. Nevertheless, Kalman filters entail the predetermined covariance
of the state and observation variables. However, these parameters are usually unknown
and mainly set according to experiences. To overcome this drawback, in recent years,
researchers have tended to adopt the Sage–Husa noise estimator for the online estimation
of the covariance mentioned previously [43,44]. Combined with the noise estimator, an
adaptive UKF (AUKF) was presented. Therefore, this paper attempts to validate an OCV
curve obtained through battery-SOC estimations with UKF and AUKF.
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The structure of this paper is as follows. In Section 2, we first discuss the ECM related
to this work, and then the method of efficiently obtaining the OCV curve on the UAV with
a hybrid power system is introduced theoretically and practically. In Section 3, the dynamic
battery model and the AUKF specifically used in this research are discussed. In Section 4,
the experiments involved in and the results of the method’s validation are presented. Lastly,
we draw conclusions in Section 5, in which we also discuss our expectations regarding
future studies.

2. Model Selection, Testing Method, and Parameter Identification
2.1. Equivalent Circuit Models

To conduct a precise evaluation of battery characteristics, a robust model that describes
the battery is essential. Numerous researchers have developed various models, which
can generally be categorized into electrochemical models, neuro-network models, and
equivalent circuit models (ECMs), among which ECMs are the most widely used owing to
their simplicity and clear physical significance. In this paper, an ECM with n RC networks,
which is called the n-order-polarization model, shown in Figure 1, is considered. Case n
equals 1 (Thevenin model), is thoroughly involved in this investigation. However, case n
equals 2 (dual polarization (DP) model) was also referred to during the model selection,
while n equals 0 (Rint model) was used when obtaining the OCV.
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Figure 1. Schematic diagram of n-order polarization model.

With the advantage of calculation simplicity, Rint model is mainly applicable in
situations with large currents, and transient characteristics are not considered. Thevenin
model is constructed by using a parallel RC, which mimics the polarization effect of
battery, in Rint model. Therefore, transient characteristics can be simulated. By introducing
another parallel RC, which describes the diffusion effect of battery, to Thevenin mode, DP
model is created. This model is usually able to describe the dynamic performance of a
battery accurately.

2.2. Open-Circuit Voltage and Testing Method

For a precise SOC estimation, an OCV with relatively good accuracy is indispensable.
Ordinarily, OCV can be observed by direct measurement after a sufficiently long time of
rest for the battery. This method requires a significant amount of time to complete OCV
observation. Many researchers conducted numerous investigations aiming at proposing
potential universally applicable solutions. Examples include data-driven and model-driven
solutions [31]. These methods may not always work when time efficiency and specific
scenarios are considered. For battery in hybrid mode, online charging and discharging
are naturally available. Considering the simplicity and applicability of OCV-construction
method, specifically for battery in hybrid mode, this paper attempts to propose a simple
method for OCV observation, as explained in the following content.

Take the simplest ECM, Rint model, into consideration and consider polynomial
description of R0 and OCV versus SOC, as shown in Equations (1) and (2). Accord-
ing to Figure 1, relationship between output voltage UL and OCV can be formulated as
Equation (3). The OCV equals UL if IL is set as 0; thus, OCV can be obtained if the coef-
ficients in Equations (1) and (2) are solved. In fact, this can be easily achieved through
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least-square method by collecting the charging/discharging data of the battery. For a
better solution, charging and discharging were randomly shifted with a global discharging
process for the test battery, which was initially fully charged. The current and voltage
curves for the process mentioned here are shown in Figure 2.

R0 = a0 + a1SOC + . . . + anSOCn (1)

OCV = b0 + b1SOC + . . . + bnSOCn (2)

UL = OCV− ILR0 (3)
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However, to realize this process, as well as other tests, which are discussed below, a
test set was created, as depicted in Figure 3. Battery was connected to motor propellers
of UAV, while another power source with current controller was connected in parallel.
Measurements of UL and IL focused on battery at point M. When setting current from fixed
power-current controller, variations in the rotating speed of the motor propellers led to the
variation of IL in the battery.
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For accurate current sensing, product LA 55-P/SP1, shown in Figure 4a, from LEM
(Life Energy Motion) company was used. The principle of this transducer is shown in
Figure 5a. When the primary current Ip (the target for measuring) passes through the coil,
induced magnetic field is sensed by the Hall generator driven by current Ic with output of
Hall voltage. This voltage is further sensed by closed-loop sensing circuit, which is mainly
composed of an operational amplifier and a potential clamp. This closed-loop sensing
circuit senses Hall voltage and drives the secondary current Is to compensate the Hall
voltage as zero. By sensing the voltage drop VM on RM, Ip is yielded. The Ip is forward
when VM is positive, and vice versa. The key parameters and measuring accuracy are
shown in Tables 1–3.
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Table 1. Key parameters of current transducer LA 55-P/SP1.

