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Abstract: Driving under the influence of alcohol is a widespread phenomenon in the US where it is
considered a major cause of fatal accidents. In this research, we present Virtual Breathalyzer, a novel
approach for detecting intoxication from the measurements obtained by the sensors of smartphones
and wrist-worn devices. We formalize the problem of intoxication detection as the supervised
machine learning task of binary classification (drunk or sober). In order to evaluate our approach, we
conducted a field experiment and collected 60 free gait samples from 30 patrons of three bars using a
Microsoft Band and Samsung Galaxy S4. We validated our results against an admissible breathalyzer
used by the police. A system based on this concept successfully detected intoxication and achieved
the following results: 0.97 AUC and 0.04 FPR, given a fixed TPR of 1.0. Our approach can be used
to analyze the free gait of drinkers when they walk from the car to the bar and vice versa, using
wearable devices which are ubiquitous and more widespread than admissible breathalyzers. This
approach can be utilized to alert people, or even a connected car, and prevent people from driving
under the influence of alcohol.

Keywords: intoxication detection; wearable devices

1. Introduction

In 2013, a death from a motor vehicle accident caused by an alcohol impaired driver
occurred every 51 min, a tragic statistic that represents more than 30% of all US traffic-
related deaths that year [1]. The high rate of fatal accidents resulting from “driving under
the influence” (DUI) reflects the devastating effects of alcohol consumption on driving (e.g.,
reduced coordination, difficulty steering, and reduced ability to maintain lane position and
brake appropriately).

Given the potential consequences of drunk driving, there would be value in an in-
toxication detection method that provides immediate results and is non-invasive/easy to
administer without the need for expensive, specialised equipment. Currently, intoxication
can be detected via a blood or breath test, such as the breath alcohol concentration (BrAC)
test, which measures the weight of alcohol present within a certain volume of breath [2].
This test is conducted with a breathalyzer device [3] and uses an individual’s breath as a
specimen/sample. However, these options are not practical for an individual interested in
checking their own level of intoxication, as such tests can only be performed in dedicated
labs or require the use of specialized equipment that may require prior calibration and
ongoing maintenance. As a result, detecting intoxication based on ubiquitous devices is a
scientific gap, and there is a need for a different type of test based on such devices that can
be applied by an individual in real time.

In this paper, we present Virtual Breathalyzer, a new approach for the detection of
intoxication based on motion sensors of smartphones and wrist-worn devices. It is a known
fact that alcohol consumption causes changes in people’s movements. We hypothesize that
these changes can be measured using the motion sensors of smartphones and wrist-worn
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devices in order to detect intoxication with a trained machine learning model. In order to
assess the performance of our suggested approach, we conducted a field experiment in
which we collected 60 free gait samples from patrons of three bars, using a smartphone
(Samsung Galaxy S4) and wrist-worn device (Microsoft Band), and labeled the data based
on the results of an admissible breathalyzer used by the police. We trained machine learning
models to predict if an individual is intoxicated based on their free gait and analyzed
the performance of our approach with different BrAC thresholds of intoxication and
combinations of features/device sensors. We show that data obtained from a smartphone
and wrist-worn device from eight seconds of movement are sufficient to detect intoxication
(obtaining an AUC of 0.97).

In this paper, we make the following contributions: (1) We show that the motion
sensors of smartphones and widely used wrist-worn devices can be used to identify the
physiological indicators that imply intoxication (in terms of body movement) based on free
gait and may provide an alternative to traditional ad hoc sensors and tests that focus on
breath or blood samples. (2) We formalize the task of intoxication detection as a supervised
machine learning task based on body movement measurements derived from the sensors
of smartphones and wrist-worn devices.

We used an actual breathalyzer (as used by police departments) in order to label our
data and train our models to evaluate our results.

The remainder of this paper is structured as follows: In Section 2, we review related
works, and in Section 3, we present the proposed approach. In Section 4, we present the
experiment, methodology, and ethics. In Section 5 we describe the data processing method,
and we present our evaluation and results in Section 6. Finally, in Sections 7 and 8, we
conclude the paper and present future work directions, respectively.

2. Related Work

In this section, we review related work in the fields of gait analysis, context/activity
detection using commercial wearable devices, and intoxication detection.

2.1. Gait Analysis

Gait analysis has been studied for many years, even before the era of wearable devices.
A decade ago, researchers were already using ad hoc sensors specially designed for research
purposes. Mantyjarvi et al. [4] analyzed data collected from worn accelerometer devices
in order to identify subjects by their gait, Gafurov et al. [5] used a worn accelerometer for
authentication and identification based on the subjects’ gait, and Lu et al. [6] showed that
authentication from gait is also possible from smartphone sensors. Aminian et al. [7] ana-
lyzed accelerometer and gyroscope measurements from ad hoc sensors that they designed
to be worn on a shoe in order to explore gait. Xu et al. [8] presented a novel system for
gait analysis using smartphones and three sensors located within shoe insoles to provide
remote analysis of the user’s gait.

