
Citation: Zhang, L.; Wang, J.; Wang,

W.; Jin, Z.; Zhao, C.; Cai, Z.; Chen, H.

A Novel Smart Contract Vulnerability

Detection Method Based on

Information Graph and Ensemble

Learning. Sensors 2022, 22, 3581.

https://doi.org/10.3390/s22093581

Academic Editors: Kamanashis

Biswas, Mohammad Jabed Morshed

Chowdhury and Muhammad Usman

Received: 31 March 2022

Accepted: 6 May 2022

Published: 8 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Novel Smart Contract Vulnerability Detection Method Based
on Information Graph and Ensemble Learning
Lejun Zhang 1,2,3,* , Jinlong Wang 1, Weizheng Wang 4, Zilong Jin 5, Chunhui Zhao 6, Zhennao Cai 7

and Huiling Chen 7,*

1 College of Information Engineering, Yangzhou University, Yangzhou 225127, China;
mz120200903@yzu.edu.cn

2 Research and Development Center for E-Learning, Ministry of Education, Beijing 100039, China
3 Cyberspace Institute Advanced Technology, Guangzhou University, Guangzhou 510006, China
4 Computer Science Department, City University of Hong Kong, Kowloon Tong, Hong Kong;

m5232117@u-aizu.ac.jp
5 School of Computer and Software, Nanjing University of Information Science and Technology,

Nanjing 210044, China; zljin@nuist.edu.cn
6 College of Computer Science and Technology, Harbin Engineering University, Harbin 150001, China;

zhaochunhui@hrbeu.edu.cn
7 Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou 325035, China;

cznao@wzu.edu.cn
* Correspondence: zhanglejun@yzu.edu.cn (L.Z.); chenhuiling.jlu@gmail.com (H.C.)

Abstract: Blockchain presents a chance to address the security and privacy issues of the Internet
of Things; however, blockchain itself has certain security issues. How to accurately identify smart
contract vulnerabilities is one of the key issues at hand. Most existing methods require large-scale
data support to avoid overfitting; machine learning (ML) models trained on small-scale vulnerability
data are often difficult to produce satisfactory results in smart contract vulnerability prediction.
However, in the real world, collecting contractual vulnerability data requires huge human and time
costs. To alleviate these problems, this paper proposed an ensemble learning (EL)-based contract
vulnerability prediction method, which is based on seven different neural networks using contract
vulnerability data for contract-level vulnerability detection. Seven neural network (NN) models
were first pretrained using an information graph (IG) consisting of source datasets, which then were
integrated into an ensemble model called Smart Contract Vulnerability Detection method based on
Information Graph and Ensemble Learning (SCVDIE). The effectiveness of the SCVDIE model was
verified using a target dataset composed of IG, and then its performances were compared with static
tools and seven independent data-driven methods. The verification and comparison results show that
the proposed SCVDIE method has higher accuracy and robustness than other data-driven methods
in the target task of predicting smart contract vulnerabilities.

Keywords: smart contract; vulnerability detection; blockchain security; operation flow; Ensemble
Learning; information graph

1. Introduction

The recent advances in information and communication technology (ICT) have pro-
moted the evolution of the conventional computer-aided industry into the smart industry [1].
In the transformation, the Internet of Things (IoT) has an essential role in linking the phys-
ical industrial space and cyberspace. However, the current IoT is not well-suited to the
needs of the industry in terms of privacy and security. Thanks to the continuous progress
of blockchain technology, the combination of IoT and blockchain is becoming more and
more popular among security personnel. For example, the study [2] provides a worthwhile
research solution for data privacy transfers in the security domain. Yet blockchain still

Sensors 2022, 22, 3581. https://doi.org/10.3390/s22093581 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22093581
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3458-7431
https://orcid.org/0000-0002-7714-9693
https://doi.org/10.3390/s22093581
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22093581?type=check_update&version=2

Sensors 2022, 22, 3581 2 of 25

is experiencing security issues of its own while solving IoT privacy and security prob-
lems. Currently, the security of smart contracts has become one of the key blockchain
security issues.

Smart contracts in blockchain are automated, programable, verifiable, and open and
transparent. Using these features of smart contracts transforms them into programed,
executable, and verifiable ways for decentralized execution, thereby significantly reducing
the underhanded operations and unfair practices that exist in decentralized systems. More
and more individual developers or industry practitioners can develop Decentralized Appli-
cations (DApps) [3], such as Decentralized Finance (DeFi), etc. In the metaverse, users can
also co-edit the world, realize the value exchange through smart contracts, and guarantee
the transparent enforcement of system rules. However, previous research has shown that
many real-world smart contracts deployed on blockchains have serious vulnerabilities [3],
for example, the DAO attack [4] and the Parity attack [5]. The DAO attack exploits a
recursive call vulnerability to transfer one third of the DAO funds to a malicious account
(worth about USD 50 million). The Parity attack exploits a vulnerability in the library
contract to steal over 150,000 ETH to a malicious account (worth about USD 30 million).

Recent studies have reported many methods for smart contract vulnerability predic-
tion. In general, these methods can be classified into two categories: (1) expert rule-based
approach, considering static symbolic analysis [6,7], dynamic symbolic execution [8], com-
bined dynamic and static methods [9], and XPath [10]; and (2) data-driven approach, i.e.,
using NN approach [11–17].

In symbolic-execution-based approaches, symbolic execution models are often used
together with experimental data to accomplish the task of contract vulnerability prediction.
In the last few years, many successes have been achieved using symbol-execution-based
methods. However, constructing an accurate symbolic execution model is not an easy task,
as it often requires extensive knowledge of Solidity programing (Solidity is used as an
example in this paper) or experimental data obtained under well-designed and controlled
conditions, which are often untimely or too time-consuming.

As an alternative to expert rule-based methods, data-driven methods for smart contract
vulnerability prediction have gained popularity in recent years. The data-driven approach
relies entirely on the data themself and usually does not require much knowledge of how
the data work exactly. In the data-driven approach to contract vulnerability prediction,
contract vulnerability prediction can be performed by learning complex features extracted
from the operational sequence dependencies of a contract, and this dependency can be
learned with various ML methods. The focus of the work in this paper is to apply different
NNs to contractual vulnerability prediction. NN is a structure consisting of multiple layers
of interconnected “neurons” that map input features to outputs (such as the vulnerability
labels in this paper) [12–16]. NN-based deep learning methods have recently attracted the
attention of researchers working in cybersecurity because of their ability to automatically
extract features and their good generalization performance. Huang et al. [11] designed
a multi-task NN model based on an attention mechanism. The model uses a shared
embedding layer with the sequence of operations of a smart contract as its input, and
each subtask uses the shared embedding features. The effectiveness of the proposed NN
approach in vulnerability prediction is also verified on three vulnerabilities. Recently,
Hongjun Wu et al. [17] proposed a model using key data flow graphs and pretraining
techniques for smart contract vulnerability prediction based on code graphs. The method
converts the smart contract source code into an abstract syntax tree (AST), finds the locations
and relationships of variables in the contract, and constructs a code graph for verifying the
model performance by using the variables associated with vulnerabilities as nodes.

Although these data-driven methods can provide satisfactory accuracy in vulnerability
prediction, they focus on improving the underlying model or single accuracy and need
to be backed by a large-scale training dataset. At the same time, the time and human
costs of collecting data are rarely mentioned in the studies of these methods. In many real-
world scenarios, collecting contract vulnerability data is an expensive and time-consuming

Sensors 2022, 22, 3581 3 of 25

process. To alleviate this problem, this paper proposes an EL-based vulnerability prediction
approach, called SCVDIE-ENSEMBLE, which is based on seven different neural networks
using contract vulnerability data for contract-level vulnerability detection. The accuracy
and robustness of the proposed method can be improved by using EL, where the final
decision is reached by weighting the individual predictions (i.e., the vulnerability prediction
labels of a single NN model).

The proposed SCVDIE-ENSEMBLE approach consists of four main steps, which are
outlined below.

First, n-fold cross-validation (CV) is performed using the source dataset, including
the original contract data collected from DEDAUB [18], to obtain 7 ∗ n pretraining results,
which will help create more diverse NN models and their parameters. The diversity of these
independent models comes from the different training subsets used for pretraining, where
each independent NN model focuses on fitting a different sub-sample of the source dataset.

Second, a multi-layer perceptron is used to combine the vulnerability prediction results
of individual NN models. This approach causes the good predictions to be amplified and
the bad predictions to be attenuated.

The experimental results show that the proposed SCVDIE-ENSEMBLE method can
provide more accurate and robust vulnerability prediction. Compared to some other ML
methods including each NN model, the proposed SCVDIE-ENSEMBLE method can pro-
vide more accurate vulnerability predictions using a relatively small training dataset. To the
best of our knowledge, this is the first attempt to use EL methods on smart contract vulner-
abilities to improve the performance of deep learning in predicting contract vulnerabilities
from operational sequence data.

In this study, several contributions were made, as detailed below.
First, this paper proposes the SCVDIE-ENSEMBLE model for predicting the possibility

that smart contracts contain vulnerabilities, and their source code is public [19]. The
experimental results in this paper show that: (1) SCVDIE-ENSEMBLE outperforms other
ML methods; and (2) EL can improve the robustness of SCVDIE-ENSEMBLE models.

Second, the effectiveness of the proposed SCVDIE-ENSEMBLE model in making
accurate vulnerability predictions is based on more than 21,667 smart contracts manually
collected and tagged from DEDAUB, of which 11,756 are vulnerable smart contracts and
9911 are nonvulnerable smart contracts; this process took more than 2 weeks.

