
Citation: Ramirez Barker, X.E.;

Stanchev, R.I.; Hernandez Serrano,

A.I.; Pickwell-MacPherson, E.

Simulated and Experimental

Verification for a Terahertz Specific

Finite Rate of Innovation Signal

Processing Method. Sensors 2022, 22,

3387. https://doi.org/10.3390/

s22093387

Academic Editors: Qijie Wang,

Hua Li and Peng Wang

Received: 9 March 2022

Accepted: 24 April 2022

Published: 28 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Simulated and Experimental Verification for a Terahertz Specific
Finite Rate of Innovation Signal Processing Method
Xavier E. Ramirez Barker, Rayko I. Stanchev, Arturo I. Hernandez Serrano and Emma Pickwell-MacPherson *

Department of Physics, University of Warwick, Coventry CV4 7AL, UK; x.barker@warwick.ac.uk (X.E.R.B.);
rayko.stantchev@warwick.ac.uk (R.I.S.); arturo.hernandez-serrano@warwick.ac.uk (A.I.H.S.)
* Correspondence: e.macpherson@warwick.ac.uk

Abstract: Recently, finite rate of innovation methods have been successfully applied to achieve low
sampling rates in many areas, such as for ultrasound and radio signals. However, to the best of our
knowledge, there are no journal publications applying this to real terahertz signals. In this work, we
mathematically describe a finite rate of innovation method applied specifically to terahertz signals
both experimentally and in simulation. To demonstrate our method, we applied it to randomized
simulated signals with and without the presence of noise and to simple experimental measurements.
We found excellent agreement between the simulated signals and those recreated based on results
from our method, with this success also being replicated experimentally. These results were obtained
at relatively low sampling rates, compared to standard methods, which is a key advantage to using a
finite rate of innovation method as it allows for faster data acquisition and signal processing.

Keywords: finite rate of innovation; terahertz time-domain spectroscopy; low sampling rate;
sum-of-sincs; annihilating filters

1. Introduction

Continuous signals must be reduced to a discrete form for experimental data acquisi-
tion and processing, a process called sampling the signal. Therefore, a sampling rate must
be selected, balancing the ability to retain important features from the data set with the
speed of data acquisition and size of the data set. A famous theorem on this aspect is the
Shannon–Nyquist theorem, which states that for a perfect reconstruction of a bandlimited
signal, a minimum sampling rate of double the maximal frequency is required. Thus, for
secure retention of important data features, a floor is placed on the minimum sampling rate
allowed, resulting in a constraint for data acquisition speed.

Recently, finite rate of innovation (FRI) [1] theory has been employed to achieve low
sampling rates, with respect to the relevant traditional sampling schemes, in both ultra-
sound simulated and experimental data [2], as well as in a simulated terahertz (THz) context
in communications application [3]. It has also been shown to handle the reconstruction of
sparse signals robustly, such as in [4] with the application for source resolution in radioas-
tronomy showcased. Furthermore, in a frequency-domain optical coherence tomography
context, an FRI method has achieved improved resolution and signal-to-reconstruction
noise compared to the standard approach [5]. This theory utilizes signals with a finite
number of degrees of freedom per unit time, which pulse signals, such as those used in
ultrasound and THz time-domain spectroscopy. This concept will be further explained and
mathematically defined in the following section. Given knowledge of the pulse shape and
number of reflections or pulses expected, a sampling rate below the Shannon–Nyquist limit
can even be employed to achieve a full reconstruction of the sampled data [3].

In this paper, FRI will be applied to both simulated and basic experimental THz
data. THz covers the electromagnetic spectrum from frequencies of around 0.1 THz to
10 THz and has many inherent advantages by being non-ionizing, non-destructive and
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providing noncontact modalities. Therefore, THz has had great research interest in areas
such as biomedical physics, security applications and material characterization over the
past years [6]. One constraint especially significant for biomedical in vivo imaging is the
duration of the scan. For example, in the protocol our group developed for assessing
skin hydration [7], the patient was required to hold their arm stationary during the mea-
surements, with any movement possibly affecting the recorded data. Thus, with a lower
sampling rate these scans could be taken more quickly with less risk of this occurring and
with the additional benefit of any time-dependent effects, such as occlusion of the skin [8],
being minimized.