2.2. Context and Activity Detection Using Commercial Wearable Devices

In the area of activity detection, Thomaz et al. [9] used smartwatch motion sensors
in order to detect eating instances. Ranjan et al. [10] analyzed smartwatch sensors during
specific home-based activities (such as turning on a light switch) to identify subjects based
on hand gestures. In the field of emotion detection, Hernandez et al. [11] analyzed head
movement from Google Glass motion sensors in order to detect stress, fear, and calm.
Hernandez et al. [12] analyzed smartwatch motion sensors to estimate heart and breathing
rates. Mazilu et al. [13] analyzed wrist movement to detect gait freezing in Parkinson’s
disease using the data sensors of smart watches and wristbands, while Gabus et al. [14]
and Casilari et al. [15] used a smartwatch in order to detect falls.
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2.3. Intoxication Detection

Despite the importance of detecting intoxication, there has been a limited amount of
research that addresses the domain of intoxication detection using ubiquitous technology.
A recent study [16] showed that intoxication can be detected via a dedicated smartphone
application that challenges the subject with various tasks, such as typing, sweeping, and
other reaction tests. However this method is not passive and can be considered a software
alternative to a breathalyzer, since it suffers from another shortcoming of the breathalyzer:
its effectiveness is dependent on the cooperativeness of the subject. Kao et al. [17] analyzed
the accelerometer data collected from subjects’ smartphones and compared the step times
and gait stretch of sober and intoxicated subjects. This research was limited in scope in that
it only used three subjects. In addition, it was not aimed at detecting whether a person was
intoxicated based on data collected from the device; instead, the study compared differences
in the gait of intoxicated and sober subjects. Arnold et al. [18] investigated whether a
smartphone user’s alcohol intoxication level (how many drinks they had) can be inferred
from their gait. The authors used time and frequency domain features extracted from the
device’s accelerometer to classify the number of drinks a subject consumed based on the
following ranges: 0–2 drinks (sober), 3–6 drinks (tipsy), or 6+ drinks (drunk). However,
their methodology is not admissible, because some people do not become intoxicated
from two drinks while others do, as this depends on physiological (e.g., the subject’s
weight) and non-physiological factors (e.g., whether the subject has eaten while drinking).
Several studies have utilized ubiquitous technology to detect intoxication based on driving
patterns. Dai et al. [19] and Goswami et al. [20] used mobile phone sensors and pattern
recognition techniques to classify drunk drivers based on driving patterns. Various other
approaches for intoxication detection have also been investigated. Thien et al. [21] and
Wilson et al. [22] attempted to simulate the HGN (horizontal gaze nystagmus) test [23] in
order to detect intoxication using a camera (i.e., smartphone camera) and computer vision
methods. Hossain et al. [24] used machine learning algorithms to identify tweets sent
under the influence of alcohol (based on text). None of the abovementioned methods were
validated against an admissible breathalyzer, and the authors did not test the accuracy of
the methods on a large number of subjects.

3. Proposed Approach

In this section, we describe Virtual Breathalyzer, an approach for detecting intoxicated
users based on free gait data obtained from a smartphone and wrist-worn device.

The short-term effects of alcohol consumption on subjects range from a decrease in
anxiety and motor skills and euphoria at lower doses to intoxication (drunkenness), stupor,
unconsciousness, anterograde amnesia (memory “blackouts”), and central nervous system
depression at higher doses [1]. As a result, various field sobriety tests are administered by
police officers as a preliminary step before a subject takes a BrAC test using a breathalyzer.

One of the most well-known field sobriety tests administered by police departments
in order to detect whether a person is intoxicated is the walk and turn test in which a police
officer asks a subject to take nine steps, heel-to-toe, along a straight line; turn on one foot;
and return by taking nine steps in the opposite direction. During the test, the officer looks
for seven indicators of impairment. If the driver exhibits two or more of the indicators
during the test, there is a significant likelihood that the subject is intoxicated (according to
the US National Highway Traffic Safety Administration/NHTSA [25]).

Based on the effectiveness of the walk and turn test, we suggest the following approach:
detecting whether a subject is intoxicated by analyzing differences in his/her free gait. We
propose identifying the physiological indicators that imply drunkenness (in terms of body
movement) based on the difference between two data samples of free gait. Each sample
consists of motion sensor data obtained via devices that are carried/worn by an individual.