Third, in this paper, the performance of eight deep learning models is experimentally
demonstrated by using different size datasets for training. The conclusions show that
integrating EL can not only reduce the size of the training dataset with the same error of the
model, but also effectively improve the accuracy and robustness of vulnerability prediction.

The remainder of this paper is structured as follows: Section 2 reviews the existing
studies, including conventional methods, general ML methods, and software bug analysis
research applying EL. In Section 4, the research design of the experiments in this paper is
described. The way of building the dataset is also introduced. In Section 5, the experiments
and results of SCVDIE are presented, and the conclusions of the analysis. In Section 6,
SCVDIE’s characteristics and limitations are analyzed. In Section 7, the conclusion of this
paper and future work is discussed.

2. Related Work

The successes of neural techniques in many areas motivated researchers to apply neu-
ral networks for code analysis for the detection of software defects and vulnerabilities [20].
This section will review the existing methods, including conventional methods, neural-
network-based smart contract vulnerability detection technologies, and EL technologies.

2.1. Conventional Methods

Oyente [21] simulates the execution of the entire program by constructing a control
flow graph, solving the constraints using the z3 constraint solver, and determining the jump
direction of the program blocks based on the solution results. As one of the first studies to

Sensors 2022, 22, 3581 4 of 25

use symbolic execution to detect smart contract source code or bytecode vulnerabilities,
Oyente provides a symbolic execution interface to other static scanning tools. Similarly,
Mythril [22], Manticore [23], etc., are analyzed based on symbolic execution. Another
common analysis method is formal verification. Hirai et al. [24] verify the security of
contracts by formalizing them. In addition, ZEUS [25] and Securify [26] are also two
common formal verification tools.

2.2. Machine Learning

As mentioned in the introduction, security problems in smart contracts have caused
huge economic losses, and more and more security researchers are using ML for contract
vulnerability detection, with many fruitful results. These studies [27,28] used the GNN to
normalize the graph constructed by smart contracts and use the graph to extract features.
These studies [29,30] constructed the AST of smart contracts, and then extracted features
from the perspective of AST. The study [31] used static and dynamic methods for vulnera-
bility detection, used Word2Vec [32] for embedding, and used logistic regression for feature
extraction. To detect unknown types of vulnerabilities, dynamic fuzzing methods were
also introduced. The study [33] used the Average Stochastic Gradient Descent Weighted
Dropout Long Short-Term Memory (AWD-LSTM) Model, replacing the “decoder” layer of
AWD-LSTM with a fully connected layer. This approach is better than random initialization
because the network already contains a lot of semantic information about the input data.
The study [3] used the pretrained Bert model to process the smart contract source code
but did not consider the semantic and grammatical connections between functions. This
method uses the contract source code as a text sequence, each code element as a token, and
then performs token embedding, segment embedding, and position embedding separately.
After the embedding is completed, the result is predicted by training the classifier.

2.3. Ensemble Learning

EL is a learning method in which predictions given by different learning models are
aggregated to arrive at a possibly optimal final decision [34]. Its main purpose is to decrease
the peril of choosing a single model with poor performance and to improve the performance
of one model by using an intelligent ensemble of several separate models [34,35]. In ML,
when the test set and training set obey different distributions, there will be a large deviation
in the prediction results if the original training model is used. A common approach to this
problem is to recollect training sets and test sets with the same or similar distribution and
train new models. Nevertheless, recollecting enough contract data to rebuild a model is
expensive on actual blockchains, and it is not even possible to have so many samples to
choose from. Efforts to try to solve the challenge have promoted the progression of EL,
which has better strategies for datasets of all sizes. When the dataset is small, using the
bootstrap [36] method for sampling can obtain multiple datasets, train multiple models
separately, and then combine them, which are sufficient to reconstruct an ML model.
For this reason, EL has become a popular learning structure. Image classification [37,38] is
one of its classic applications. The financial crisis [39,40] is one of the applications of EL in
real life. Further, EL plays a crucial role in economic decision making. Moreover, EL has
been used in computer-assisted medicine and 5G-based telemedicine successfully [41,42].
It can also be used for various types of program vulnerability detection to predict the
probability that the program contains vulnerabilities [43,44]. However, exploiting EL for
smart contract vulnerability prediction is still in its infancy. As of this writing, this study is
the first attempt to apply EL to blockchain smart contract vulnerability prediction.

3. Methodology

In this subsection, the design and implementation of SCVDIE are presented, as well
as a novel dataset constructed that can be used to build an integrated system for smart
contract vulnerability detection by using the NN model. SCVDIE analyzes COS (i.e., critical
opcodes sequences directly related to the vulnerability) from the source code and tries to

Sensors 2022, 22, 3581 5 of 25

extract vulnerable opcode fragments. Then, vulnerability identification is designed as a
classification task, where each sequence is assigned a vulnerability probability. Sequences
with higher probability will be considered fragile. With enough training, SCVDIE can learn
the possible patterns of vulnerabilities, as reflected by the different parameters of the model,
i.e., the diversity of parameters. These different parameters are applied to samples with
similar characteristics not seen in the model, and predictions are made accordingly.

3.1. Overall Architecture

Identifying smart contract vulnerabilities can be seen as classifying the correspond-
ing opcodes into vulnerable/invulnerable sequences. Therefore, the problem of identify-
ing vulnerable smart contracts is defined as identifying vulnerable operations. Figure 1
illustrates the overall design of the proposed SCVDIE in this paper. Both the training and
testing phases consist of three main steps: constructing IGs from co-occurrence frequencies,
embedding IGs into the matrix space, training or predicting them, and aggregating the
results of different NN models to output a final decision. Before starting to present the
specific structure of SCVDIE, it is very critical to provide a global description of the notation
used in this paper to enhance its readability, as shown in Table 1.

Figure 1. SCVDIE overview.

Sensors 2022, 22, 3581 6 of 25

Table 1. Symbols and corresponding descriptions.

Symbol Description Symbol Description

IG IG of a contractual composition, not specific. dh The hidden dimension.
V The set of nodes of IG. W The linear layer weight.
E The set of edges of IG. b The linear layer bias.
D Dataset. P Probability of results.

IGi The i-th contract constitutes the IG. ŷ Predictive labeling of the sample.
yi Data labels corresponding to IGi. pi The probability of the i-th path.
N The original number of samples. Ps the number of sub-Paths
|V| The number of nodes of IGi. hl.C

i Vector of the i-th sub-path on CNN.
F The node embedding method. hl.R

i Vector of the i-th sub-path on RNN.
vi The i-th node of IG. Hl Integral vector of sub-paths.
βi Embedded vectors corresponding to vi. hg

j Vector of the j-th sub-path on Transformer.
R Value Domain. Hg Vector of the overall path on Transformer
d Embedding dimensions. Sl The combined score of sub-paths.
B The set of βi. sl

i The score of the i-th sub-path.
y Data labels corresponding to IG. wl.C Sub-paths result in weights on CNN.
B′ Overall node information corresponding to IG. Sg Overall path composite score.
β′ the node semantic embedding. Sen Final prediction results for the sample.

3.2. Building Vectorized IGs
3.2.1. Determine the Same (Co-) Present Relationship

The frequency of co-occurrences was calculated from the opcodes of all contract
samples in this paper, where the opcodes of individual smart contracts can be counted from
the Solidity compiler. Figure 2 shows the co-occurrence frequency matrix of the 20 operands
with the highest co-occurrence frequency.

Figure 2. Co-occurrence frequency.

Taking MSTORE in the first row as an example, it can be seen that the vertical co-
ordinate with the highest frequency corresponds to ISZERO, and the lowest frequency
corresponds to EQ. In building IGs, the ISZERO node is the closest to MSTORE, and EQ
and MSTORE have the farthest distance from each other. The operands that belong to
the same horizontal or vertical co-ordinate are ordered according to the order of their
appearance in the contract.

Sensors 2022, 22, 3581 7 of 25

3.2.2. Building Graph

The purpose of this work is to evaluate the vulnerability of smart contracts. SCVDIE
is pretrained in a supervised learning environment, the tags of smart contracts are initially
labeled by static recognition tools, potential COS are identified by predefined rules, and,
finally, COS is used as input data to construct an infographic IG based on co-occurrence
relations to represent the vulnerability pattern information of the program (the infographic
part in Figure 1). The nodes of IG are composed of opcodes, and all nodes are connected
according to the position–frequency relationship, and opcodes belonging to the same class
are connected in the order of their occurrence so that all edges and nodes form a unilateral
connected digraph (UCD). This paper considers that IG consists of a set of nodes and
undirected edges, denoted IG = (V, E), where V denotes the set of nodes of IG and E
represents the set of edges connecting these nodes. Given an infographic IG, one goal of the
vulnerability identification task is to uncover hidden vulnerability features by identifying
the connection patterns between nodes. Therefore, this paper constructed the samples
in the dataset as D = {IGi, yi}, where 1 ≤ i ≤ N, yi denote the label of the ith sample,
|V| denotes the number of nodes of IGi, and N is the original number of samples in the
experimental dataset.