Primary Nominal RMS Current (Ip,N) Primary Current
Measuring Range (Ip,M)

Turns Ratio
(Np/Ns)

Supply Voltage
(±5%) (UC)

50 A 0~±100 A 1:2000 ±12~15 V

Table 2. Measurement-resistance requirements of current transducer LA 55-P/SP1.

Measuring Resistance (RM)

Power Voltage
@TA = 70 ◦C @TA = 85 ◦C

RM Min RM Max RM Min RM Max

with ±12 V
0 Ω 215 Ω 0 Ω 210 Ω

0 Ω 35 Ω 0 Ω 30 Ω

with ±15 V
0 Ω 335 Ω 30 Ω 330 Ω

0 Ω 95 Ω 30 Ω 90 Ω

For controlling needs, STM32 Nucleo-144 boards, F429ZI (MB1137), were used to
generate the driving signal fed to ESC. The Soc-STM32F429-embedded 12-bit ADC con-
verter was mused to measure all the voltage signals. However, this ADC converter was not
capable of converting negative voltage. Therefore, a constant current Ishift was fed across
the current transducer, driving working state of the transducer to roughly the middle of
positive measuring span when IL equalled zero. By subtracting Ishift from the lumped
measurement, IL (either positive or negative) was yielded.
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Table 3. Accuracy of parameters values of current transducer LA 55-P/SP1.

Error @Ip,TA=25 ◦C Linearity Error Offset Current
@Ip=0,TA=25 ◦C Delay Time @10% of Ip,N

Delay Time to
90% of Ip,N

(1)

@±15 V
(±5%)

@±12~15 V
(±5%) <0.15% within ±0.10 mA <500 ns <1 µs

±0.65% ±0.90%

(1) For a di/dt = 100 A/µs.

The sensing span of ADC converter on STM32F429 was between 0 V and 3 V. To
measure the voltage signals exceeding this range, voltage-divider circuit composed of
resister was applied for signal conversion. However, considering the accuracy of the circuit,
RS PRO Mini AC/DC Clamp (Stock No. 146-9096) was used for calibration of voltage-signal
measurement.

In this paper, 6-order polynomial was adopted for Equations (1) and (2). Basic infor-
mation on the battery and the coefficients solved is shown in Table 4. For comparison,
OCV derived through traditional measurement is also included in this paper, as shown
in Figure 6.

Table 4. Battery information and coefficients of R0 and OCV polynomials.

Coefficient Value Coefficient Value Coefficient Value

a0 0.18178 a1 −0.92811 a2 3.6568
a3 −6.8357 a4 5.9269 a5 −1.7057
a6 −0.22173 b0 13.951 b1 8.3961
b2 −18.459 b3 −4.6272 b4 69.866
b5 −82.283 b6 29.877

Battery information: Lipo, 4S1P, 14.8V,45C
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2.3. Parameter Identification

In this paper, we consider Thevenin model and DP model for battery description.
However, before SOC estimation, Ri and Ci in the model should be identified. This paper
uses limited-memory recursive least-square algorithm to achieve parameter identification.

Consider DP model of battery. Time-related relationship between UOC(t), IL(t), U1(t)
and U2(t) can be described with Equations (4)–(6).

UOC(t) = IL(t)R0 + U1(t) + U2(t) + UL(t) (4)

IL(t) = U1(t)/R1 + C1dU1(t)/dt (5)
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IL(t) = U2(t)/R2 + C2dU2(t)/dt (6)

After Laplace transformation, Equations (7)–(9) can be obtained.

UOC(s) = IL(s)R0(s) + U1(s) + U2(s) + UL(s) (7)

IL(s) = U1(s)/R1 + C1sU1(s) (8)

IL(s) = U2(s)/R2 + C2sU2(s) (9)

With a summary of Equations (7)–(9), the relationship between UOC(t), IL(t), U1(t)
and U2(t) can be described by Equation (10).