In typical terahertz time-domain spectroscopy (THz-TDS) setups, a femtosecond laser
is split into a pump and a probe beam. The pump beam excites the photoconductive emitter
whilst the probe beam is controlled by an optical delay line to excite the detector at different
THz signal time steps [9]. Therefore, in the case of THz-TDS, the steps along the time delay
line constitute the sampling points that the FRI method shown in this paper will seek to
minimize. In addition to the standard measurement systems, this method could see use in
single-pixel spectroscopic imaging methods [10] by allowing for a lower sampling rate of
temporal waveforms per pixel.

Our aim is to achieve lower sampling rates compared to current popular methods by
utilizing FRI theory whilst maintaining similar experimental methodology and required
foreknowledge of the sample. Although FRI has previously been applied to other fields
such as ultrasound and to simulated THz data in communication applications, this is the
first journal publication applying it to experimentally obtained THz-TDS data. By employ-
ing our THz FRI based method, we achieved low sampling rates in both simulated and
experimental THz data sets whilst demonstrating agreement with the original simulated
and measured signals, respectively.

2. Theory

The first building block for creating this FRI method is to simulate the THz pulse shape
we expect from our experiment in a form which is compatible with later mathematical
manipulations. In the frequency domain, sum-of-sincs (SoS) is the usual form utilized as the
sampling kernel for these methods [11]. This is because the kernel approximates a reflection
or transmission response, and therefore is able to solve both non-periodic and periodic
cases whilst having a finite duration itself which is easily mathematically manipulated. It
is defined in general terms by [2]:

H(ω) = ∑
p∈Π

dpsin c

(
ω
2π
τ

− p

)
, (1)

where p is an integer in the chosen set of integers Π, ω is the frequency and τ is the period
containing an entire repetition of the SoS as this forms the repeating sampling kernel
required for this method. The chosen integer number sets Π and dp are free parameters
optimized for the specific application explored later in this section. In this work, we applied
this method mainly in the time domain, as the experimental data used in this work as well as
all THz-TDS are acquired in that domain. Thus, we required the time domain version of (1):

h(t) = rect
(

t
τ

)
∑

p∈Π
dpei 2πpt

τ , (2)

where t is the time and rect
( t

τ

)
= 1 for − τ

2 ≤ t ≤ τ
2 whilst being zero elsewhere, limiting

the time range to only containing one repetition of the sampling kernel. The result of setting
the free parameters

{
dp
}

to 1 and choosing Π = {−P, . . . , P} where P = 25 can be seen
in Figure 1a. Here, the central peak is surrounded by side lobes being far from the real
THz pulse representation, demonstrating the need for further work to mold our sampling
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kernel. This comes in the form of applying a length-N symmetric Hamming window for
the free parameters:

dp = 0.54− 0.46 cos

(
2π

p + N
2

N

)
, p ∈ Π, (3)

where the cardinality N = |Π|. Figure 1b shows the result of applying this Hamming
window, with the side lobes being smoothed out to give a closer appearance of a single
peak. To generate a sampling kernel which represents a single THz pulse, two of these SoS
peaks were combined by offsetting and scaling one of the SoS pulses, as shown in Figure 1c.
The offset between the pulses was equal to the width of the center peak at 0 amplitude and
the relative scaling difference was a factor of −0.6. These were selected by comparison to a
real THz reference and can be automatically tailored to a specific experimental reference as
demonstrated later in this paper.
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Figure 1. The progression of the sampling kernel through our methodology. (a) Time domain
response for SoS sampling kernel. Described by h(t) from (2) for P = 25. (b) The resulting kernel
after a Hamming window is applied to the SoS sampling kernel shown to the left. (c) Our THz-like
sampling kernel. Created by combining two Hamming windowed SoS sampling kernels.