3.2.3. Graph Vectorization

When plotting these embedding matrices in a vector space, the original input code
sequence is transformed into a meaningful matrix where nodes with similar relationships
are located very closely together, which allows the neural network to learn from rich re-
lationships. To vectorize the node content into a matrix, this paper first constructed the
IG of all sample contracts, and then extracted all paths of each IG. Based on these paths,
a set containing many operation sequences was built, and, finally, embedding models
such as Word2vec were trained with the set. For each path, this paper concatenated the
token embeddings corresponding to the path nodes as the initial representation of the
path. Just like human language, the same word has different meanings in different con-
texts. A smart contract contains multiple functions, and the same operation may have
different results in different functions, so this paper designed a novel node embedding
method F to vectorize the node vi into βi ∈ Rd, where d is the embedding dimension. The
βi contains all the embedded nodes of the graph and is defined as B. Given a sample
{IG, y}, then input the vectorized graph into a neural network model to learn node in-
formation representation B′ = Fmodel(B, E). A good model can fully embed the semantic
information of nodes and their contexts, so this paper input the semantic embedding
β′ corresponding to each node into the classifier, and then calculated the vulnerability
probability of each node. More precisely, the learned B′ ∈ Rdh×|V| were fed into a linear
layer with trainable weights W ∈ Rdh×1 and biases b = R1×|V| to obtain a score for each
node, where dh is the hidden dimension of the model, followed by a so f tmax layer with
probability P = so f tmax

(
WT B′ + b

)
. Considering the vulnerability probability of each

node, this paper took the most likely edge and the index of the corresponding node as the
predicted value ŷ = argmaxi∈|V|(pi) and calculated the cross-entropy loss compared with
the true value.

To facilitate the model to quickly switch between different embedding methods to
adapt to different embedding tasks, in addition to Word2vec, this method also encapsulates
two other mainstream embedding methods, namely: GloVe [45] and FastText [46]. Bert [47]
is also a common embedding method at present. It was proposed by Google in 2018. When
using the Bert model for embedding, the token position needs to be considered. The current
maximum length of position embedding is 512. However, the operation code of each
smart contract is a very long sequence, the length of the operation sequence of some smart
contracts can even exceed 3000. If Bert is used for code embedding, a large part of the
operation sequence will be discarded and a lot of feature information may be lost.

Sensors 2022, 22, 3581 8 of 25

3.3. Identifying Vulnerable Paths with a Single Model

Given an IG, this method uses the following three main steps to predict its vulnerabilities:

(1) Extract all paths and nodes.
(2) Embed all paths and nodes to obtain the embedding matrix.
(3) Use the embedded matrix as input data to make predictions.

To give the label of the contract corresponding to IGi conveniently, this method
considers adding an artificial node that does not contain any semantic information at the
position where the index of IGi is 0. This artificial node serves as a classification for the
entire graph, indicating whether the graph contains vulnerabilities. If a sample has no
loopholes, this method uses index 0 as the ground truth label of the contract. If there are
loopholes, the number composed of the sequence number corresponding to the path is
used as its label. For example, in the red route in the testing phase in Figure 1, the contract
token will be recorded as 1246, and the probability that this route has a real vulnerability is
preserved. Note that this is just one path for the example; in practice, most contracts have
multiple red paths.

To identify vulnerabilities accurately, each single NN model should understand opcode
sequences through multiple views. Learning such global and local combinations is neces-
sary for every single NN model to successfully identify fragile contracts. Convolutional
and recurrent neural networks can process sequential data efficiently. However, the ability
to learn global dependencies is limited by the length of the corresponding path. Due to the
computational cost, the acceptable path length is limited, so the independent path is usually
processed. Such processing creates additional limitations for them. In contrast, Transformer
allows learning latent patterns from a holistic perspective. Six models, such as CNN and
RNN, pass information to edges with different weights and pass the initial vectorized node
representation and edge list of each independent path to models such as CNN. It should be
noted that, unlike the GNN, this paper uses the UCD, so two paths are considered; one is
the sub-path in each graph and the second is the overall path of the UCD. For each sub-
path, the output of models such as CNN and RNN will be the converted path vulnerability
probability representation, denoted as Hl =

{[
hl.C

1 , hl.C
2 · · · hl.C

Ps

]
,
[

hl.R
1 , hl.R

2 · · · hl.R
Ps

]
, · · ·

}
,

where Ps represents the number of sub-paths corresponding to each sample IG.
To learn the implicit dependencies of the sequence, this method takes all the nodes

in the overall path of the sample as a sequence and passes it to the transformer to learn
the vectorized representation of the overall path. Removing connecting edges forces the
model to learn long-distance dependencies more efficiently since it no longer depends on
the effects of node calls that are far apart. In this paper, all nodes are sorted by distance
and frequency relationship, for example, the three opcodes MSSTORE, CALLVALUE, and
JUMPI. If MSSTORE and CALLVALUE are placed before JUMPI in the source program, then,
when building the input sequence, MSSTORE will be placed before all nodes belonging
to JUMPI; CALLVALUE is also based on the same rules. With the help of the multi-head
self-attention mechanism, the final node converted by the model represents the global
vulnerability probability of the contract, denoted as Hg =

[
hg

1 , hg
2 , · · · , hg

|V|

]
.

Then, the result vector representation from each model is fed into a multilayer per-
ceptron, and this layer is used to assign weights to the models. For models such as
CNN and RNN, the comprehensive score of each sub-path is calculated by Equation (1),
Sl =

[
sl

1, sl
2, · · · , sl

Ps

]
∈ RPs, and, for Transformer, the score of the overall path is calcu-

lated by Equation (2), Sg ∈ R|V|. During the training process, all vulnerability scores
are passed into the so f tmax layer to obtain the vulnerability probability of all paths and
calculate the cross-entropy loss. This paper noted that each model is trained independently,
backpropagating and updating the weights without crossover.

Sensors 2022, 22, 3581 9 of 25

sl
i = wl.C × hl.C

i + wl.R × hl.R
i + wl.RC × hl.RC

i + wl.D × hl.D
i + wl.G × hl.G

i + wl.BG × hl.BG
i ;

1 ≤ i ≤ Ps
(1)

Sg =

|V|
∑

j=1

hg
i

|V|
∑

i=1
hg

i

· hg
i

|V| ; 1 ≤ i, j ≤ |V| (2)

3.4. Integrating Results

One of the goals of this paper is to combine the learning knowledge of multiple
models, improve the accuracy and robustness of a single model, and reduce the probability
of selecting a single model with poor performance. Therefore, this paper proposes an
ensemble method to aggregate the prediction results of multiple models. The structure of
the implemented SCVDIE-Ensemble in this study is shown in Figure 3. SCVDIE-Ensemble
integrates seven mainstream classification models: CNN, RNN, RCNN, DNN, GRU, Bi-
GRU, and Transformer. Using different sub-classifiers, vulnerability patterns can be learned
from different aspects. In the inference phase, the user can input the vectorized data
into the pretrained model to obtain the recognition result. Specifically, this paper inputs
the vectorized code graphs into these seven trained models, and then they output the
transformed path representations Hl and Hg, then calculate the vulnerability scores Sl and
Sg, where Sl is calculated by Equation (3).

Sl =

Ps
∑

j=1

sl
i

Ps
∑

i=1
sl

i

· sl
i

Ps
; 1 ≤ i, j ≤ Ps (3)

Figure 3. SCVDIE-Ensemble.

Sensors 2022, 22, 3581 10 of 25

Finally, this paper summarized the prediction results through the weighted average
method and calculates the sample contract vulnerability score Sen Sen = 0.5× Sl + 0.5× Sg.
If it exceeds the threshold (0.5), the contract corresponding to the graph will be consid-
ered vulnerable.

Integrating multiple methods is technically straightforward, but it is not equivalent to
simple addition, which works quite well in practice [48]. In Section 5, this paper demon-
strates the effectiveness of SCVDIE in reducing the size of training data and empirically
demonstrates that different models can indeed learn different aspects of fragile patterns, as
intuitively expected.

4. Study Design
4.1. Dataset

If given a dataset is small in size, the usual same-dataset train-test scheme would likely
cause the models to overfit. So, this paper spent more than two weeks collecting more than
6000 vulnerable sol files from DEDAUB, which were written by different versions of the
Solidity programing language, and, finally, 21,667 smart contracts were collected, as shown
in Table 2. The dataset in this paper uses seven different types of vulnerabilities, Integer
Underflow, Integer Overflow, Parity Multisig Bug 2, Callstack Depth Attack vulnerability,
Transaction-Ordering Dependence (TOD), Timestamp Dependency, and Re-Entrancy vul-
nerability, scanned using a static parser and marked with a binary value, with 1 indicating
a vulnerability and 0 indicating no vulnerability. To show the baseline dataset in more
detail, we use Figure 4 to show the overall distribution of vulnerabilities on the baseline
dataset. To minimize the problem of model performance degradation due to inconsistent
distribution patterns in the training, validation, and test sets, the three benchmark datasets
were manually made consistent in terms of the percentage of vulnerable contracts. Figure 5
shows how the final number of contracts obtained on the three benchmark datasets. In addi-
tion, the static scanner was unsuccessful in flagging Parity Multisig Bug 2 and, therefore, it
is not listed. On the other hand, this paper uses the Solidity compiler to extract the opcodes
from the source files. Figure 6 illustrates the process of extracting the opcode from the
smart contract source code in this paper. The three text areas from left to right represent the
source code, bytecode, and opcode, respectively. The leftmost text indicates the source code
of the smart contract, which is written in Solidity, a high-level programing language. The
middle string represents the byte code of the contract and consists of a set of hexadecimal
digits. When processing smart contracts, the source code is first compiled into bytecode
and then into opcodes, the most primitive data for this model. Smart contracts are stored in
bytecode form on Ethereum main net but are usually published in source code form; using
the opcode sequence as the analysis data makes our analyzer more flexible for use in a real-
world environment [31]. Since the original opcode of each smart contract is a particularly
long sequence, it would be difficult and inefficient for the model to extract features if it is
fed directly into the embedding model. Therefore, this paper classifies opcodes by function,
as shown in Table 3 (the classification is based on [12], but the trade-offs of opcodes are
very different), and then removes all opcodes of Stack type and removes some opcodes of
Compare type, such as LT, GT, etc.