The definitions of a, b, c, d, and e are shown in Equation set (11), where τ1 and τ2
signify R1C1 and R2C2.(

1 + as + bs2
)

UOC(s) =
(

c + es + ds2
)

IL(s) +
(

1 + as + bs2
)

UL(s) (10)


a = τ1 + τ2
b = τ1τ2
c = R0 + R1 + R2
d = τ1τ2R0
e = (τ1 + τ2)R0 + τ1R2 + τ2R1

(11)

By identifying a, b, c, d, and e in Equation set (11), parameters R0, R1, C1, R2, and C2
can be determined. To achieve this, Equation (10) is transformed into (12) through inverse
Laplace transformation.

UOC(t) + a
dUOC(t)

dt
+ b

d2UOC(t)
dt2 = cIL(t) + d

dIL(t)
dt

+ e
d2IL(t)

dt2 + UL + a
dUL(t)

dt
+ b

d2UL(t)
dt2 (12)

Discretization can then be applied to (12). In this investigation, the current from the
battery is small in relation to relatively high capacity of the battery; thus derivative terms
dUOC(t)/dt and d2UOC(t)/dt2 are negligible and, hence, ignored.

w0 + w1It + w2It−T + w3It−2T + w4UL,t−T + w5UL,t−2T = UL,t (13)



w0 = T2UOC,t/M
w1 = −

(
cT2 + eT + d

)
/M

w2 = (eT + 2d)/M
w3 = −d/M
w4 = (aT + 2b)/M
w5 = −b/M

(14)

Let M = T2 + aT + b, where T is the refresh-time interval. The discretized formation
of (12) is obtained as (13). Coefficients w0 ∼ w5 can be expressed by coefficients a ∼ e
through Equation set (14). By solving Equation (13), w0 ∼ w5 can be determined, and
a ∼ e, R0 R1, C1, and R2, and C2 can be obtained.

Xt,i = (1, It−ih, It−T−ih, It−2T−ih, UL,t−T−ih, UL,t−2T−ih) (15)

Yt,i = (UL,t−ih) (16)
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Wt = (w0,t, w1,t, w2,t, w3,t, w4,t, w5,t)
T (17)


Kt = Pt−TXT

t

(
αE + XtPt−TXT

t

)−1

Pt = (E−KtXt)Pt−T/α
Wt = Wt−1 + Kt(Yt − XtWt−1)

(18)

P0 =
(

XT
0 X
)−1

(19)

W0 = P0XT
0 Y0 (20)

In this paper, limited-memory recursive least squares is used to solve the equation to
avoid data saturation. The α is set as 0.99. To initiate the algorithm, a set of data are used to
give reasonable initial value for P and W through Equations (19) and (20).

All above are related to DP model. However, the deduction of algorithm for Thevenin
model is very similar; hence, it is omitted for simplicity.

The method for creating Xt and Yt is shown in Figure 7. In the experiments, sample
time h was 0.064 s, and a calculation was conducted every 20 times on each sample, i.e.,
refresh time T = 20 × h = 1.28 s; thus, the estimated parameters were refreshed. In fact,
limited-memory recursive least squares is mainly used for online calculations. Thus, Xt
usually only contains one sample to precipitate the calculation process. We call it “single
mode” here. In contrast, case Xt contains more than one sample. Here, it is called “batch
mode”. The Xt contains 20 samples with batch mode in this investigation.
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For DP model, parameter estimation involves solving quadratic equation. Specifically,
delta = a2 − 4b should be non-negative; thus a real solution for the parameters can be
realized. However, results proved that delta value for the test was always negative, which
means that DP model is not suitable for the battery in this research. Thus, Thevenin model
is adopted in the following discussion (Figure 8).
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As shown in Figure 9, parameters R0, R1, and C1 are successfully estimated and batch
mode is obviously superior to single mode in terms of prediction stability. By tracking
SOC of the battery, a lookup table of R0, R1, and C1 versus SOC was developed for SOC
estimation under working conditions.
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3. AUKF for SOC Estimation
3.1. State Equation and Observation Equation for Thevenin Battery Model

According to the Thevenin model, it is obvious that the UOC or SOC and U1 can be
selected as the complete state variables for the battery. For convenience, we consider SOC
instead of UOC to avoid a conversion from UOC to SOC when making predictions. Therefore,
the state-transfer equation can be expressed as (23), where εt is the process-noise vector.

SOCt = SOC0 −
∫ t

0
ηIτdτ/Ca (21)

U1,t = (1− T/τ1)U1,t−T + TIt/C1 (22)

[
SOCt
U1,t

]
=

[
1 0
0 1− T

τ1

][
SOCt−T
U1,t−T

]
+

[
−ηT

Ca
T

C1

]
It + εt (23)

The SOCt value from the initial value of the SOC0 by the actuation of current It can be
expressed as Equation (21), where η is the charging efficiency and Ca is the capacity of the
battery. The effect of the actuation It on U1 can be expressed as Equation (22). Therefore,
the state-transfer equation can be expressed as

UL,t = UOC(SOCt)−U1,t − R0It + δt (24)

Similarly, the observation equation can be expressed as (24), where δt is the observa-
tion noise.