We believe that smartphones and wrist-worn devices can be used for the purpose of
intoxication detection based on free gait because (1) smartphones and wrist-worn devices
are heavily adopted, with wrist-worn devices being the most commonly used and popular
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type of wearable device; according to a 2014 survey, one out of every six people owned
a wrist-worn device [26], and a 2019 survey showed that their adoption rate increased,
with 56% of people owning a wrist-worn device [27]; (2) smartphones and wrist-worn
devices contain motion sensors capable of measuring free gait; and (3) most people have
their smartphones and wrist-worn devices on them all the time (according to a recent
survey [27]).

The first data sample consists of a standard free gait sample recorded by an individual
during a time period in which they are likely to be sober (e.g., during the morning or
afternoon). The second sample is recorded during the time of interest (e.g., the time the
individual is believed to be intoxicated).

Using a smartphone and wrist-worn device, the free gait of an individual can be recorded
both while they are sober and when they are believed to be intoxicated. By identifying
features of the individual’s free gait and determining whether the differences between these
features when sober and when believed to be intoxicated exceed a predetermined threshold,
a trained machine learning model can determine whether the individual is intoxicated.

Algorithm 1 presents a high-level solution for detecting intoxication based on the
Virtual Breathalyzer approach. It receives four inputs: a trained intoxication detection
Model; two samples of free gait: (1) when the user is sober (sSober) and (2) when the user is
believed to be intoxicated (sSuspect); and a learned Threshold. First, features are extracted
for each sample of free gait for fSuspect and fSober (lines 7–8). Then, the difference between
the features fSuspect and fSober is calculated (lines 10–12). The difference is then classified
using a trained intoxication detection Model (line 8). Finally, the result is returned according
to a learned Threshold.

Algorithm 1 Is Intoxicated?

1: Input: Model—Intoxication Detection Model
2: Input: sSober—Gait Measurements while Sober
3: Input: sSuspect—Suspected Gait Measurements
4: Input: Threshold—Confidence threshold
5: Output: Boolean—True/False for intoxication
6: procedure ISINTOXICATED?
7: fSober [] = features (sSober)
8: fSuspect [] = features (sSuspect)
9: n = length(fSober)

10: difference [] = new array[n]
11: for (i = 0; i < n ; i++) do
12: difference [i] = fSuspect[i] − fSober[i]
13: Probability = Model.classi f y(di f f erence)
14: return(Probability > Threshold)

4. The Experiment and Methodology

In this section, we describe the experiments we conducted in order to evaluate whether
data from a smartphone and a wrist-worn device can be used to detect if the device
owner is intoxicated. We present the experimental framework we developed, the ethical
considerations we had to take into account, the experimental protocol, and the methodology.

4.1. Experimental Framework

Most commercial wrist-worn devices are equipped with motion sensors and include
an SDK to allow users to program them easily. We chose to use the Microsoft Band as a
wrist-worn device in our experiment, because: (1) its SDK has clear documentation, (2) it
is easy to program the device, and (3) the device has both accelerometer and gyroscope
sensors, and each sample is provided over three axes (x, y, and z).
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We paired the Microsoft Band to a smartphone (Samsung Galaxy S4) using Bluetooth
communication. We used the Microsoft Band’s SDK to develop a dedicated application
for the smartphone that sampled motion sensor data from the wrist-worn device and
smartphone. The motion sensor data was sampled from the Samsung Galaxy S4 at 180 Hz
and the Microsoft Band at 62 Hz and recorded as a time series in nanoseconds.

The application generated a beep sound that was played to the subject (via head-
phones) and triggered the subject to start walking (while wearing the devices) until the
application generated a second beep 16 s later. In order to measure the subject’s gait, the
application sampled the sensors for eight seconds, a time period that started on the sixth
second of the experiment and continued until the fourteenth second. The stages of the
experiment are presented in Figure 1.

Figure 1. Experimental protocol: a sample of eight seconds of motion sensor data obtained when the
subject was walking.

We decided that using eight seconds of movement was the optimal way to conduct
the experiment and obtain the samples for the following reasons: (1) intoxication affects a
subject’s gait and balance; (2) the user may be parked a few meters away from the bar so
the walk from the bar to the car may be short; (3) gait is probably the best way to ensure
that the devices are carried/worn by the user instead of sitting on a desk or table (in the
context of a bar); and (4) free gait measurements can be obtained from the user passively
by detecting walking instances (from smartphone/wrist-worn device sensors such as the
accelerometer, gyroscope, and GPS).

