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Abstract: In this work, we put forward and demonstrate a bi-direction free-space visible light
communication (VLC) system supporting multiple moveable receivers (Rxs) using a light-diffusing
optical fiber (LDOF). The downlink (DL) signal is launched from a head-end or central office (CO) far
away to the LDOF at the client side via a free-space transmission. When the DL signal is launched to
the LDOF, which acts as an optical antenna to re-transmit the DL signal to different moveable Rxs.
The uplink (UL) signal is sent via the LDOF towards the CO. In a proof-of-concept demonstration,
the LDOF is 100 cm long, and the free space VLC transmission between the CO and the LDOF is 100
cm. 210 Mbit/s DL and 850 Mbit/s UL transmissions meet the pre-forward-error-correction bit error
rate (pre-FEC BER = 3.8 × 10−3) threshold.

Keywords: visible light communication (VLC); optical wireless communication (OWC); light
diffusing optical fiber (LDOF); laser diode (LD); light-diffusing optical fiber (LDOF)

1. Introduction

Due to the great demands for wireless communication bandwidth for applications
such as the Internet of Things (IoT), online gaming and conferencing, cloud-based storage
and processing, etc., the radio-frequency (RF) spectrum has been exhausted. Utilizing the
optical frequency spectrum for future wireless communication, which is known as optical
wireless communication (OWC), could be a promising solution [1–5]. Visible light com-
munication (VLC) [6–15] is one implementation of OWC using the visible light spectrum.
VLC has been developing rapidly in the past decades to provide both communication and
illumination simultaneously since it can integrate with the existing light-emitting diode
(LED) illumination infrastructure. Furthermore, it can offer the advantages of license-free
and electromagnetic interference (EMI)-free wireless transmission. As the optical signal
does not interfere with the RF signal, VLC can be used to augment RF wireless commu-
nication to provide extra communication capacity without degrading the performance of
both signals. In future 6G wireless systems, VLC is also considered one of the promising
candidates [16,17]. In addition, VLC could also provide many value-added functions of
lighting, including underwater optical wireless communication (UWOC) [18–21], visible
light positioning (VLP) [22–25], and optical camera communication (OCC) [26–29].

VLC transmission can be mainly divided into two categories: non-line-of-sight (NLOS)
diffused transmission and direct line-of-sight (LOS) transmission. They have their pros and
cons. Although diffused NLOS transmission does not require critical alignment between the
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transmitter (Tx) and receiver (Rx), the received optical power is low. Furthermore, in NLOS
transmission, pulse spreading and multipath-induced inter-symbol interference (ISI) issues
will significantly affect the VLC transmission performance. On the other hand, although
the LOS VLC transmission requires additional mechanisms to ensure alignment between
the Tx and Rx, higher performance can be obtained. In order to achieve high-performance
LOS VLC transmission, optical alignment between the optical Tx and Rx is very critical
to ensuring the VLC signal can be well received by the Rx. There are mainly two ways to
improve LOS transmission. (i) One way is to perform precise optical alignment between
the Tx and Rx based on optical beam steering. The optical beam steering is to ensure a
narrow optical beam reaches the Rx from the Tx. Optical beam-steering schemes based
on mechanical [30], tunable laser [31], diffractive [32], spatial light modulator (SLM) [33],
as well as active optical phased array (OPA) [34,35] approaches have been proposed and
demonstrated. (ii) Another way to improve the LOS transmission is by increasing the Rx
field-of-view (FOV); hence, the optical alignment becomes less critical. The paragraphs
below are about different ways to increase the FOV.