Finally, the dataset constructed in this paper contains 46 different opcodes for code
embedding. To confirm the validity of the IG, the original operation sequence is used as
the direct embedded data in this paper as the original data for the control experiment.

Sensors 2022, 22, 3581 11 of 25

Table 2. Distribution of raw data of smart contracts.

Version Sol Files Number Version Sol Files Number

0.4.0 92 238 0.4.11 737 4375
0.4.1 7 14 0.4.12 44 291
0.4.2 110 438 0.4.13 404 2348
0.4.3 3 30 0.4.14 31 130
0.4.4 634 2028 0.4.15 270 1652
0.4.5 4 4 0.4.16 650 1913
0.4.6 97 182 0.4.17 169 796
0.4.7 18 34 0.4.18 1393 7910
0.4.8 255 1425 0.4.19 423 2845
0.4.9 83 196 0.4.20 1097 5143
0.4.10 90 276 0.4.21 188 919

Table 3. Operation code category division.

Type Instructions

Calldata&Codedata callcode, calldatacopy, callvalue, calldataload, calldatasize, codecopy, codesize, extcodecopy

Jump&Stop stop, jump, junpi, pc, returndatacopy, return, returndatasize, revert, invalid, selfdestruct

Memory mload, mstore, msize, sstore, call, create, delegatecall, staticcall

Compute Add (x, y), addmod (x, y, m), div (x, y), exp (x, y), mod (x, y), mul (x, y), mulmod (x, y), sdiv (x, y),
signextend (i, x), smod (x, y, m)

Compare Eq (x, y), iszero (x), gt (x, y), lt (x, y), sgt (x, y), slt (x, y)

Block gasprice, gaslimit, difficulty, number, timestamp, coinbase, blockhash (b), keccak256

Transaction caller, gas, origin, address, balance

Bitoperation And (x, y), byte (n, x), not (x), or (x, y), shl (x, y), shr (x, y), sar (x, y), xor (x, y)

Stack dup, log, pop, push, swap

Figure 4. Distribution of each type of vulnerability as a percentage of the overall dataset.

Sensors 2022, 22, 3581 12 of 25

Figure 5. The final number of vulnerability contracts was collected.

Figure 6. Opcode extraction process.

4.2. Model Pretraining
4.2.1. Dataset Split

This work first fully trained the model on 11,667 contracts in the dataset with a rela-
tively large learning rate, and then fine-tuned the pretrained model on 10,000 contracts with
a small learning rate. The inspiration for this design is that a large amount of pretraining
data can grasp a part of vulnerability patterns in advance, so this paper lets the model learn
this part with enough samples first, and then learn other (more complex) parts. In Section 4,
this work demonstrated experimentally that the model successfully utilizes this “pre-train +
fine-tune” model to transfer knowledge learned from pretraining data to unseen real-world
scenarios.

Since n-fold CV can obtain a more reasonable and accurate evaluation of the model,
especially when the dataset is small, the source dataset is first divided into n mutually
exclusive subsets in the pretraining. In each experiment, the ith (1 ≤ i ≤ n) subset was
selected as the test set (indicated by the blue block in Figure 7), while the remaining n− 1
subsets were used to pretrain an NN. Therefore, an NN model was pretrained using the
source dataset and tested in one experiment. Figure 7 illustrates the process of partitioning
the source dataset into mutually exclusive subsets for pretraining an NN model using a
CNN as an example.

Sensors 2022, 22, 3581 13 of 25

Figure 7. Illustration of splitting the source dataset into n-fold for pretraining n NN models.

4.2.2. Training Algorithm

An NN model contains an unknown set of parameters, such as the weights and biases,
which need to be determined during the training process. To correctly identify these
parameters, a loss function CF is defined to measure the difference (or generalization error)
between the model prediction and the associated truth. The parameters θ (weights ω,
and deviations b) are updated utilizing SGD with momentum method to minimize the
generalization error by taking small steps in the direction of the negative gradient of the
loss function. This process is repeated several times, with each iteration performed on a
small number of training samples, until the generalization error is close to zero. The loss
function CF(θ) is defined as:

CFR(θ) = CF(θ) + lψ(ω) =

k
∑

i=1
(ηθ

(
x(i)
)
− y(i))

2

2k
+

l
2

ωTω (4)

where CFR(θ) denotes the loss function, lψ(ω) denotes the regularization term, l denotes
the L2 regularization factor, which weighs the relative contribution of the penalty term
ψ(ω), ηθ(x) denotes the hypothesis function, k denotes the number of samples used in
each iteration, x(i) denotes the ith input sample matrix, and y(i) denotes the corresponding
target value.

The hypothesis function ηθ(x) can be expressed as:

ηθ(x) = b0x0 +
n

∑
j=1

wjxj (5)

where wn and xn denote the nth unknown parameter and its corresponding input variable,
respectively. Note that b0 is a bias and x0 = 1.

The parameter θ can be updated iteratively in the following way:

ϑ =
1
2q

q

∑
i=1

(ηθ

(
x(i)j

)
− y(i)j)

2
(6)

θj+1 = θj − αϑ + γ
(
θj − θj−1

)
− lαθj (7)

where ϑ denotes the exact gradient estimator for sampling the mini-batch of q samples,
and x(i)j denotes the ith input matrix of the mini-batch in the jth iteration. y(i)j denotes the
corresponding target value, α denotes the update step (or initial learning rate), γ denotes
the momentum, which determines the gradient effect of the previous iteration on the
current iteration, and θj denotes the parameter estimate of the jth iteration.

Sensors 2022, 22, 3581 14 of 25

The pseudo-code for the model training process is shown in Algorithm 1.

Algorithm 1: Model training algorithm.

1: Read Data dt
2: Pre-train the model
3: for model in CNN, RNN, . . . , Transformer do
4: for i in 1, 2, 3, 4, 5 do
5: 1. Batch and Shuffle dt by Mini-batch size to Generate D
6: 2. Randomly divide D as the training set Dt, validation set Dv, test set Dtt
7: Initialize ω and b randomly by the Gaussian distribution
8: Reading parameter configuration information
9: for epoch in 1 to 20 do
10: 3. va = matmul(x, ω) # calculate the value before activation
11: 4. ypre = so f tmax(va) # the value after activation
12: 5. CF(θ) = Equation (4) # compute loss
13: 6. grd = sgdwithmomentum(CF(θ), θ)
14: 7. ηθ(x) = Equation (5) # fit the regression curve
15: 8. θj+1 = Equation (7) # update model parameters
16: End
17: End
18: End
19: Fine-Tune.

The time complexity determines the efficiency of the model. If the time complexity
is too high, training a proven model takes a lot of time and not only does it not make
predictions fast enough, it also makes it challenging to fine-tune the parameters. The spatial
complexity is determined by the number of parameters of the model. Because there is a
dimensional catastrophe, the more parameters the model has, the more data are required
to train the model. It is, therefore, necessary to analyze the complexity of the SCVDIE.

For a CNN, the time complexity is expressed as Time ∼ O
(

De
∑

l=1
M2

l · K
2
l · Cl−1 · Cl

)
, Space ∼

O
(

De
∑

l=1
K2

l · Cl−1 · Cl +
De
∑

l=1
M2 · Cl

)
denotes spatial complexity, De indicates network depth,

l denotes the l-th convolutional layer, Cl denotes the number of output channels of the
l-th convolutional layer, i.e., the number of convolutional kernels, the number of input
channels, Cin is the number of output channels of the previous convolutional layer, K
denotes the convolutional kernel size of the l-th convolutional layer, and M2 denotes the
spatial dimensions of a feature. For RNN and GRU, the overall computational complexity
is expressed as O

(
n ·m + n2 + n

)
; here, n is the hidden size and m is the input size. Note

that the actual computational complexity of GRU is less than this value, and the two are
unified in this paper to reduce the complexity of the representation. For DNNs, the time
complexity of the matrix multiplication is O

(
n3); by having the same number of neurons

per layer, then there are O
(
n · n3) = O

(
n4). For transformers that use self-attention, the

complexity of the similarity calculation is O(n · d · n) = O
(
n2d
)
, the complexity of the

so f tmax calculation is O(n), and the weighted sum is O
(
n2d
)
.

SCVDIE provides a profile with training and testing parameters in dictionary format,
providing detailed options and help for optimizing model performance. Users can pretrain
the model directly using the default settings or customize the training process by fine-tuning
the parameter settings and hyperparameters. SCVDIE also provides one-click execution
scripts that allow users to invoke different modules of SCVDIE to accomplish various
tasks by specifying model parameters in the configuration file. For example, the user
can specify the value of the model parameter, which can be train_word2vec, train_Glove,
train_FastText, train_classifier, interactive_predict, save_model, and test, to allow SCVDIE
to train the embedded model, train the classifier, test the classification, save the model for

Sensors 2022, 22, 3581 15 of 25

the tf-severing interface, and single or batch test, respectively. In addition, SCVDIE also
supports users to select different code embedding methods and classifiers through profiles.

4.3. Experimental Configuration

Another goal of the proposed EL approach in this paper is to reduce the expected gen-
eralization error defined by Equation (4). To achieve this goal, seven different NN models
are pretrained in this paper. Table 4 lists the values of several important parameters used to
pretrain the NN model. The pretraining was performed with an SGD with momentum, and
the mini-batch size was set to 128. The initial learning rate of all layers is set to 10−3, and
then the learning rate is adjusted by the warmup strategy [49] to obtain better convergence,
i.e., the learning rate is reduced by a factor of 2 every five training epochs. The weights of
each layer are randomly initialized according to the Gaussian distribution. The Gaussian
distribution has a mean of 0 and a variance of 1. The bias value of each layer is initialized
to 0. To prevent model overfitting, the early stopping method is used to automatically
terminate the model. Specifically, if the root mean square error (RMSE) of the validation
set is greater than or equal to the minimum RMSE of the previous validation set in five
consecutive epochs, then the network training is stopped.