In addition, we purchased a Drager Alcotest 5510 breathalyzer (https://www.draeger.
com/en_me/Products/Alcotest-5510, accessed on 18 April 2022) in order to obtain BrAC
samples. This breathalyzer outputs results in micrograms of alcohol per liter of breath.
We chose this type of breathalyzer, because it is a professional breathalyzer used by police
departments around the world.

4.2. Ethical Considerations

The experiment involved collecting data from intoxicated and sober subjects, which
was approved by the institutional review board (IRB), subject to the following precautions:

(1) Only individuals that went to a bar in order to drink of their own accord could
participate in the experiment; in this way, the onus for any consequences resulting
from such drinking would be on the subjects.

(2) Only individuals that did not drive to the bar and would not drive back from the bar
could participate in the experiment.

(3) Anonymization was applied to the data. At the beginning of the experiment, a random
user ID number was assigned to each subject, and this user ID number served as
the identifier of the subject, rather than his/her actual identifying information. The
mapping between the experiment’s user ID numbers and the identity of the subjects

https://www.draeger.com/en_me/Products/Alcotest-5510
https://www.draeger.com/en_me/Products/Alcotest-5510
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was stored in a hard copy document that was kept in a safe box; at the end of the
experiment, we destroyed this document.

(4) During the experiment, the data collected were stored encrypted in the local storage
of the smartphone (which was not connected to the Internet during the experiment).
At the end of the experiment, the data was copied to a local server (i.e., within the
institutional network), which was not connected to the Internet. Only anonymized
information of the subjects was kept for further analysis.

(5) Subjects were paid for their participation in the study (each subject received the
equivalent of 15 USD in local currency).

4.3. Methodology

In order to sample as many people as possible, our experiment took place on three
evenings at three bars that offer an ”all you can drink” option (we visited one bar each
evening). The Google Maps locations of the bars are provided (https://www.google.
com/maps/place/Shlomo+Ibn+Gabirol+St+13,+Tel+Aviv-Yafo/, accessed on 18 April
2022), (https://www.google.com/maps/place/Shlomo+Ibn+Gabirol+St+17,+Tel+Aviv-
Yafo/, accessed on 18 April 2022), (https://www.google.com/maps/place/Shlomo+Ibn+
Gabirol+St+33,+Tel+Aviv-Yafo/, accessed on 18 April 2022). We waited for people to arrive
at the bars, and just before they ordered their first drink, we asked them to participate in
our research (participation entailed providing a gait sample during two brief experimental
sessions with a smartphone and wrist-worn device, as well as providing two breath samples
a few seconds before the sessions started). We explained that they would receive the
equivalent of 15 USD in local currency for their participation. We also told the subjects
that they would be compensated even if they chose not to drink at all, so drinking was not
obligatory. Each subject signed a document stating that he/she came to the bar in order to
drink of his/her own accord and that he/she did not drive to the bar and would not drive
from the bar (as we were instructed by the IRB). The breathalyzer was calibrated at the
beginning of each evening according to the manufacturer’s instructions.

The experiment was conducted in two sessions. The first session took place before
the subjects had their first drink. The second session took place at least 15 min after the
subject’s last drink, just before they intended to leave the bar. We consulted with police
authorities regarding the breathalyzer test, and they told us to wait 15 min after the subject
had their last drink in order to obtain an accurate BrAC specimen. During each session,
our subjects provided us with a gait sample and a BrAC specimen. Their gait was recorded
using the application that we developed (described at the beginning of this section). The
BrAC specimen was measured with the breathalyzer; the result was used to label each
gait sample.

Our subjects were outfitted with the devices as follows: they were asked to wear the
Microsoft Band on their left or right wrist (at their discretion) and carry a smartphone in a
rear pocket (as can be seen in Figure 2).

Each subject also wore headphones that were used to hear the beeps used to indicate
when they should start/stop walking. Thirty subjects participated in our study, each of
whom was instructed to walk (while wearing the devices) in any direction they wished until
they heard a beep in the headphones, as can be seen in Figure 1. Each subject provided two
free gait samples, one before and one after drinking, resulting in the 60 free gait samples
collected in the field experiment.

https://www.google.com/maps/place/Shlomo+Ibn+Gabirol+St+13,+Tel+Aviv-Yafo/
https://www.google.com/maps/place/Shlomo+Ibn+Gabirol+St+13,+Tel+Aviv-Yafo/
https://www.google.com/maps/place/Shlomo+Ibn+Gabirol+St+17,+Tel+Aviv-Yafo/
https://www.google.com/maps/place/Shlomo+Ibn+Gabirol+St+17,+Tel+Aviv-Yafo/
https://www.google.com/maps/place/Shlomo+Ibn+Gabirol+St+33,+Tel+Aviv-Yafo/
https://www.google.com/maps/place/Shlomo+Ibn+Gabirol+St+33,+Tel+Aviv-Yafo/
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Figure 2. A subject outfitted with a Microsoft Band and Samsung Galaxy S4.