Many creative optical antennas have been demonstrated using special optical mate-
rials as well as special Rx to enhance the FOV of VLC systems. In 2016, Peyronel et al.
proposed and demonstrated a tight array of polystyrene fibers doped with an organic dye
(Saint-Gobain BCF-92), forming a rectangular detector with an increased detection area [36].
They used optical waveguides doped with wavelength-shifting dyes. The incident mod-
ulated optical signal was absorbed by the dye molecules independently of the incidence
angle of the optical signal and subsequently re-emitted at a different wavelength. In 2018,
Ishibashi et al. proposed and demonstrated a free-space optical communication (FSOC)
system for industrial vehicles using two types of optical fibers (i.e., light-diffusing fiber
and wavelength-shifting fiber) providing both downlink (DL) and uplink (UL) transmis-
sions [37]. In 2019, Kang et al. reported a large-area scintillating fiber-based Rx using
ultraviolet (UV)-to-blue color conversion for underwater wireless optical communica-
tion [38]. In this scheme, a large-area and wide FOV Rx was achieved to establish a reliable
communication link in a turbulent underwater environment. In 2020, Manousiadis et al.
fabricated a wide FOV and high-gain fluorescent optical antenna [39]. The structure con-
sisted of a fluorescent material sandwiched between two glass layers. By using different
dyes dispersed in transparent epoxy, wavelength division multiplexing (WDM) operations
can be realized. In 2020, Riaz et al. demonstrated a 240◦ wide FOV VLC Rx for smart
phones using a fluorescent fiber [40]. The fluorescent fiber used had a 3-dB response at
80 MHz. By using decision feedback equalization (DFE) with 40 feed-forward and 20
feed-backward taps, the intersymbol interference (ISI) of the on-off-keying (OOK) signal
was mitigated, achieving 1.1 Gbit/s operation. In 2022, Tsai et al. proposed and illustrated
a 360◦ wide FOV optical camera communication (OCC) system using a phosphor-coated
light diffusing fiber [41]. When a blue laser diode (LD) was coupled at one end of the
light-diffusing fiber, blue light was scattered and emitted at the fiber circumference. The
yellow phosphor converted the blue light to yellow light; hence, white light was produced
by combining the blue and yellow lights. In this system, a rolling shutter camera was used,
and the data rate was 3.3 kbit/s. In addition to these special fibers, compound parabolic
concentrators (CPCs) [42–45] can be installed in front of the Rx to increase the Rx FOV.
Table 1 summarizes the performance comparison of recent VLC systems using advanced
optical antennas to enhance the FOV.

From Table 1, we can observe that in order to provide hundreds Megabit/s, wide
FOV, and a large VLC detection area, light diffusing fiber can be a promising candidate by
allowing 360◦ wide FOV VLC detection around the fiber circumference. In this work, we
put forward and demonstrate a bi-direction free-space VLC system supporting multiple
moveable Rxs using a light-diffusing optical fiber (LDOF). The downlink (DL) signal is
red at a wavelength of 633 nm and is launched from a head-end or central office (CO) far
away to the LDOF at the client side via a free-space transmission. When the DL signal
is launched to the LDOF, which acts as an optical antenna to re-transmit the DL signal
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to different moveable Rxs. The uplink (UL) signal is green at a wavelength of 520 nm.
It is sent via the LDOF towards the CO. In the proof-of-concept demonstration reported
here, the LDOF is 100 cm long, and the free space VLC transmission between the CO
and the LDOF is 100 cm. The 210 Mbit/s DL and 850 Mbit/s UL transmissions meet the
pre-forward-error-correction bit error rate (pre-FEC BER = 3.8 × 10−3) threshold. When
compared with ref. [36–38], our work proposed here includes both DL and UL transmission,
as well as a 1-m FSO transmission to increase the flexibility of the proposed system. When
compared with ref. [39], which uses a fluorescent layer sandwiched by 2 glass layers. The
FOV is limited to 60◦, while our proposed system uses LDOF, which has FOVs of 360◦

around the fiber circumference and 120◦ along the fiber. The LDOF used here is the same
as that in ref. [41]; however, ref. [41] is based on rolling shutter-based OCC. Hence, the data
rate is only 3.3 kbit/s, which is limited by the rolling shutter effect of the camera.

Table 1. Performance of VLC systems using advanced optical antennas to enhance the FOV.