Finite streams of pulses can be used to represent THz-TDS data, finite by virtue of the
data acquisition range used, and the stream of pulses representing the THz waveforms
constituting the data, i.e., reflections off boundaries between materials of different refractive
indices. Therefore, let us consider a τ-periodic stream of L pulses with amplitudes al located
at distinct times tl :

x(t) = ∑
m∈Z

L

∑
l=1

alh(t− tl −mτ). (4)

Here, h(t) is a known pulse shape, which in our case has been constructed and defined
in the previous paragraphs and is in the form of (2). For this consideration, we also have
the constraints of tl ∈ [0, τ) , al ∈ C, l = 1 . . . L, {tl , al}L

l=1 and an additional constraint
on N ≥ |Π| ≥ 2L. Given that we have L pulses which are each fully described by two
parameters, the amplitude and time location, we have 2L degrees of freedom per unit time
and so a finite rate of innovation, ρ, of:

ρ =
2L
τ

. (5)

With the aim of achieving the minimum sampling rate whilst being able to adequately
reconstruct the sample, we can target 2L samples per τ. This is the ideal minimal number
of samples required using this method, which can result in sub-Nyquist rates. However,
this ideal sampling rate does not account for issues such as sampling points not containing
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useful information, i.e., not lying on the pulse, or the presence of noise and other aberrations.
By defining the periodic extension of our pulse shape h(t) as:

g(t) = ∑
m∈Z

h(t−mt). (6)

We can apply Poisson’s summation formula [12] to rewrite (6) above as:

g(t) =
1
τ ∑

k∈Z
H
(

2πk
τ

)
ei 2πkt

τ , (7)

where H(ω) represents the Fourier transform of h(t). By substituting this result into (4):

x(t) =
L
∑

l=1
al g(t− tl)

= ∑
k∈Z

(
1
τ H
(

2πk
τ

) L
∑

l=1
ale−i 2πktl

τ

)
ei 2πkt

τ

= ∑
k∈Z

X[k]ei 2πkt
τ ,

(8)

where we have used X[k] to denote the bracketed terms in the preceding line, which are the
Fourier coefficients of that line, it can be shown [1] that once at least 2L Fourier coefficients
are known, the amplitudes and time locations of the stream of pulses representing our data
can be found. This enables the reconstruction, or estimation, of our data, given a suitable
sampling kernel.

We now require a way to calculate what these Fourier coefficients are. We begin by
considering the uniform sampling of signal x(t) of the form seen in (4) with a sampling
kernel in the form of (2), which gives a sufficient characterization of x(t) with uniform
samples N at locations t = nT:

yn = 〈h(t− nT), x(t)〉 =
∫ ∞

−∞
h(t− nT)x(t)dt, n = 0, . . . , N − 1. (9)

By substituting (8) into (9):

yn = ∑
k∈Z

X[k]〈h(t− nT), ei 2πkt
τ 〉

= ∑
k∈Z

X[k]H
(

2πk
τ

)
ei 2πknT

τ

=
L
∑

k=−L
X[k]ei 2πknT

τ .

(10)

Here, when T is a divisor of τ, as it is in our case, this reduces line 2 in the above
equation to the inverse discrete-time Fourier transform of X[k] resulting in line 3 [1].
Utilizing Prony’s method [13], we now introduce the annihilation filter, A[k], stage of the
method [14], which is by definition required to satisfy the convolution:

A[k] ∗ X[k] = 0. (11)

By satisfying this constraint, and in the case of our chosen sampling kernel with X[k]
reducing to:

X[k] =
1
τ

L

∑
l=1

ale−i 2πktl
τ , k ∈ Z. (12)

We can present A[k] in the form of its z-transform:

A[z] =
L

∑
k=0

A[k]z−k. (13)
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This is because A[z] has L zero valued null terms at cl = e−i( 2πtl
τ ), allowing A[k] to

be represented by the convolution of L elementary filters [15], each of which zero out one
of the sum of L exponentials in X[k] for the convolution in (11). Now, we can construct a
rectangular Toeplitz matrix, X, from X[k]:

X =



X[−M + K] X[−M + K− 1] · · · · · · X[−M]
X[−M + K + 1] X[−M + K] · · · · · · X[−M + 1]

...
. . . . . . . . .

...
...

. . . . . . . . .
...