Let xt =
[
SOCt U1,t

]T, ut = It, yt = UL,t. The standard form of the dynamic battery
system’s description can be obtained as shown in Equation (25).{

xt = f (xt−1, It) + εt
yt = g(xt, It) + δt

(25)
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3.2. Adaptive Unscented Kalman Filter

Assuming that the process noise and observation noise are uncorrelated white Gaus-
sian noise, i.e., εt ∼ N(0, Rt), δt ∼ N(0, Qt), The standard UKF algorithm is as follows:

(1) State value and covariance initialization:{
x0 = E(x0)

Σ0 = E
[
(x0 − x0)(x0 − x0)

T
] (26)

(2) Sigma-point generation:


L[0]t−1 = xt−1

L[i]t−1 = xt−1 + γ(
√

Σt−1)i, i = 1, 2, . . . , n

L[i+n]
t−1 = xt−1 − γ(

√
Σt−1)i, i = 1, 2, . . . , n

(27)

where γ =
√
λ+ n, λ = α2(n + k)− n. The parameters α and k are used to determine how

far all the sigma points are distributed from the mean value. In this research, α and k are
set as 1 and 0, respectively.

(3) Coefficient calculation:
ω

[0]
m = λ

λ+n

ω
[0]
c = λ

λ+n +
(
1− α2 + β

)
ω

[i]
m = ω

[i]
c = 1

2(n+λ)
, i = 1, 2, . . . , n

(28)

In fact, both ω[i]
m and ω[i]

c correspond to one sigma point, L[i]t−1, while ω[i]
m is used for the

mean value calculation andω[i]
c is used for the covariance calculation. Parameter β should

be set as 2 for Gaussian distribution, which is the case in this investigation.

(4) Process update for sigma points and covariance:

L*[i]
t = f

(
L[i]t−1, It

)
(29)

xt = ∑2n
i=0ω

[i]
mL

*[i]
t (30)

Σt = ∑2n
i=0ω

[i]
c

(
L*[i]

t − xt

)(
L*[i]

t − xt

)T
+ Rt (31)

(5) Kalman-gain calculation:
L[0]t = xt

L[i]t = xt + γ
(√

Σt

)
i
, i = 1, 2, . . . , n

L[i+n]
t = xt − γ

(√
Σt

)
i
, i = 1, 2, . . . , n

(32)

y[i]
t = g

(
L[i]t , It

)
(33)

ŷt = ∑2n
i=0ω

[i]
my[i]

t (34)

St = ∑2n
i=0ω

[i]
c

(
y[i]

t − ŷt

)(
y[i]

t − ŷt

)T
+ Qt (35)
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Σx,y
t = ∑2n

i=0ω
[i]
c

(
L[i]t − xt

)(
L[i]t − xt

)T
(36)

Kt = Σx,y
t S−1

t (37)

(6) State and covariance update:

et = zt − ŷt (38)

xt = xt + Ktet (39)

Σt = Σt −KtStKT
t (40)

(7) Adaptive noise estimation:

Dt = etet
T (41)

Rt+1 = (1− dt)Rt + dtKtDtKT
t (42)

Qt+1 = (1− dt)Qt + dt

(
∑2n

i=0ω
[i]
c

(
y[i]

t − ŷt

)(
y[i]

t − ŷt

)T
+ Dt

)
(43)

where dt is expressed as

dt =
1− b

1− bt+1 , (0 < b < 1) (44)

where b is the forgetting factor and was set as 0.95 in this study.