Year Optical Antenna Modulation Data Rate Antenna Length FOV Feature

2016 Polystyrene fiber array
(Saint-Gobain BCF-92) OFDM 2.1-Gbit/s 3.6 × 35 cm 59.4◦ Omni-directional

detection potential [36]

2018
Light diffusion fiber +
wavelength-shift fiber

(BCF-92)
OOK 100-Mbit/s (DL) +

100-Mbit/s (UL)
50 m (DL), 25 m

(UL) 360◦ For industrial vehicles
[37]

2019 Scintillating fiber array
(Saint-Gobain BCF-10) OOK 250-Mbit/s 1.2 × 30 cm 360◦

Underwater wireless
optical communication

[38]

2020 Fluorescent layer
sandwiched by 2 glass layers OOK 12-Mbit/s - 60◦ 2-color WDM [39]

2020 Fluorescent fiber
(Saint-Gobain BCF-20) OOK 1.1-Gbit/s 7.57 cm 240◦ For smart-phone Rx

[40]

2022 Phosphor-coated light
diffusion fiber OOK 3.3 kbit/s 100 cm 360◦ OCC [41]

This
work

Light diffusion optical fiber
(LDOF) OOK 210-Mbit/s (DL) +

850-Mbit/s (UL)
100 cm (DL and

UL) 360◦ Bidirectional + FSO
capability

This paper is organized as follows: In Section 2, the design and structure of the LDOF
acting as the omni-directional optical antenna are discussed. The system architecture,
experiment, results, and discussion are presented in Sections 3 and 4, respectively. Finally,
the conclusion is given in Section 5.

2. Design and Structure of the Light-Diffusing Optical Fiber (LDOF)

Traditional optical fiber is used to deliver an optical carrier containing data information
from one end to the other. For single-mode fiber (SMF), the core and cladding diameters
are 9 µm and 125 µm, respectively. For multi-mode fiber (MMF), the core and cladding
diameters are 50 or 62.5 µm, and 125 µm, respectively. As shown in Figure 1a, as the
refractive index of the fiber core is higher than that of the fiber cladding, light is refracted
and restrained in the fiber core due to total internal reflection (TIR). The traditional optical
fiber is not typically considered suitable for use as an extended light source. By introducing
nanostructure scattering centers in the fiber core, very efficient light scattering through the
circumference sides of the optical fiber can be achieved, as shown in Figure 1b. Figure 1c
shows the proposed LDOF [46,47] which has a silica glass core and acrylate polymer
cladding with diameters of 170 µm and 230 µm, respectively. By using lower-index acrylate
polymer cladding, the numerical aperture (NA) of the LDOF is about 0.46. The uniformity
of the extracted light around the circumference can be adjusted by controlling the number
of scattering sights in the fiber core. These nanostructured scattering centers range in
size from 50 to 500 nm; hence, they can effectively scatter the transmitting light in the
visible wavelengths.
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As the mechanism of the LDOF is based on scattering, here we discuss the scattering of
incident light with the medium. The scattering of light in a medium can be mainly divided
into elastic (i.e., linear) scattering and inelastic (i.e., nonlinear) scattering [48]. In elastic
scattering, the frequency (or photon energy) of the scattered light remains unchanged after
interaction with the medium. By contrast, the frequency of the scattered light is shifted
during inelastic scattering. There are two main types of inelastic scattering in optical fiber,
including Raman scattering and Brillouin scattering [48]. The energy difference between
the scattering light and the incident light will generate phonons in both cases. In Raman
scattering, an optical phonon is generated, while in Brillouin scattering, an acoustic phonon
is generated.

Then, we discuss elastic scattering. There are also two main elastic scatterings in the
fiber. They are known as Rayleigh scattering and Mie scattering. The scattering depends
on the relative size between the wavelength and the scattering particles [49]. Rayleigh
scattering occurs when the dimension of the scattering particles is much smaller than the
wavelength of the incident light. This also means that there is no appreciable change in the
phase of the incident light across the dimensions of the scattering particles. The condition
can be written quantitatively, as shown in Equation (1).(

2π

λ

)
d� 1 (1)

where d is the diameter of the particle and λ is the wavelength of the incident light. On the
other hand, Mie scattering occurs when the dimension of the scattering particles is between
0.1 and 1 times the wavelength of the incident light. This means that the phase of the inci-
dent light can be changed considerably within the dimension of the scattering particle, and
Mie scattering plays the key role of scattering in the LDOF used in the experiment reported
in this paper. According to ref. [49], the total scattering and absorption cross sections can
be calculated from the directional cross sections by integrating the directive values over
all directions. The total scattering cross section can be indicated as σs, the total absorption
cross section as σa, and the total extinction cross section as σe. Based on the Mie solution,
the scattering and extinction cross sections, each normalized to the particle geometric cross
section α (α = πd2/4), can be expressed as in Equations (2) and (3), respectively.