X[M] X[M− 1] · · · · · · X[M− K]

, (14)

where M, K ≥ L. Note that the matrix has a number of columns equal to K+ 1 and a number
of rows equal to 2M− K + 1. Along with the matrix form of A = [A[0], A[1], · · · , A[L]]
we can solve equation (11), with the additional constraint for our sampling number of
N ≥ 2M + 1, by performing the singular value decomposition [16] of X and selecting
the eigenvalues corresponding to the smallest eigenvector, giving the annihilation filter
coefficients for A. This allows us to find the roots cl of A[z], with obtaining the time
locations tl clearly following. With the time locations found, the last piece of information
needed is the amplitudes, al , which can be calculated using the Vandermonde system [17]:

X[0]
X[1]

...
X[L− 1]

 =
1
τ


c0

0 c0
1 · · · c0

L−1
c1

0 c1
1 · · · c1

L−1
...

... · · ·
...

cL−1
0 cL−1

1 · · · cL−1
L−1

 .


a0
a1
...

aL−1

, (15)

where the exponent denotes the power to which the term is taken to. As we have distinct tl ,
this system always has a solution, providing our amplitudes.

3. Simulation Results
3.1. Noiseless THz Model

To verify this FRI method for THz signals, a simulated signal was generated using
the same method as the previously described THz appropriate sampling kernel creation.
Five Dirac peaks were randomly generated, each representing the amplitudes, al , and
time positions, tl , of simulated THz pulses, so L = 5. τ was arbitrarily chosen to be 1,
resulting in an FRI of 10. M and P were both taken to be 5L and K taken as L; these values
were selected according to the limitations outlined for them in the previous section and by
balancing the code runtime with the quality of our results. Larger values for M, P and K
resulted in longer runtimes but provided better-quality results. These Diracs representing
the amplitudes and time locations are shown by the blue peaks in Figure 2a, with the
resulting simulated THz data shown in Figure 2b by green. This was then uniformly
sampled as seen in the 25 red data points in Figure 2b. By following the methodology
outlined in the previous section, we obtained the orange Dirac peaks in Figure 2a, which
represent the estimated amplitude and time location of the THz pulses that constituted our
simulated signal. As we know the sampling kernel, we can recreate the original simulated
THz data which is shown by the dashed blue line in Figure 2b.

In both representations of the output data, it can be seen that there is close agreement
between the estimated output and the simulated input; in Figure 2a the amplitudes and time
locations of the Dirac peaks closely match, and this is further demonstrated by comparing
the reconstructed signal with the original in Figure 2b. As the pulse shape used to create
the simulated data is exactly known, the difference between the reconstructed and original
signal is an effective measure of the performance of our method. By contrasting the last
pulse in Figure 2b, which is completely isolated, with the two pairs of closely neighboring
pulses the rest of the data consists of, it is demonstrated that, even when the pulses are
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overlapping and not distinguishable by eye, the amplitudes and time locations can still be
found with great accuracy. Crucially, this has all been achieved whilst using a relatively
low sampling rate of a total of 25 points, with it been further seen that there are only a
few sampling points describing each of the pulses. In particular, there are only three or
four sampling points that fall within the simulated pulses; however, we are still able to
extract the pulses’ exact amplitudes and time locations. This exemplifies a key benefit of
this method, low sampling rates, which allow for faster data acquisition without losing
information about our signal.
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Figure 2. Noiseless simulated results. (a) The blue peaks represent the simulated THz pulses’ time
locations and amplitudes with the orange Diracs being the FRI method processed results. (b) The
simulated signal (green line) was sampled (red points) to input into the FRI code. The reconstructed
signal (dashed blue line) was calculated using the calculated time locations and amplitudes shown in
(a) along with the known sampling kernel.

3.2. Simulated Noise THz Model

No experimental data are completely free of noise, so to simulate this effect Gaussian
white noise was added to result in a signal to noise ratio of 6 dB, the result of which can
be observed on the sampling points in Figure 3b. Although this is a significant amount
of noise, more so than would usually accompany experimental THz measurements such
as those shown later in this paper, the reconstruction is shown to almost negate the effect
of the noise completely. This is demonstrated by comparing the processed Dirac results,
shown in Figure 3a, to those in the noiseless model seen in Figure 2a. We can see that in
both models the processed Diracs are close to the original Dirac peaks whilst also being
very similar to each other. Additionally, by observing how closely the reconstructed and
the original signals match in Figure 3b, further evidence for the effectiveness of removing
the effect of noise is given.