5. Processing the Data

In the following section, we describe the extracted features and the process of creating
the dataset.

5.1. Feature Engineering

Differences in walking caused by intoxication are expressed as difficulty walking in a
straight line and maintaining balance, and swaying. These indicators appear even with
the consumption of a small amount of alcohol and can be detected by police officers in the
field sobriety test (walk and turn test) without a dedicated device. The walk and turn test
is usually performed by officers before a breathalyzer test in order to save the long process
of obtaining a breath sample from individuals that are not shown to be intoxicated based
on the field sobriety test.

Since we used data obtained from motion sensors, we extracted features that can
be informative as a means of detecting the abovementioned gait differences. The first
type of features that we used are features from the spectrum domain. Previous studies
demonstrated the effectiveness of extracting such features from motion sensors [4,12]. We
applied a fast Fourier transform (FFT), and extracted features that represent the distribution
of the power of the signals across the spectrum domain by taking the average power for
four ranges in the spectrum. Such features may indicate physiological changes resulting
from alcohol consumption that are associated with reduced frequency of movement as a
result of difficulty in maintaining balance while walking. We extracted four features for
each axis (x, y, z), each device (smartphone and wrist-worn device), and each device sensor
(gyroscope and accelerometer). In total, we extracted 48 such features.

The second type of features that we used are statistical features. Previous studies
demonstrated the effectiveness of extracting such features from motion sensors [6,9]. We
extracted five features that represent high-level information about the signals. Such features
may indicate physiological changes associated with intoxication, such as decreased average
acceleration as a result of difficulty maintaining balance. We extracted features for each
axis, each device, and each device sensor. In total, we extracted 60 such features.
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The third type of features used were histogram features. We presented the signals as
histograms, as done in previous studies [28,29]. We extracted a histogram that represents
the distribution of the values of the signals across the time domain between the minimum
and maximum values. Such features may indicate differences in the patterns of movement
(and specifically, the distribution of the movement) as a result of the abovementioned
indicators. We extracted six features for each axis, each device, and each device sensor. In
total, we extracted 72 such features.

Finally, we extracted known gait features that have been shown to yield good results
in previous studies [30,31]. We extracted four features (zero crossing rate, mean crossing
rate, median, and RMS). These features may indicate differences in the characteristics of a
person’s gait that are the result of difficulty walking. We extracted features for each axis,
each device, and each device sensor. In total, we extracted 48 such features.

In total, 228 features were extracted and utilized for our method.

5.2. Creating the Dataset

As mentioned in Section 4, each subject contributed two breath specimens and gait
samples (obtained in two sessions—before and after drinking). Each gait sample is com-
prised of sensor readings (measurements) obtained from a smartphone and wrist-worn
device. The accelerometer and gyroscope were sampled from the smartphone and wrist-
worn device.

Given person p and his/her two gait samples: s-before (measurement taken before
alcohol consumption) and s-after (measurement taken after alcohol consumption), we
processed the samples as follows:

(1) Feature Extraction—We extracted two feature vectors: the f-before vector (extracted
from s-before) and the f-after vector (extracted from s-after).

(2) Difference Calculation—We calculated a new feature vector called the f-difference.
These features represent the difference (for each feature) between the f-after and
f-before values. The difference signifies the effects of alcohol consumption on the
subject’s movement and is calculated by subtracting each of the features in f-before
from its correlative feature in f-after.

(3) Labeling—We labeled the sample of each subject as intoxicated/sober according to
the result of the professional breathalyzer for known BrAC thresholds.

The dataset creation process resulted in 30 labeled instances extracted from 30 users,
representing the differences between the extracted features before and after drinking. We
used these data to train supervised machine learning models for intoxication detection. We
analyzed the data as a classification task, with the goal of determining whether a person is
intoxicated or sober according to known BrAC thresholds as measured using a breathalyzer.
More precisely, we aimed to train a model that determines whether a person is intoxicated
or not using differences in the subject’s gait features. We chose to classify our instances
according to three common BrAC thresholds: 220, 240, and 380. These BrAC thresholds
are commonly used by countries around the world (see Table 1). We consider an instance
labeled by a breathalyzer result (BrAC) to be sober if its value is less than the threshold and
intoxicated if its value exceeds the threshold.

Table 1. BrAC thresholds for intoxication around the world.