Qs =
σs

α
=

2
x2 ∑

(
2np + 1

)[
|an|2 + |bn|2

]
(2)

Qe =
σe

α
=

2
x2 ∑

(
2np + 1

)
[Re(an) + Re(bn)] (3)

where x = (2π/λ)(d/2), d is the diameter of the particle, and λ is the wavelength of the
incident light. np is the order of the multi-pole expansion of the polarization owing to
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charge oscillation inside the particle. The coefficients an and bn are the contribution of the
multi-poles of order np.

Table 2 summarizes the characteristics of the LDOF used in the experiment. The LDOF
is manufactured by Corning®. It offers 3 lengths of LDOF on the market (i.e., 1 m, 5 m,
and 10 m). As the fiber length has been fixed by the manufacturer, the concentration of the
nanostructure scattering center has already been defined in each fiber length such that the
optical output power at the fiber output facet is 1/10 of the optical input power after the
diffusion length, as illustrated in Equation (4), where Pin and Pout are the input and output
optical powers, respectively.

Pout at 1 Diffusion Length =
Pin
10

(4)

Table 2. Characteristics of the LDOF.

Optical or Mechanical Properties Feature

Diffusion Length 1 m
Numerical Aperture (NA) >0.46

FOV Around Fiber Circumference 360◦

FOV Along Fiber 120◦

Operating Wavelength 420 to 700 nm
Core Diameter 170 ± 3 µm

Clading Diameter 230 + 0/−10 µm
Proof Test: Tensile Strength 100 kpsi

Operating Temperature −20 to + 105 ◦C

In our proof-of-concept demonstration, we use the 1-m-long LDOF. It is mainly limited
by our optical table. According to the specification provided by Corning® [47], the 3 lengths
of LDOF have the same NA of >0.46, same FOVs of 360◦ and 120◦ around the fiber
circumference and along the fiber, respectively. The operation wavelength is from 420 nm
to 700 nm.

3. Architecture and Experiment of the Bi-Directional Free-Space VLC

Figure 2 shows the proposed system architecture of the bi-directional free-space VLC
system, in which the LDOF acts as an optical antenna supporting multiple moveable clients.
In order to increase the VLC system’s flexibility, the LDOF could be installed at a remote
location, and the DL data are sent from the head-end office or CO via free-space VLC.
The LDOF at the client side acts as an optical antenna to re-transmit the DL signal to
different moveable clients. In principle, the system can support a large number of Rxs
simultaneously as long as there is enough space along the LDOF circumference. The UL
signal at another wavelength is sent via the LDOF and free space towards the CO.
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Figure 3 shows the experimental setup of the free-space VLC system with bi-direction
transmissions supporting multiple moveable Rxs. The LDOF is manufactured by Corning®.
As discussed in Section 2, nanostructures are added to the inner core to produce light
diffusion. The DL and UL Txs are a 633 nm red LD (Thorlabs®, HL63163DG) and a 520 nm
green LD (Thorlabs®, PL520), respectively. The use of 633 nm and 520 nm wavelengths is
based on the transmission characteristics of the dichroic mirror (DM, Edmund® #86-386).
The DM can well separate these two wavelengths at the CO to minimize the crosstalk. Two
pulse-pattern generators (PPGs) are used to drive the DL and UP LDs at the same time
to produce optical on-off-keying (OOK) signals via bias tees with proper direct-current
(DC) biases. At the CO, a DM is employed to separate the red DL and green UL signals.
Collimators (Col.) are used to couple optical signals into and out of the LDOF. At the CO,
the green UL signal is received by an avalanche photodetector (APD, Thorlabs®, APD210).
On the client side, an APD (Thorlabs®, APD110A) with a red optical filter (OF) is employed
to receive the red DL signal from the LDOF. The client APD can slide along the whole
LDOF to receive the DL signal, and the performance will be discussed in the next section.
As discussed above, in principle, the system can support a large number of client APDs
simultaneously as long as there is enough space along the LDOF circumference. Finally,
the received DL and UL OOK eye diagrams are captured by a digital sampling oscilloscope
(DSO) (Agilent®, 86100A), and their BER is measured by a BER tester (Anritsu®, MP1800A).
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Figure 3. Experimental setup of the free-space VLC system with bi-direction transmissions supporting
multiple moveable Rxs. BERT: bit-error-rate tester; APD: avalanche photodetector; DM: dichroic
mirror; OF: optical filter; DSO: digital sampling oscilloscope.