Table 4. List of parameter values used in the NN pretraining and SCVDIE-Ensemble.

Parameter Pretraining Fine Tune

Initial learning rate,
learning_rate 10−3 10−5

Mini-batch size 128 64
Momentum, ρ 0.9 0.9

L2 Regularization, l 0.0001 0.0003
epochs 20 60

Embed Dimension 180 180
Number of convolution kernels 128 128

Dropout Rate 0.3 0.3
Hidden Dimension dh 2048 2048

In the fine-tuning phase, the hyperparameters (i.e., learning rate and epochs) are
chosen based on the performance of the target task on the validation set, and the learning
rate is set to 10−5. The learning rate is chosen to maximize the performance of the target
task with a reasonable number of epochs; epochs are set to 60. Note that the epochs are
carefully chosen rather than set as large or small as possible, and the choice is based on the
fact that the validation loss of all models stops decreasing in five consecutive epochs. The
weights and biases of each layer are set to the values transferred from the corresponding
pretrained model.

In addition, all models in this paper are based on TensorFlow v2.3.0, CUDA v10.1.243,
and trained with an 11GB Nvidia GeForce RTX 1080Ti GPU. It takes 15 min to train
Word2vec. The model takes 8.2 h to train on the pretrained data and 15 h on the fine-
tuned data.

4.4. Performance Evaluation

The performance of the proposed SCVDIE-Ensemble model is evaluated by the method
shown in Figure 8, i.e., the accuracy of the proposed SCVDIE-Ensemble model is evaluated
using a fivefold CV. This paper first divided the complete dataset into 24 mutually exclusive
sub-blocks. Subsequently, five CV experiments were performed. In each CV experiment,
these sub-blocks were randomly disrupted, and then four sub-blocks were randomly
selected for testing, while the remaining sub-blocks were divided into a training set (16 sub-
blocks, 80%) and a validation set (4 sub-blocks, 20%). In the kth CV experiment, the
SCVDIE-Ensemble model was used to estimate the ability of the test set (i.e., from the
corresponding four sub-blocks) samples. After conducting all five CV experiments, the

Sensors 2022, 22, 3581 16 of 25

overall performance of the SCVDIE-Ensemble was evaluated by fuzzy matrix and test
errors Rt

RMS, where the overall test error Rt
RMS is obtained by calculating the mean of the

test error Rk
RMS for five individual CV experiments, which reflects the performance of the

proposed SCVDIE-Ensemble model through Equation (9).

Rk
RMS =

√√√√√Nte.k
∑

i=1
(yk(νk

i)− ŷk(νk
i))

2

Nte.k
(8)

Rt
RMS =

√√√√√√√√
5
∑

k=1

Nte.k
∑

i=1
(yk(νk

i)− ŷk(νk
i))

2

5
∑

k=1
Nte.k

(9)

where Nte.k denotes the number of contracts used for testing in the kth CV experiment.
νk

i denotes the input feature vector of the ith sample in the kth CV experiment, and
yk(νk

i) and ŷk(νk
i) denote the true label and predicted label of the ith sample in the kth

experiment, respectively.

Figure 8. The fivefold CV process. In addition to the test set, the training set in each CV experiment
consists of 80% of the dataset, while the remaining 20% is used to construct the validation set.

4.5. Baselines

One of the main objectives of the proposed deep-learning-based vulnerability detec-
tion tool in this paper is to overcome the drawbacks of rule-based static analyzers. This
paper uses three static tools, Oyente [21], Mythril [22], and Securify [26], as baselines to
demonstrate the improvements brought by SCVDIE-Ensemble. Moreover, this paper com-
pared the different models in Figure 1 by replacing the model architecture. For example,
SCVDIE-Ensemble is compared with pure CNN and pure transformer models. In the
experiments, the input consists of preprocessed graph nodes, since this paper uses node
embedding instead of token embedding.

Sensors 2022, 22, 3581 17 of 25

5. Results and Discussion

This paper evaluated SCVDIE through the following research questions:
RQ1: Vulnerability assessment and classification. Can SCVDIE detect static scan tool

tags without vulnerabilities? How big is the gap with unsupervised learning without static
tool labels?

RQ2: Ensemble strategy evaluation. Is the integrated model an effective method
for combining global and local environments compared to existing methods? Does the
dynamic change of the prediction result weights have any effect on the global result?

5.1. RQ1: Vulnerability Assessment and Classification

First, this paper tests the ability of SCVDIE-Ensemble to identify vulnerable contracts
in a realistic environment. In a real-world environment, there is no way to know in advance
if a contract is vulnerable. This simulates a typical static analysis environment in which
the static analyzer aims to find as many contractual vulnerabilities as possible. The experi-
ments in this paper can be considered as vulnerability assessment and classification, where
SCVDIE classifies a smart contract as vulnerable/invulnerable, and then gives a determi-
nation result by combining different patterns learned from multiple models. In RQ1, this
paper focuses on the comparison between SCVDIE-Ensemble and rule-based static analysis
tools. This discussion is given priority in this paper because one of the goals of this paper is
to improve the overall performance of static analysis tools using a data-driven approach to
further ease the debugging efforts of developers. To comprehensively evaluate the effective-
ness of the method in this paper, SCVDIE is compared with a static analyzer and a variant
of SCVDIE. They are SCVDIE-Ensemble, SCVDIE-CNN, SCVDIE-RNN, SCVDIE-RCNN,
SCVDIE-DNN, SCVDIE-GRU, SCVDIE-Bi-GRU, and SCVDIE-Transformer. As mentioned
in Section 3.1, to incorporate nonvulnerable contracts into SCVDIE, this paper adds an
artificial node to each virtual node with index 0 without any syntactic and semantic infor-
mation. If the sample is vulnerability-free, then yk(νk

i) will be marked as 0, which is the
index of the artificial node; otherwise, yk(νk

i) will be a value consisting of the indexes of
the nodes contained in the vulnerability path.

Tables 5 and 6 show the comparative results of RMSE, accuracy, precision, recall, F1,
and prediction accuracy of different models on the combination of fragile and nonfragile
contracts, respectively. In view of these results, three significant observations can be made
and are listed as follows.

Table 5. Error assessment (%).

Model CV 1 CV 2 CV 3 CV 4 CV 5 Overall

SCVDIE-Ensemble 1.332 1.160 0.948 1.137 2.205 1.419
SCVDIE-CNN 3.132 2.083 8.228 2.045 3.560 5.039
SCVDIE-RNN 9.501 5.495 1.399 6.854 2.086 4.768

SCVDIE-RCNN 2.265 5.170 1.247 5.815 1.104 3.505
SCVDIE-DNN 3.977 1.693 4.668 4.338 6.793 3.860
SCVDIE-GRU 4.703 1.389 12.271 1.105 1.445 4.117

SCVDIE-Bi-GRU 2.117 2.523 8.187 3.355 6.500 3.450
SCVDIE- Transformer 1.043 1.191 3.911 2.764 4.787 3.395

First, based on these results, the performance of the SCVDIE-ENSEMBLE was better
than that of the SCVDIE-CNN, SCVDIE-RNN, SCVDIE-RCNN, SCVDIE-DNN, SCVDIE-
GRU, SCVDIE-Bi-GRU, and SCVDIE-Transformer methods, as shown in Figure 9. Com-
bining the RMSEs and fuzzy matrix results, SCVDIE-Ensemble is also able to make more
accurate vulnerability predictions in a single CV. Although the RMSEs of SCVDIE-Ensemble
do not remain the lowest in every CV, the combined RMSE of SCVDIE-ENSEMBLE outper-
forms other methods, which means that SCVDIE-ENSEMBLE can still maintain a low error
in obtaining high accuracy prediction results.

Sensors 2022, 22, 3581 18 of 25

Table 6. Performance evaluation.

Approach
Performance Indicators

Accuracy (avg.) Precision (avg.) Recall (avg.) F1 (avg.) Prediction Accuracy (avg.)

SCVDIE-Ensemble 95.46% 96.81% 97.26% 97.57% 97.42%
SCVDIE-CNN 92.00% 91.57% 91.50% 88.18% 90.75%
SCVDIE-RNN 92.29% 85.44% 88.68% 91.26% 88.87%

SCVDIE-RCNN 89.34% 90.66% 90.56% 90.54% 90.87%
SCVDIE-DNN 91.46% 90.53% 90.19% 88.70% 87.12%
SCVDIE-GRU 89.11% 88.81% 90.52% 90.78% 90.05%

SCVDIE-Bi-GRU 91.19% 91.88% 91.87% 90.89% 91.19%
SCVDIE-Transformer 96.20% 90.89% 90.88% 89.88% 91.00%

Oyente 72% 38.5% 57.6% 46.1% N/A
Securify 57.9% 39.6% 48.0% 45.6% N/A
Mythril 56.8% 36.5% 49.4% 43.9% N/A

Figure 9. Model performance comparison.

Second, the combined RMSE of SCVDIE-ENSEMBLE is 1.419%, which indicates that
the proposed method can provide more accurate vulnerability information, even if the
training set is relatively small. When compared with other variants of SCVDIE, for exam-
ple, SCVDIE-Transformer (3.395%) and SCVDIE-CNN (5.039%), it can be concluded that
combining different knowledge learned by different neural networks helps to improve the
vulnerability prediction generalization of any single model.