BrAC Threshold Countries

220 Scotland, Finland, Hong Kong

240 Slovenia, South Africa, Israel

380 Malawi, Namibia, Swaziland
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The breakdown of the subject’s sober/drunk states according to the common BrAC
thresholds 220, 240, and 380 is presented in Figure 3. At the lower BrAC thresholds of
alcohol concentration (220, 240), the data is distributed such that 20–33% of the total number
of subjects were considered intoxicated. At the highest threshold (380), 10% of the subjects
were considered intoxicated.

Figure 3. A breakdown of the subjects’ state (sober/drunk) at various BrAC levels.

6. Evaluation

In this section, we describe the algorithms used and the evaluation protocol. In
addition, we report the performance of the intoxication detection method specified by
Algorithm 1 using the models that we trained.

6.1. Algorithms & Evaluation Protocol

Five different machine learning models were evaluated to allow for a versatile yet
comprehensive representation of the model’s performance. The first model that we eval-
uated was Naive Bayes which belongs to a family of simple probabilistic classifiers. The
second model evaluated was Logistic Regression. This model is able to obtain good results
in cases where the two classes can be adequately separated using a linear function. The
third model used was Support Vector Machines which is used to identify the maximum
margin hyperplane that can separate classes. Finally, we evaluated two ensemble-based
classifiers: Gradient Boosting Machine (GBM) and AdaBoost. GBM trains a sequence of
trees where each successive tree aims to predict the pseudo-residuals of the preceding
trees. This method allowed us to combine a large number of classification trees with a low
learning rate. AdaBoost trains a set of weak learners (decision trees) and combines them
into a weighted sum that represents the final outcome.

Since our data is based on samples from 30 subjects, we could utilize the leave-
one-user-out protocol, i.e., the learning process was repeated 30 times, and in each test,
29 subjects were used as a training set, and one subject was used as a test set to evaluate
the predictive performance of the method. The leave-one-user-out protocol allowed us to
evaluate the performance of the suggested method by utilizing the entire set of instances
in the data for training and evaluation. We report the following metrics: area under the
receiver operating characteristic curve (AUC), false positive rate (FPR), and true positive
rate (TPR). The results that we report in this section are the average of 30 models that were
trained and evaluated on the dataset for each task.
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6.2. Results

We use Algorithm 1 in order to evaluate the following:

(1) our method’s performance according to various BrAC thresholds;
(2) our method’s performance when using various detection policies; and
(3) the importance of each device, sensor, and set of features in terms of the method’s

performance.

6.2.1. Performance with Various BrAC Thresholds (220, 240, 380 BrAC)

ROC/AUC Results
We start by assessing the performance of the intoxication detection method from data

obtained from a smartphone and a wrist-worn device. Table 2 presents the AUC results
for each of the classification models for BrAC thresholds of 220, 240, and 380. As can be
seen, the GBM and AdaBoost classifiers yielded high accuracy rates for these thresholds.
Figures 4 and 5 present the ROC curves for the AdaBoost and Gradient Boosting classifiers.

Table 2. AUC of classification algorithms: AdaBoost, Naive Bayes (NB), Linear Regression (LR),
Support Vector Machines (SVM), and Gradient Boosting (GB) for BrAC thresholds of 220, 240, and 380.

Thresholds

220 240 380

AdaBoost 0.945 0.979 0.500

GB 0.915 0.952 0.926

LR 0.560 0.577 0.457

NB 0.290 0.196 0.414

SVM 0.500 0.500 0.500

Figure 4. ROC curve of the Gradient Boosting classifier for BrAC thresholds of 220, 240, and 380 from
data that was obtained from a smartphone and wrist-worn device.
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Figure 5. ROC curve of the AdaBoost classifier for BrAC thresholds of 220, 240, and 380 from data
that was obtained from a smartphone and wrist-worn device.

Classification Accuracy

We also analyzed the classifiers’ decisions. The confusion matrices for the AdaBoost
and Gradient Boosting classifiers for BrAC thresholds of 220, 240, and 380 are presented in
Tables 3 and 4. As can be seen, for the threshold of 380 BrAC every subject is classified as
sober, demonstrating a difficulty with detecting intoxication for this BrAC threshold. This
can be explained by the highly imbalanced dataset, with most subjects (90%) labeled as
sober due to the high BrAC threshold.

Table 3. Confusion matrices of the Gradient Boosting classifier for BrAC thresholds of 220, 240, and 380.

Predicted

220 240 380

Drunk Sober Drunk Sober Drunk Sober

Drunk 6 4 9 0 0 3

Sober 1 19 2 19 0 27

Table 4. Confusion matrices of the AdaBoost classifier for BrAC thresholds of 220, 240, and 380.