4. Results and Discussion

Figure 4 illustrates the optical powers measured by an optical power meter (Thorlabs®,
PM100D) when sliding along the 100 cm LDOF. It can be observed that the light intensity is
quite uniform in the 20–80 cm range with an average optical power of 25 µW, illustrating
that clients Rx locating in the 20–80 cm range can receive similar optical signals. It is
also worth pointing out that, as the LDOF is designed to diffuse light 360◦ around the
fiber circumference, the measured optical powers are nearly the same around the LDOF
circumference. As shown in Figure 4, the red DL signal is launched from the left-side facet
of the LDOF (i.e., 0 cm position in Figure 4); while the green UL signal is launched from
the right-side facet of the LDOF (i.e., 100 cm position in Figure 4). We can observe that
both DL and UL signals have the same measured optical power at the 50 cm position. This
illustrates the good performance of the LDOF since the scatterings of the DL and UL in
the LDOF are the same. Furthermore, this phenomenon also illustrates the uniform light
diffusion performance of the LDOF of the two colors at both facets. In addition, we also
carried out the power measurement 360◦ around the LDOF circumference, and similar
powers were received [41].
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the LDOF.

Figure 5 illustrates the optical spectra of the DL and UL signals emitted by the 633 nm
and the 520 nm LDs measured by a spectrometer (Ocean® Insight USB2000). The exper-
imental setup used to obtain the optical spectrum in Figure 5 is the same as that used
in Figure 3, in which the APD is replaced by a spectrometer. The optical detector of the
spectrometer is located close to the LDOF. It can be observed that both the DL and UL
signals have narrow linewidths and high side-mode suppression ratios.
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Figure 6a–c illustrate the photographs of the LDOF without, with the red light, and
with the green light launchings, respectively. We can observe uniform light around the fiber
circumference in all cases. The optical signal emitted via the LDOF is safe for human eyes.
We purposely make turns in the LDOF to illustrate the flexibility of the LDOF as an optical
omni-directional antenna. Figure 7 illustrates the experimental photographs of the CO, in
which a directly modulated red LD is used to provide the DL data and an APD is used to
receive the UL green data. The DM is used to separate the red DL and green UL signals
from the wavelength multiplexed signal, and a lens is used to focus the UL signal into
the APD. Figure 8 illustrates the experimental photographs of the client side at different
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viewing angles. Two collimators at each side of the LDOF are used to couple optical signals
into and out of the LDOF. The client APD mounted on a sliding stage can slide along the
whole LDOF to receive the DL signal. As discussed above, we purposely make turns in
the LDOF to illustrate the flexibility of the optical antenna. The yellow color emitted via
the LDOF can be observed when both red and green lights are launched and combined in
the LDOF.
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Figure 7. Experimental photographs of the CO. Red arrow—red light; Green arrow-green light;
APD—avalanche photodetector; DSO—digital sampling oscilloscope; DM—dichroic mirror.