4. Experiments, Results, and Discussion

To establish the performance of the application of the fast-OCV in the SOC estimation,
two working conditions, continuous discharge and step discharge, as shown in Figures 10
and 11, were tested. Furthermore, UKF and AUKF algorithms were adopted for the
comparative investigations.
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The initial value SOC0 was set as 0.2, which was obviously not the real value, to
establish how quickly each case converged with the real value. As shown in Figures 12
and 13, all the predictions followed the trend of the SOC variation. However, we found that
the fast OCV showed an obviously better accuracy. Furthermore, the fast OCV cases also
showed faster convergence. This might have been due to the fact that the fast OCV was
obtained under real application conditions, which are closer to actual working conditions
than traditional ways of obtaining the OCV. However, all the cases lost track with the actual
SOC when the battery was about to become empty. This phenomenon would possibly be
ascribed to the drawback that the Thevenin model does not describe the diffusion effect, or
to the fact that there was a lack of optimization on the current trace when carrying out the
parameter identification.
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fast OCV obviously deviated from the measured value, as shown in Figure 6. However, 
the ECM here was largely simplified, meaning that it may not have been able to describe 
the battery’s behavior in significant detail; thus, the OCV curve was not necessarily very 
close to the real value, but it was more compatible with the model [25]. In our case, the 
battery was described with the Thevenin model. The OCV was obtained with the assump-
tion of the Rint model, which is of similar simplicity to the Thevenin model; hence, good 

Figure 12. Comparison of SOC estimation: fast OCV versus traditional OCV under continuous-
discharge condition.
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According to the results shown in Figures 12 and 13, it was also found that the AUKF
showed a much better performance than the UKF. For the classical UKF, the covariance for
the process noise and observation noise might not be optimal. However, with the adaptive
estimation of the noise covariance, the Kalman filter worked more closely to the optimum
performance; hence, the AUKF showed much better performances. It was also found in
both cases that relatively large errors resulted when the SOC was low. This was mainly
due to the fact that the OCV curve was obtained based on the Rint model. However, in the
low-SOC situation, a distinct relaxation effect was observed, which was confirmed by the
relatively large R1 and C1 values shown in Figure 9. Nevertheless, good accuracy in the
SOC estimation was achieved within a large SOC span by using the fast-OCV curve with
the AUKF algorithm.

All the results showed that the fast OCV exhibited very good performances when used
for SOC estimation. These results seem to be unreasonable, as we observed that he fast OCV
obviously deviated from the measured value, as shown in Figure 6. However, the ECM
here was largely simplified, meaning that it may not have been able to describe the battery’s
behavior in significant detail; thus, the OCV curve was not necessarily very close to the
real value, but it was more compatible with the model [25]. In our case, the battery was
described with the Thevenin model. The OCV was obtained with the assumption of the Rint
model, which is of similar simplicity to the Thevenin model; hence, good compatibility was
achieved between the OCV curve and the ECM. However, there are still some deficiencies
in this method, specifically when the SOC is low, which suggests that poor compatibility
between the OCV and ECM might be encountered. Therefore, more thorough work is
still required in future investigations. When carrying out the parameter estimations with
the limited-memory least-square algorithm, the batch mode showed much weaker noise.
Considering the Kalman filters in this work, the performance in the parameter estimation
might be further improved in further investigations in the future.
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5. Conclusions

In this paper, the fast-OCV method was used to obtain the open-circuit voltage of a
battery. By using Kalman filters, the battery SOC was estimated. To obtain the battery
parameters, the dynamic battery model was discretized to form a linear equation for
parameter solution by using the sampled terminal current and voltage data. To minimized
data noise, a “batch mode” method was introduced to sufficiently use all the sampled
data obtained with high frequency. Moreover, the limited-memory recursive least-square-
algorithm was used to smooth the solution. The main conclusions of this research are
as follows:

(1) The “batch-mode” proposed was able to make good use of all the data sampled, with
a much higher frequency than the parameter-updating task, and it demonstrated
a good de-noising effect in the battery-parameter estimation. Combined with the
limited-memory recursive least-square algorithm, successful parameter estimation
was achieved.

(2) The fast-OCV curve based on the Rint model was applied effectively for battery-SOC
estimation. Compared with the traditionally obtained OCV curve, it even proved to
offer much better accuracy in SOC estimation. Combined with an adaptive UKF, good
accuracy in SOC estimation was achieved.

(3) Compared with the traditional approach to OCV curve identification, the fast-OCV
method is much more time-efficient, with a completely fluctuating charging-and-
discharging process. As hybrid power for UAVs should be configured with low
capacity (light batteries), the fast-OCV method is highly suitable for these situations.

Nevertheless, the results also showed the relatively poor accuracy of the proposed
method in SOC estimation in low-SOC situations. This was probably mainly be due to the
higher relaxation effect when the SOC was low, as indicated by the relatively high R1 and
C1 values. To perfect the OCV-curve identification, a first- or second-order ECM may need
to be considered. Furthermore, the approach to fluctuating the current load on the battery
may also affect the results of OCV curve obtained. The investigation of this topic would
involve standard waves, like sinusoid waves and rectangular waves, or even standard
battery-testing cycles. All these points are worthy of future investigations.
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