Predicted

220 240 380

Drunk Sober Drunk Sober Drunk Sober

Drunk 8 2 9 0 0 3

Sober 3 17 1 20 0 27

6.2.2. Performance with Various Detection Policies

Here, we set out to evaluate the performance of the intoxication detection method
according to two policies. Tables 3 and 4 present misclassifications (FNR and FPR) for
BrAC thresholds of 220, 240, and 380.
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Each Intoxicated Subject is Classified as Intoxicated (0 FNR)

Misclassifying a drunk user as sober would provide false confidence to a user, implying
that they are not intoxicated, which could cause them to perform risky behavior, such as
driving while unknowingly intoxicated. In order to avoid such incidents, we wanted to
test the performance of a model on a policy whereby each intoxicated subject is predicted
as intoxicated. In order to do so, we fixed the TPR at 1.0 (the true class is intoxicated) and
assessed the impact of this limitation on the FPR, i.e., we looked at the percentage of sober
subjects that were misclassified as intoxicated.

Table 5 presents the FPR results of the Gradient Boosting and AdaBoost classifiers
for BrAC thresholds of 220, 240, and 380. As can be seen from the results, applying a
constraint of detecting all intoxicated subjects caused up to 30% of the sober subjects to be
misclassified as intoxicated for BrAC thresholds of 220, 240, and 380.

Table 5. Detecting all intoxicated subjects: FPR (false positive rate) of classifiers with a fixed TPR
(true positive rate) of 1.0.

Thresholds 220 240 380

GBC 0.3 0.09 0.11

AdaBoost 0.15 0.04 0

Each Subject Classified as Intoxicated is Actually Intoxicated (0 FPR)

We also evaluated the performance of the method on another policy whereby each
intoxicated subject that is classified as intoxicated by the method is actually intoxicated
in reality. In order to do so, we fixed the FPR at zero (the positive class is intoxicated)
and assessed the impact of this limitation on the TPR, i.e., we looked at the percentage of
intoxicated subjects that were misclassified as sober.

Table 6 presents the TPR results of the Gradient Boosting and AdaBoost classifiers
for BrAC thresholds of 220, 240, and 380. As can be seen from the results, the impact of
applying a constraint of detecting only intoxicated subjects is that this approach is only
effective for a BrAC threshold of 220, since 40–55% of the intoxicated subjects are detected
(when using a Gradient Boosting classifier as the intoxication detection model). However,
for all other BrAC thresholds, all of the intoxicated subjects are misclassified.

Table 6. Detecting an intoxicated instance with no errors: TPR (true positive rate) of classifiers with a
fixed FPR (false positive rate) of zero.

Thresholds 220 240 380

GBC 0.4 0 0

AdaBoost 0.4 0.55 0

6.2.3. Importance of Devices, Features, and Sensors Regarding Performance

In this experiment, we aimed to determine the impact of each device, sensor, and set
of features on the performance.

Importance of Devices

We started by evaluating the performance for data that was obtained exclusively
from a smartphone or a wrist-worn device. We trained AdaBoost and Gradient Boosting
classifiers with data obtained from a single device for BrAC thresholds of 220, 240, and 380.

Table 7 presents the results of the AdaBoost and Gradient Boosting classifiers for data
obtained from a smartphone, wrist-worn device, and both devices (for comparison). As
can be seen from the results, measurements of movements from both devices are required
to accurately classify a subject as intoxicated/sober.
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Table 7. AUC results of the AdaBoost and Gradient Boosting classifiers based on data obtained from
a smartphone, wrist-worn device, and both devices.

Thresholds

220 240 380

Gradient Boosting

Smartphone 0.74 0.38 0.46

Wrist-Worn Device 0.52 0.68 0.92

Both 0.915 0.952 0.926

AdaBoost

Smartphone 0.75 0.57 0.59

Wrist-Worn Device 0.33 0.73 0.5

Both 0.945 0.979 0.5

Importance of Features

In the feature extraction process, we extracted four types of features. Since the gait
of individuals changes as a result of alcohol consumption, we wanted to identify the best
set of indicators to detect intoxication (based on body movement patterns) and determine
which of the following is most effective at this task: the distribution of the movement
(histogram), frequency of the movement, statistical features, or known gait features.

In order to do so, we used the dataset and trained Gradient Boosting and AdaBoost
classifiers for BrAC thresholds of 220, 240, and 380. We classified each instance using
two methods. The first classification method used a specific set of features among the
sets (histogram, known gait features, frequency features (FFT), statistical features). The
second classification method used all of the other sets of features (except the set used in the
first method). Figure 6 presents the average AUC results for BrAC thresholds of 220, 240,
and 380. As can be seen from the results, the models that were trained on only statistical
features outperformed the models that were trained without them. All other models that
were trained on a certain set of features were unable to obtain higher scores than the models
that were trained without them. However, models trained with a combination of features
(such as every set except FFT) achieved higher performance. From this, we conclude
that a combination of the entire set of features is required to train an effective/accurate
intoxication detection model.