Figure 9 shows the DL BER measurements via the LDOF from data rates of 100 Mbit/s
to 220 Mbit/s measured at the client side. From a data rate of 100 Mbit/s to 190 Mbit/s, it is
error-free. The BER starts to increase at a data rate of 200 Mbit/s, and the BER is 6.50× 10−7.
BER of 3.69 × 10−4 is measured when the DL data rate is 210 Mbit/s, satisfying the 7%
pre-FEC threshold (BER = 3.8 × 10−3). Figure 10 shows the corresponding received DL
OOK eye diagrams at different data rates. Clear eye diagrams can be observed at data rates
up to 180 Mbit/s.
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Figure 11 shows the UL BER measurement from data rates of 100 Mbit/s to 1000 Mbit/s
measured at the CO. From a data rate of 100 Mbit/s to 600 Mbit/s, it is error-free. The
BER starts to increase at a data rate of 700 Mbit/s, and the BER is 1.14 × 10−6. The BER of
2.15 × 10−3 is measured when the UL data rate is 850 Mbit/s, satisfying the 7% pre-FEC
threshold. Figure 12 shows the corresponding received UL OOK eye-diagrams at different
data rates. Clear eye diagrams can be observed at data rates up to 800 Mbit/s.
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Figure 13 shows the DL BER measurement curves at different data rates and at different
positions of the 100-cm LDOF optical antenna. We can observe that at data rates of 100,
150, and 190 Mbit/s, error-free detection can be achieved at positions from 10 to 90 cm
even when the light is not quite uniform along the LDOF, as shown in Figure 4. At data
rates of 200 and 210 Mbit/s, we can observe that pre-FEC BER detection (BER = 3.8 × 10−3)
can be achieved for the whole range of LDOF, with the highest BERs measured at 90 cm
locations with BER = 7.60 × 10−5 and 1.30 × 10−3, respectively. In Figure 13, we can
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observe that BER = 1 × 10−9 can be measured by our BER tester (Anritsu®, MP1800A) at
data rates from 100 Mbit/s to 190 Mbit/s. BER = 1 × 10−9 can be considered error-free.
Here, we would like to illustrate that if we use a low DL data rate of <190 Mbit/s, error-free
detection can be achieved for the whole 1-m long LDOF. If we want to use higher data rates
of 200 Mbit/s and 210 Mbit/s, FEC performance (BER = 3.8 × 10−3) can be guaranteed.
However, when the data rate is increased to 220 Mbit/s, only half length of the LDOF can
satisfy the FEC transmission.
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5. Conclusions

In this work, we put forward and demonstrated a bi-direction free-space VLC system
supporting multiple moveable Rxs using a LDOF. The proposed LDOF had a silica glass
core and acrylate polymer cladding with diameters of 170 µm and 230 µm, respectively.
The NA of the LDOF was about 0.46. The uniformity of the extracted light around the
circumference was adjusted by controlling the number of scattering sights in the fiber core.
These nanostructured scattering centers ranged in size from 50 to 500 nm. The LDOF can
provide a field of view of 360◦ around the fiber circumference and 120◦ along the LDOF.
In the proposed bi-directional system, the DL signal was launched from a CO away to
the LDOF on the client side via a free-space transmission. When the DL signal was at a
wavelength of 633 nm and was launched to the LDOF, which acted as an optical antenna
to re-transmit the DL signal to different moveable Rxs. The optical signal emitted via the
LDOF was safe for human eyes. The UL signal had a wavelength of 520 nm and was sent
via the LDOF towards the CO. In a proof-of-concept demonstration, the LDOF was 100 cm
long, and the free-space VLC transmission between the CO and the LDOF was 100 cm. In
principle, the system can support a large number of Rxs simultaneously as long as there
is enough space along the LDOF circumference. Regarding the green UL signal, from a
data rate of 100 Mbit/s to 600 Mbit/s, it was error-free. BER started to increase at data
rate of 700 Mbit/s, and the BER was 1.14 × 10−6. BER of 2.15 × 10−3 was measured when
the UL data rate is 850 Mbit/s, satisfying the 7% pre-FEC (pre-FEC BER = 3.8 × 10−3)
threshold. Regarding the red DL signal, if a low data rate of < 190 Mbit/s was employed,
error-free detection can be achieved for the whole 100 cm-long LDOF. If higher data rates
of 200 Mbit/s and 210 Mbit/s were employed, FEC performance (BER = 3.8 × 10−3) could
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be guaranteed. However, when the data rate was increased to 220 Mbit/s, only half the
length of the LDOF could satisfy the FEC transmission.
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