Third, SCVDIE significantly outperformed static analysis tools, reducing the false-
positive and false-negative rates dramatically. The best performing SCVDIE-ENSEMBLE
achieved 97.57% of the evaluated F1 scores, while the rule-based static analysis tool could
only achieve 46.1% accuracy at most. In the contract-level vulnerability detection setup,
the SCVDIE variant has significantly higher precision, recall, and F1 than all baseline static
analysis tools. These results objectively validate the fact that SCVDIE helps to alleviate
developers’ concerns about the FP/FN problem of rule-based static analyzers.

Sensors 2022, 22, 3581 19 of 25

Overall, these results show the effectiveness of the integrated approach when com-
bined with the seven-class model. However, this paper also observed that the single
Transformer model is more accurate than the integrated model in terms of classification
accuracy, although this value is within 1%. This is because the global nature of the Trans-
former model allows it to perform better on more general vulnerability detection tasks, but
this advantage is slightly diminished when combined with models such as CNN.

5.2. RQ2: Aggregate Strategy Evaluation

This paper had demonstrated the effectiveness of the integrated model in global and
local vulnerability assessment. The model is more effective globally compared to a single
model in terms of a comprehensive understanding of global and local factors.

The integration strategy of SCVDIE outperforms existing models that aggregate global
and local contexts. As shown in Table 7, the integrated approach shows a more powerful
learning capability compared to existing models. Compared with the existing models
studied in this paper, its learning capability is more powerful. SCVDIE-ENSEMBLE outper-
forms other single policies in both the vulnerability-only and mixed settings. Specifically,
in the real world, SCVDIE-ENSEMBLE illustrates the versatility of the integration ap-
proach to understand complex real-world vulnerability patterns. This result empirically
suggests that integrating models is a more direct and effective way to combine global and
local knowledge than stacking different models, since stacked models still share learned
knowledge during training, which may prevent them from learning a more diverse set of
vulnerability patterns.

Table 7. Comparison with existing methods.

Model
F1 Score

SCVDIE Common Method

SCVDIE-Ensemble 97.42% 90.51%
SCVDIE-CNN 88.18% 89.57%
SCVDIE-RNN 91.26% 81.54%

SCVDIE-RCNN 90.54% 81.06%
SCVDIE-DNN 88.70% 91.53%
SCVDIE-GRU 90.78% 89.81%

SCVDIE-Bi-GRU 90.89% 82.70%
SCVDIE-Transformer 89.88% 91.90%

5.3. Effect of the Training Dataset Size

The number of smart contracts used in this paper is only the tip of the iceberg
of many contracts, and the relative reliability of the experimental results cannot be
guaranteed without more datasets. To thoroughly investigate the impact of using a
relatively small dataset on the performance of the proposed SCVDIE-ENSEMBLE model,
we dynamically change the number of samples in the original training dataset and
construct 10 sub-training datasets of different sizes. The maximum number of sam-
ples in each training dataset is called nmax , and the range of values is N/20 to 10N,
nmax ∈ {N/20, N/10, N/4, N/3, N/2.5, N/2, N, 2N, 5N, 10N}. When nmax = N, there is
no need to make any adjustments to the original dataset used. To validate the generalization
of the model, each of these 10 training sets used the same test dataset during the testing
phase. Moreover, the SCVDIE-ENSEMBLE model was compared with variants of SCVDIE
trained with datasets of different sizes. As is known, NNs trained from the small-scale
training set may suffer from overfitting problems. Especially when the number of samples
in the training set does not exceed N/2, i.e., nmax ≤ N/2, this phenomenon is easier to
detect. Figure 10 shows the performance changes of different models with the size of the
training set, from which the following conclusions can be drawn.

Sensors 2022, 22, 3581 20 of 25

Figure 10. Comparison of model errors under different size training datasets.

First, when comparing different independent models and ensemble models, it can be
found that the performance of the ensemble model is greatly improved compared to that
of the independent model because different deep neural networks can recognize different
patterns of features. The performance improvement of SCVDIE-ENSEMBLE becomes
obvious as the training data set decreases, which indicates that EL is a powerful tool to
improve vulnerability prediction precision, which further supports the inference made
earlier in this paper. The SCVDIE-ENSEMBLE converged near nmax = N; the number is
more than five times that required for a standalone NN to achieve a satisfactory horizon
of performance. For example, the overall average RMSE of SCVDIE-DNN = 6.854% at
nmax = 5N. With the number of training samples increasing, the performance boost
from SCVDIE-ENSEMBLE diminishes gradually. This is because, when there are enough
training data samples, a single model can also grasp a relatively more comprehensive
feature pattern. In other words, each independent model can achieve similar performance
at the expense of a larger training dataset. In the case of nmax = N, the RMSE metric of
SCVDIE-ENSEMBLE is 2.456%, while each independent model requires a training dataset
5 to 10 times larger than SCVDIE-ENSEMBLE to reduce the error to this level. However,
this requires a greater investment of labor and time costs to obtain larger datasets. Thereby,
in the case of limited time and samples, using EL instead of training individual NNs is a
better method to improve the accuracy of smart contract vulnerability prediction.

Second, SCVDIE-ENSEMBLE has a shorter error range compared to the standalone
NN model. This suggests that more confident vulnerability prediction can be obtained
by the combination of NN and EL than by not using EL. The SCVDIE-ENSEMBLE model
consists of seven different NN models, each of which can be responsible for a different
focus, and more patterns can be learned under the same conditions, which is also consistent
with the first conclusion.

Finally, as mentioned at the beginning of this subsection, training a complex deep
learning model with a small amount of data can lead to overfitting. Although the proposed
SCVDIE-ENSEMBLE model has a complex structure consisting of seven individual NN

Sensors 2022, 22, 3581 21 of 25

models and the training dataset used in this study is relatively small (i.e., nmax = N), the
model is not expected to be overfitted in this paper. The SCVDIE-ENSEMBLE was tested by
comparing the overall test RMSE achieved when trained on a progressively larger dataset
(i.e., nmax = 2N, 5N, 10N) with the RMSE achieved when trained using the original dataset
(i.e., nmax = N). The overall RMSEs converge almost to a horizontal asymptote when
the size of the training dataset increases, which suggests that the overall test RMSEs do
not decrease significantly if more training samples are provided. Therefore, the proposed
SCVDIE-ENSEMBLE model does not appear to be overfitted.

The above conclusions are a preliminary analysis of the experimental results, mainly
for the comparison of SCVDIE-ENSEMBLE with other models, but still lacking in the
analysis of other single models. We will discuss the results more fully and in greater
depth below. The first to say is that the CNN and RNN models, which are closer to the
performance of the integrated model, are more similar. In Figure 10, it can be seen that,
when the dataset is small, the loss value of CNN is greater than RNN, but, when the sample
of the dataset increases, the advantage of RNN disappears and, instead, CNN achieves
good results. This indicates that the CNN requires a higher amount of data than the RNN
in this task. In addition, both CNNs showed better recognition results when the number of
data samples increased rapidly, which can be interpreted as a higher performance of CNNs
than RNNs in this task when there are enough samples. Secondly, this paper also identifies
an interesting phenomenon. In NLP, Transformer has achieved significant performance
gains over other models, yet its performance in this task is mediocre. This paper argues that
this may be because, although the Transformer can handle longer sequences of operations
and retain more information than other single models, and this paper also preprocesses
the sequences to reduce their length, there are still a small number of contract sequences
that are too long, and these overly long sequences lead to a lot of data noise that affects
the Transformer’s performance. In contrast, the rest of the single model deals with data
that are a sequence corresponding to each sub-path, which is relatively much smaller in
length and more conducive to adequate feature extraction. Another object that deserves to
be discussed is the GRU model, due to its relatively worst performance. GRU and Bi-GRU
as optimization models for RNNs can solve the RNN gradient vanishing problem, but
they also bring another potential problem: a large number of parameters, where GRU has
three times more parameters than Navie RNN, which seriously increases the model spatial
complexity. Therefore, this explains the superiority of the RNN model when dealing with
relatively short sequences of sub-path operations.

6. Further Discussions

The specialty of this paper’s approach in dealing with smart contracts. The opcode
of a smart contract is a sequence of specific characters, containing many nonlinear call
relations, similar to the assembly language of a traditional program. In contrast to existing
methods of extracting contract sequences using source code, this paper combines both the
sequence features of individual contracts and the overall features. This has the obvious
advantage of not only extracting features from a single linear sequence of operands, but
also of segmenting them to find potential features in multiple dimensions, which greatly
reduces the length of a single input sequence and effectively reduces the dimensionality of
the data embedding. To this end, we have also built a unique opcode-based IG structure
diagram for the first time, which better represents the relationship between the local and
the whole. Ultimately, the superior performance of the proposed method in this paper was
demonstrated in a quantitative manner using extensive experiments. Both the mean F1
score and the mean prediction accuracy achieved optimal values of 97.57% and 97.42%,
respectively, and achieved lower relative RMSEs on different size datasets.

Findings. EL has been successful in a variety of areas, yet little has been reported on
blockchain and IoT security. To this end, this paper designs a novel EL model and conducts
multiple sets of comparative experiments using real-world smart contracts. The results
confirm that EL can produce better results with fewer data to train. This performance

Sensors 2022, 22, 3581 22 of 25

improvement over popular methods, such as symbol-based execution, is easy to explain.
This is because methods based on symbolic execution face significant challenges, such as
path explosion, which limits the performance of these popular methods. This performance
improvement over a single-model-based approach can be attributed to the fact that different
classification models can specialize in different parts of the dataset. In other words, different
models focus on different vulnerability features, which improves the performance of
SCVDIE while paving the way for less dependence on the dataset for SCVDIE. This is
because every single NN focuses on a different vulnerability feature that the integrated
model can be used to learn more features when the dataset is limited, thus increasing the
utilization of the dataset.