Sensors 2022, 22, 3387 7 of 10

Sensors 2022, 22, x FOR PEER REVIEW 7 of 10 
 

 

  

(a) (b) 

Figure 3. Simulated results with a Gaussian white noise model to give a signal to noise ratio of 6 dB. 

(a) Simulated results in the presence of noise (orange), with the original (blue) for comparison. (b) 

Reconstruction of the simulated signal with the presence of noise (dashed blue line), compared to 

the original noiseless signal (green line) and the sampling points (red points). 

4. Experimental Results 

We have shown the great potential of our FRI model in the previous section, by 

achieving an accurate reconstruction of the simulated signal both without and with the 

presence of white Gaussian noise whilst using a relatively low sampling rate. However, 

there are further challenges to applying this method to experimental results; primarily, 

the accuracy of our sampling kernel in representing the THz pulse and accounting for 

how this pulse would change shape during transmission and reflection through different 

materials. 

A TeraPulse 4000 from TeraView Ltd. was used in reflection geometry with an inci-

dence angle of 30° to measure the air-plastic reflection off a thick piece of plastic. By using 

this as an experimental reference, the method described in Section 2 was employed to 

create a SoS which closely resembled the shape of this reference. Ideally, the SoS sampling 

kernel created in this way would closely resemble the pulse in our simple experimental 

data obtained from a thick plastic sheet. This was measured using the same experimental 

procedure used for the reference acquisition and with the interface causing reflections be-

tween both air and plastic. The SoS form of our reference is required in most of the FRI 

method, except for the final stage of calculating the amplitudes. Instead of using the Van-

dermonde system, a standard least-squares minimization technique between the original 

measured signal and measured reference, repeated at the time locations found in the pre-

vious step, was used. For the recreation of the signal, we used the time location and am-

plitude estimates along with the measured reference. This achieved a signal shape more 

similar to the original, as the measured reference more closely resembled the correct 

shape. 

Figure 4a contains this simple experimental data. The raw measurement is shown by 

the green line, with the reduced sampling points used as the input for our method shown 

by the red points and the reconstructed output of the FRI method shown by the blue 

dashed line. It can be seen that there are relatively few data points describing each of the 

two reflection pulses, but despite this the reconstruction is a close match to the original 

experimental data. This indicates that the time locations and amplitudes of the reflections 

found by our method are accurate, as by using these in combination with our measured 

reference as the basis for the reconstruction we obtained a similar result to the original 

data. However, it can be noticed that there is a mismatch in the amplitudes of the second 

halves of the pulses between the raw experimental data and the reconstructed result from 

Figure 3. Simulated results with a Gaussian white noise model to give a signal to noise ratio of
6 dB. (a) Simulated results in the presence of noise (orange), with the original (blue) for comparison.
(b) Reconstruction of the simulated signal with the presence of noise (dashed blue line), compared to
the original noiseless signal (green line) and the sampling points (red points).

4. Experimental Results

We have shown the great potential of our FRI model in the previous section, by
achieving an accurate reconstruction of the simulated signal both without and with the
presence of white Gaussian noise whilst using a relatively low sampling rate. However,
there are further challenges to applying this method to experimental results; primarily, the
accuracy of our sampling kernel in representing the THz pulse and accounting for how this
pulse would change shape during transmission and reflection through different materials.

A TeraPulse 4000 from TeraView Ltd. was used in reflection geometry with an in-
cidence angle of 30◦ to measure the air-plastic reflection off a thick piece of plastic. By
using this as an experimental reference, the method described in Section 2 was employed to
create a SoS which closely resembled the shape of this reference. Ideally, the SoS sampling
kernel created in this way would closely resemble the pulse in our simple experimental
data obtained from a thick plastic sheet. This was measured using the same experimental
procedure used for the reference acquisition and with the interface causing reflections
between both air and plastic. The SoS form of our reference is required in most of the
FRI method, except for the final stage of calculating the amplitudes. Instead of using
the Vandermonde system, a standard least-squares minimization technique between the
original measured signal and measured reference, repeated at the time locations found in
the previous step, was used. For the recreation of the signal, we used the time location and
amplitude estimates along with the measured reference. This achieved a signal shape more
similar to the original, as the measured reference more closely resembled the correct shape.