Figure 6. Average AUC results of the AdaBoost and Gradient Boosting classifiers based on specific
types of features and without them.
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Importance of Sensors

Finally, we examine the impact of data from each sensor on the results. In order
to do so, we followed the same protocol used to test the feature robustness: we trained
Gradient Boosting and AdaBoost classifiers for BrAC thresholds of 220, 240, and 380. We
classified each instance using a model that was only trained on accelerometer features and
a model that was only trained on gyroscope features. Figure 7 presents the average AUC
results for BrAC thresholds of 220, 240, and 380. As can be seen from the results, a model
that was trained only on accelerometer measurements yields nearly the same results as a
model trained on measurements from both sensors. Given this, we conclude that subjects’
acceleration when walking is highly informative in the detection of intoxication.

Figure 7. Average AUC results of the AdaBoost and Gradient Boosting classifiers based on measure-
ments that were obtained from a single sensor and from both sensors.

7. Conclusions and Discussion

In this paper, we present Virtual Breathalyzer, a novel approach to detect intoxication
using data from the motion sensors of commercial wearable devices which may be used as
an alternative by users when a breathalyzer is not available. We conducted an experiment
involving 30 patrons from three different bars to evaluate our approach. Our experiment
demonstrated the proposed approach’s ability to accurately detect intoxication using just a
smartphone and wrist-worn device. An AUC of 0.97 was obtained for a BrAC threshold of
240 micrograms of alcohol per one liter of breath. Using two simple gait samples (from a
car to a bar and vice versa), a system based on this approach can be used to prevent people
from driving under the influence of alcohol and could also be used to trigger the device
owner’s connected car to prevent ignition in cases in which the owner is detected as drunk.

The significance of the Virtual Breathalyzer approach with respect to the methods pro-
posed in related work is that our approach: (1) requires minimal/no cooperation on the part
of the subject (unlike [16]), (2) utilizes ubiquitous, commercial device sensors for detecting
intoxication rather than ad hoc sensors (unlike a blood or breath test) (3) is validated against
the results of an admissible police breathalyzer (unlike previous methods [19–22,24]), and
(4) can be utilized in real time to prevent a user from driving while intoxicated.

Some might argue that intoxication detection via wearable devices provides a welcome
opportunity to notify a device owner that they are intoxicated in order to prevent them
from driving under the influence of alcohol. Others might argue that intoxication detection
via wearable devices threatens people’s privacy, because it could be exploited as a means
of learning about the habits of the device owner (e.g., which could lead an employer to fire
an employee due to his/her drinking habits) or to prove that a device owner has driven
under the influence of alcohol. The main objective of this research was to show that motion
sensors can be used as alternative to the traditional blood and breath tests for intoxication
detection, rather than taking a particular side in an argument about the advantages and
disadvantages of such a method.



Sensors 2022, 22, 3580 15 of 17

8. Future Work

There are numerous opportunities to extend this work:

(1) Deriving additional insights via alternative virtual, passive methods: additional
research is needed to detect intoxication/drug use indirectly via passive and virtual
methods. For example, the physiological indicators (e.g., sweat, reduced movement)
associated with drug use might also be identified via wearable device sensors (skin
conductivity and motion sensors).

(2) Deriving insights from aggregated/low resolution data: additional research is also
required in order to derive insights from aggregated data. For example, a recent
study [30] compared the effectiveness of various statistical features used to detect a
subject’s gait from wearable devices. The ability to derive insights from aggregated
data can enable virtual intoxication detection methods to be used to make inferences
about an individual’s cognitive state.

(3) Data quality: additional research is required to understand whether the quality of the
data obtained by the sensors of commercial wearable devices can replace dedicated
sensors for general health/status inference. For example, cardiovascular data obtained
from a dedicated sensor can be used to detect lies [32]; however a recent study revealed
that the cardiovascular data obtained from an Apple watch generates false alarms 90%
of the time for pulse readings that are associated with a patient’s cardiac condition [33].
We believe that additional research is also required to explore the accuracy and errors
of the sensors that are integrated in wearable devices.

(4) Dimensionality Reduction and Feature Analysis: additional research on performing
dimensionality reduction on extracted features, as well as identifying individual
features which contribute most to performance, would be a significant addition to
this research in analyzing the impact of extracted features on the performance of our
method.

(5) General population diversity: additional research is needed in analyzing the diverse
medical, geographic, and demographic variations between populations and its ef-
fect on the performance of our method, before it can be successfully deployed for
general use.
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