Limitations. Despite these new findings, the following limitations of this work remain.
For example, while SCVDIE can reduce the amount of data required by the model, and
thus reduce the human and time costs required to collect the data, this implementation is
indirect and does not directly address the resources spent on collecting a certain amount
of vulnerability data. In addition, this paper uses binary numbers to indicate whether a
contract contains vulnerabilities and, in the future, will explore how to make the classifi-
cation results more intelligent. For example, exploring how to output separate results for
different vulnerabilities.

7. Conclusions and Future Work

In this study, we proposed innovatively an EL-based approach called Ensemble Learn-
ing Based Smart Contract Vulnerability Prediction (SCVDIE-ENSEMBLE) to predict vul-
nerabilities in Ethereum smart contracts. The proposed SCVDIE-ENSEMBLE method
incorporated multiple NNs, which are CNN, RNN, RCNN, DNN, GRU, Bi-GRU, and Trans-
former. Each NN has its unique role to play, which allows SCVDIE-ENSEMBLE to increase
the efficiency of data utilization while having a more accurate and robust performance
on unseen data. We have also investigated a novel approach to data classification that
underpins a wide range of experiments.

We have proven the performance of SCVDIE-ENSEMBLE with numerous experi-
ments. First, a fivefold CV experiment was conducted on the benchmark dataset for the
seven single models and the overall model integrated by SCVDIE-ENSEMBLE. Quan-
titative experimental results demonstrate that SCVDIE-ENSEMBLE has a smaller error
in classification results. Next, the performance of these eight models and three popular
methods are compared. The average prediction accuracy of SCVDIE-ENSEMBLE was
experimentally demonstrated to be better than other methods. The performance of the
SCVDIE-ENSEMBLE integration strategy is then further demonstrated by comparison with
the general approach. Finally, the contribution of SCVDIE-ENSEMBLE to reducing the
model’s reliance on large datasets, and hence the cost of data collection, is demonstrated in
multiple dimensions by varying the size of the dataset.

We believe this work is an important step toward alleviating the challenges of data
collection and IoT security. For future work, since the SCVDIE-ENSEMBLE model relies on
existing learnable features, as with other NNs, we will focus on breaking this limitation by
combining the underlying NN model with other deep learning methods, such as transfer
learning that can be extended to similar domains.

Author Contributions: Conceptualization, L.Z. and J.W.; methodology, J.W.; software, J.W.; valida-
tion, W.W.; investigation, L.Z. and J.W.; resources, Z.J.; data curation, L.Z. and J.W.; writing—original
draft preparation, J.W. and C.Z.; writing—review and editing, L.Z. and J.W.; visualization, L.Z. and
J.W.; supervision, L.Z. and Z.C.; project administration, L.Z. and H.C. All authors have read and
agreed to the published version of the manuscript.

Funding: This work is sponsored by the National Key Research and Development Program of China
No. 2021YFE0102100. The National Natural Science Foundation of China under grant number No.
62172353. Future Network Scientific Research Fund Project No. FNSRFP-2021-YB-48. Science and
Technology Program of Yangzhou City No. YZU202003 and Six Talent Peaks Project in Jiangsu
Province No. XYDXX-108.

Sensors 2022, 22, 3581 23 of 25

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Self-built datasets were analyzed in this study. The source code has
been made available at https://github.com/yzu-wjl/SCVDIE (accessed on 30 March 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lade, P.; Ghosh, R.; Srinivasan, S. Manufacturing analytics and industrial internet of things. IEEE Intell. Syst. 2017, 32, 74–79.

[CrossRef]
2. Alzubi, O.A.; Alzubi, J.A.; Shankar, K.; Gupta, D. Blockchain and artificial intelligence enabled privacy-preserving medical data

transmission in Internet of Things. Trans. Emerg. Tel. Tech. 2021, 32, e4360–e4374. [CrossRef]
3. Jeon, S.; Lee, G.; Kim, H.; Woo, S.S. SmartConDetect: Highly Accurate Smart Contract Code Vulnerability Detection Mech-

anism using BERT. In Proceedings of the 2021 KDD Workshop on Programming Language Processing, Virtual Conference,
15 August 2021; p. 237102485.

4. Mehar, M.I.; Shier, C.L.; Giambattista, A.; Gong, E.; Fletcher, G.; Sanayhie, R.; Kim, H.M.; Laskowski, M. Understanding a
revolutionary and flawed grand experiment in blockchain: The DAO attack. J. Cases Inf. Technol. JCIT 2019, 21, 19–32. [CrossRef]

5. Palladino, S. The Parity Wallet Hack Explained. OpenZeppelin, 20 July 2017. Available online: https://blog.openzeppelin.com/on-
the-parity-wallet-multisig-hack-405a8c12e8f7/(accessed on 30 March 2022).

6. Jiang, B.; Chen, Y.; Wang, D.; Ashraf, I.; Chan, W.K. WANA: Symbolic Execution of Wasm Bytecode for Extensible Smart Contract
Vulnerability Detection. In Proceedings of the 2021 IEEE 21st International Conference on Software Quality, Reliability and
Security (QRS), Hainan Island, China, 6–10 December 2021; pp. 926–937, ISBN 1665458135.

7. Liu, Y.; Xu, J.; Cui, B. Smart Contract Vulnerability Detection Based on Symbolic Execution Technology. In Communications in
Computer and Information Science, Proceedings of the China Cyber Security Annual Conference, Beijing, China, 20–21 July 2021; Springer:
Berlin/Heidelberg, Germany, 2021; pp. 193–207.

8. Wang, Z.; Wen, B.; Luo, Z.; Liu, S. MAR: A Dynamic Symbol Execution Detection Method for Smart Contract Reentry Vulnerability.
In Communications in Computer and Information Science, Proceedings of the International Conference on Blockchain and Trustworthy
Systems, Guangzhou, China, 5–6 August 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 418–429.

9. Samreen, N.F.; Alalfi, M.H. Smartscan: An approach to detect denial of service vulnerability in ethereum smart contracts.
In Proceedings of the 2021 IEEE/ACM 4th International Workshop on Emerging Trends in Software Engineering for Blockchain
(WETSEB), Madrid, Spain, 31 May 2021; pp. 17–26, ISBN 166544567X.

10. Aidee, N.A.N.; Johar, M.G.M.; Alkawaz, M.H.; Hajamydeen, A.I.; Al-Tamimi, M.S.H. Vulnerability Assessment on Ethereum
Based Smart Contract Applications. In Proceedings of the 2021 IEEE International Conference on Automatic Control & Intelligent
Systems (I2CACIS), Virtual Conference, 26 June 2021; pp. 13–18, ISBN 1665403438.

11. Huang, J.; Zhou, K.; Xiong, A.; Li, D. Smart Contract Vulnerability Detection Model Based on Multi-Task Learning. Sensors 2022,
22, 1829. [CrossRef] [PubMed]

12. Sun, Y.; Gu, L. Attention-based machine learning model for smart contract vulnerability detection. J. Phys. Conf. Ser. 2021, 1820,
12004. [CrossRef]

13. Xu, Y.; Hu, G.; You, L.; Cao, C. A Novel Machine Learning-Based Analysis Model for Smart Contract Vulnerability. Secur. Commun.
Netw. 2021, 2021, 5798033. [CrossRef]

14. Fan, Y.; Shang, S.; Ding, X. Smart Contract Vulnerability Detection Based on Dual Attention Graph Convolutional Network.
In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, Proceedings of the
International Conference on Collaborative Computing: Networking, Applications and Worksharing, Suzhou, China, 16–17 October 2021;
Springer: Berlin/Heidelberg, Germany, 2022; pp. 335–351.

15. Mi, F.; Wang, Z.; Zhao, C.; Guo, J.; Ahmed, F.; Khan, L. VSCL: Automating Vulnerability Detection in Smart Contracts with
Deep Learning. In Proceedings of the 2021 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), Virtual
Conference, 3–6 May 2021; pp. 1–9, ISBN 166543578X.

16. Eshghie, M.; Artho, C.; Gurov, D. Dynamic Vulnerability Detection on Smart Contracts Using Machine Learning. In Proceedings
of the Evaluation and Assessment in Software Engineering (EASE 2021), Trondheim, Norway, 21–23 June 2021; pp. 305–312.

17. Wu, H.; Zhang, Z.; Wang, S.; Lei, Y.; Lin, B.; Qin, Y.; Zhang, H.; Mao, X. Peculiar: Smart Contract Vulnerability Detection Based
on Crucial Data Flow Graph and Pre-training Techniques. In Proceedings of the 2021 IEEE 32nd International Symposium on
Software Reliability Engineering (ISSRE), Wuhan, China, 25–28 October 2021; pp. 378–389.

18. Contract List—Ethereum Contract Library by Dedaub. Available online: https://library.dedaub.com/ (accessed on
30 March 2022).