Figure 4a contains this simple experimental data. The raw measurement is shown
by the green line, with the reduced sampling points used as the input for our method
shown by the red points and the reconstructed output of the FRI method shown by the
blue dashed line. It can be seen that there are relatively few data points describing each of
the two reflection pulses, but despite this the reconstruction is a close match to the original
experimental data. This indicates that the time locations and amplitudes of the reflections
found by our method are accurate, as by using these in combination with our measured
reference as the basis for the reconstruction we obtained a similar result to the original data.
However, it can be noticed that there is a mismatch in the amplitudes of the second halves
of the pulses between the raw experimental data and the reconstructed result from our
model. As the amplitudes for the first halves of the pulses are a close match, this is likely
the result of an imperfect estimation of the pulse shape. Compared to the standard amount
of data points the THz system we were using measures, we down-sampled by a factor of
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over 45 to obtain the sampling points shown, which resulted in a time sampling interval of
0.33 ps. This indicates that by using this method, fewer data points can be measured and
thus a much shorter data acquisition time can be achieved.
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Figure 4. Experimental verification of our THz FRI method. (a) The raw data, shown by the green
line, are reflections off the sides of a thick plastic block. The sampling points are shown by the red
dots, which were used as the input for the method. The resulting reconstruction is shown by the
dashed blue line. (b) The normalized FFT spectra for these data.

Figure 4b shows the frequency domain version of the data presented in Figure 4a, after
it has undergone a fast Fourier transform (FFT) and been normalized. The low sampling
rate FFT, shown by the red line, begins to diverge from the fully sampled experimental
data FFT, shown in green, from around 0.7 THz. For frequencies larger than 1.3 THz there
is mostly a very significant difference in the normalized FFT amplitudes, showing the
frequency domain inaccuracy of the low sampling rate data at these frequencies. This is
because the sampling interval of 0.33 ps corresponds to a Nyquist sampling frequency
of 1.51 THz. Crucially, the FFT of the reconstruction from the low sampling points using
our FRI method, shown by the blue line, does not share this divergence and inaccuracy.
This demonstrates that our method accurately reconstructs the frequency domain data
of THz-TDS measurements taken at sampling rates below the Nyquist frequency, pro-
viding the benefit of quicker measurements whilst ensuring the retention of frequency
domain information.

More complicated experimental situations were investigated; however, it was found
that for low sampling rates the SoS sampling kernel proved to be too rigid to account for
the varying pulse shape as it reflected off boundaries and propagated through different
materials. Thus, an interesting avenue of future research would be to investigate more
accommodating sampling kernel models for THz pulses. Despite this issue, we have shown
the great potential of this method to achieve accurate experimental data processing at low
sampling rates, allowing for quicker data acquisition and processing once a more versatile
sampling kernel has been developed.

5. Conclusions

By demonstrating accurate results with relatively low sampling rates in both simulated
and simple experimental data sets, the FRI method described in this paper has been
verified and the potential for its application in more complicated THz experiments has been
shown. Furthermore, looking at the FFT spectra of the low-sampled experimental data, we
see that information above and around the Nyquist frequency was lost whereas the FRI
reconstruction retains the frequency information of the original data. The potential of this
method primarily lies with the low sampling rates unlocked, which are especially attractive
in applications where the sample has a time dependency or other applications where
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quicker data acquisition would be of large benefit. For instance, in our research group’s
in vivo experiments for human skin, patients are required to remain very still during the
data acquisition. The shorter this period, the less likely a patient is to accidentally shift,
causing an effect on the measured data. However, when more complicated experimental
data sets were investigated, we discovered that further work is necessary to create a versatile
sampling kernel which accounts for the THz pulse shape changing during propagation
through dispersive samples and reflection off different material boundaries. As the method
has performed very strongly in simulation and simple experimentation, we believe that
further research into creating this sampling kernel method is of great interest, bringing
the benefits of fast data acquisition and processing to more complicated and interesting
experimental situations.
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