19. GitHub. yzu-wjl/SCVDIE. Available online: https://github.com/yzu-wjl/SCVDIE (accessed on 30 March 2022).
20. Lin, G.; Xiao, W.; Zhang, J.; Xiang, Y. Deep learning-based vulnerable function detection: A benchmark. In International Conference

on Information and Communications Security; Springer: Berlin/Heidelberg, Germany, 2020; pp. 219–232.

https://github.com/yzu-wjl/SCVDIE
http://doi.org/10.1109/MIS.2017.49
http://doi.org/10.1002/ett.4360
http://doi.org/10.4018/JCIT.2019010102
https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7/
https://blog.openzeppelin.com/on-the-parity-wallet-multisig-hack-405a8c12e8f7/
http://doi.org/10.3390/s22051829
http://www.ncbi.nlm.nih.gov/pubmed/35270976
http://doi.org/10.1088/1742-6596/1820/1/012004
http://doi.org/10.1155/2021/5798033
https://library.dedaub.com/
https://github.com/yzu-wjl/SCVDIE

Sensors 2022, 22, 3581 24 of 25

21. Luu, L.; Chu, D.-H.; Olickel, H.; Saxena, P.; Hobor, A. Making smart contracts smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016; pp. 254–269.

22. GitHub. ConsenSys/Mythril: Security Analysis Tool for EVM Bytecode. Supports Smart Contracts Built for Ethereum, Hedera,
Quorum, Vechain, Roostock, Tron and Other EVM-Compatible Blockchains. Available online: https://github.com/ConsenSys/
mythril (accessed on 30 March 2022).

23. Mossberg, M.; Manzano, F.; Hennenfent, E.; Groce, A.; Grieco, G.; Feist, J.; Brunson, T.; Dinaburg, A. Manticore: A user-friendly
symbolic execution framework for binaries and smart contracts. In Proceedings of the 2019 34th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE), San Diego, CA, USA, 10–15 November 2019; pp. 1186–1189, ISBN 1728125081.

24. Hirai, Y. Formal Verification of Deed Contract in Ethereum Name Service. 2016. Available online: https://yoichihirai.com/deed.
pdf (accessed on 25 March 2022).

25. Kalra, S.; Goel, S.; Dhawan, M.; Sharma, S. Zeus: Analyzing safety of smart contracts. In Proceedings of the Network and
Distributed Systems Security (NDSS) Symposium, San Diego, CA, USA, 18–21 February 2018; pp. 1–12.

26. Tsankov, P.; Dan, A.; Drachsler-Cohen, D.; Gervais, A.; Buenzli, F.; Vechev, M. Securify: Practical security analysis of smart
contracts. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, Toronto, ON, Canada,
15–19 October 2018; pp. 67–82.

27. Liu, Z.; Qian, P.; Wang, X.; Zhu, L.; He, Q.; Ji, S. Smart contract vulnerability detection: From pure neural network to interpretable
graph feature and expert pattern fusion. arXiv 2021, arXiv:2106.09282.

28. Huang, J.; Han, S.; You, W.; Shi, W.; Liang, B.; Wu, J.; Wu, Y. Hunting vulnerable smart contracts via graph embedding based
bytecode matching. IEEE Trans. Inf. Forensics Secur. 2021, 16, 2144–2156. [CrossRef]

29. Narayana, K.L.; Sathiyamurthy, K. Automation and smart materials in detecting smart contracts vulnerabilities in blockchain
using deep learning. Mater. Today Proc. 2021, in press. [CrossRef]

30. Ashizawa, N.; Yanai, N.; Cruz, J.P.; Okamura, S. Eth2Vec: Learning contract-wide code representations for vulnerability detection
on ethereum smart contracts. In Proceedings of the 3rd ACM International Symposium on Blockchain and Secure Critical
Infrastructure, Virtual Event, 7 June 2021; pp. 47–59.

31. Liao, J.-W.; Tsai, T.-T.; He, C.-K.; Tien, C.-W. Soliaudit: Smart contract vulnerability assessment based on machine learning and
fuzz testing. In Proceedings of the 2019 Sixth International Conference on Internet of Things: Systems, Management and Security
(IOTSMS), Granada, Spain, 22–25 October 2019; pp. 458–465, ISBN 1728129494.

32. Gensim: Topic Modelling for Humans. Available online: https://radimrehurek.com/gensim/models/word2vec.html (accessed
on 30 March 2022).

33. Gogineni, A.K.; Swayamjyoti, S.; Sahoo, D.; Sahu, K.K.; Kishore, R. Multi-Class classification of vulnerabilities in Smart Contracts
using AWD-LSTM, with pre-trained encoder inspired from natural language processing. IOP Sci. Notes 2020, 1, 35002. [CrossRef]

34. Polikar, R. Ensemble based systems in decision making. IEEE Circuits Syst. Mag. 2006, 6, 21–45. [CrossRef]
35. Ren, Y.; Zhang, L.; Suganthan, P.N. Ensemble classification and regression-recent developments, applications and future directions.

IEEE Comput. Intell. Mag. 2016, 11, 41–53. [CrossRef]
36. Horowitz, J.L. The bootstrap. In Handbook of Econometrics; Elsevier: Amsterdam, The Netherlands, 2001; pp. 3159–3228,

ISBN 1573-4412.
37. Yu, X.; Lu, Y.; Gao, Q. Pipeline image diagnosis algorithm based on neural immune ensemble learning. Int. J. Press. Vessel. Pip.

2021, 189, 104249. [CrossRef]
38. Yang, X.; Zhang, Y.; Lv, W.; Wang, D. Image recognition of wind turbine blade damage based on a deep learning model with

transfer learning and an ensemble learning classifier. Renew. Energy 2021, 163, 386–397. [CrossRef]
39. Han, D.; Ding, L. Financial Risk Prediction of Manufacturing Enterprises Based on SMOTE-Ensemble Learning. In Proceedings

of the 2021 International Conference on Management Science and Software Engineering (ICMSSE), IEEE Computer Society,
Chengdu, China, 9–11 July 2021; pp. 39–43, ISBN 1665425652.

40. Lolić, I.; Sorić, P.; Logarušić, M. Economic policy uncertainty index meets ensemble learning. Comput. Econ. 2021. [CrossRef]
[PubMed]

41. Zhang, Y.; Wang, X.; Han, N.; Zhao, R. Ensemble learning based postpartum hemorrhage diagnosis for 5g remote healthcare.
IEEE Access 2021, 9, 18538–18548. [CrossRef]

42. Chen, Y.; Li, D.; Zhang, X.; Jin, J.; Shen, Y. Computer aided diagnosis of thyroid nodules based on the devised small-datasets
multi-view ensemble learning. Med. Image Anal. 2021, 67, 101819. [CrossRef] [PubMed]

43. Ahakonye, L.A.C.; Amaizu, G.C.; Nwakanma, C.I.; Lee, J.M.; Kim, D.-S. Enhanced Vulnerability Detection in SCADA Systems
using Hyper-Parameter-Tuned Ensemble Learning. In Proceedings of the 2021 International Conference on Information and
Communication Technology Convergence (ICTC), Jeju Island, South Korea, 20–22 October 2021; pp. 458–461, ISBN 1665423838.

44. Gowtham, M.; Pramod, H.B. Semantic Query-Featured Ensemble Learning Model for SQL-Injection Attack Detection in IoT-
Ecosystems. IEEE Trans. Reliab. 2021, 99, 3124331.

45. Pennington, J. GloVe: Global Vectors for Word Representation. Available online: https://nlp.stanford.edu/projects/glove/
(accessed on 30 March 2022).

46. GitHub. facebookresearch/fastText: Library for Fast Text Representation and Classification. Available online: https://github.
com/facebookresearch/fastText (accessed on 30 March 2022).

https://github.com/ConsenSys/mythril
https://github.com/ConsenSys/mythril
https://yoichihirai.com/deed.pdf
https://yoichihirai.com/deed.pdf
http://doi.org/10.1109/TIFS.2021.3050051
http://doi.org/10.1016/j.matpr.2021.04.125
https://radimrehurek.com/gensim/models/word2vec.html
http://doi.org/10.1088/2633-1357/abcd29
http://doi.org/10.1109/MCAS.2006.1688199
http://doi.org/10.1109/MCI.2015.2471235
http://doi.org/10.1016/j.ijpvp.2020.104249
http://doi.org/10.1016/j.renene.2020.08.125
http://doi.org/10.1007/s10614-021-10153-2
http://www.ncbi.nlm.nih.gov/pubmed/34305322
http://doi.org/10.1109/ACCESS.2021.3051215
http://doi.org/10.1016/j.media.2020.101819
http://www.ncbi.nlm.nih.gov/pubmed/33049580
https://nlp.stanford.edu/projects/glove/
https://github.com/facebookresearch/fastText
https://github.com/facebookresearch/fastText

Sensors 2022, 22, 3581 25 of 25

47. GitHub. google-research/bert: TensorFlow Code and Pre-Trained Models for BERT. Available online: https://github.com/
google-research/bert (accessed on 30 March 2022).

48. Ding, Y.; Suneja, S.; Zheng, Y.; Laredo, J.; Morari, A.; Kaiser, G.; Ray, B. VELVET: A novel ensemble learning approach to
automatically locate VulnErable sTatements. arXiv 2021, arXiv:2112.10893.

49. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

https://github.com/google-research/bert
https://github.com/google-research/bert

	Introduction
	Related Work
	Conventional Methods
	Machine Learning
	Ensemble Learning

	Methodology
	Overall Architecture
	Building Vectorized IGs
	Determine the Same (Co-) Present Relationship
	Building Graph
	Graph Vectorization

	Identifying Vulnerable Paths with a Single Model
	Integrating Results

	Study Design
	Dataset
	Model Pretraining
	Dataset Split
	Training Algorithm

	Experimental Configuration
	Performance Evaluation
	Baselines

	Results and Discussion
	RQ1: Vulnerability Assessment and Classification
	RQ2: Aggregate Strategy Evaluation
	Effect of the Training Dataset Size

	Further Discussions
	Conclusions and Future Work
	References

