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Abstract: Joint communications and sensing (JCAS) has recently attracted extensive attention due
to its potential in substantially improving the cost, energy and spectral efficiency of Internet of
Things (IoT) systems that need both radio frequency functions. Given the wide applicability of
orthogonal frequency division multiplexing (OFDM) in modern communications, OFDM sensing
has become one of the major research topics of JCAS. To raise the awareness of some critical yet
long-overlooked issues that restrict the OFDM sensing capability, a comprehensive overview of
OFDM sensing is provided first in this paper, and then a tutorial on the issues is presented. Moreover,
some recent research efforts for addressing the issues are reviewed, with interesting designs and
results highlighted. In addition, the redundancy in OFDM sensing signals is unveiled, on which, a
novel method is based and developed in order to remove the redundancy by introducing efficient
signal decimation. Corroborated by analysis and simulation results, the new method further reduces
the sensing complexity over one of the most efficient methods to date, with a minimal impact on the
sensing performance.

Keywords: joint communications and sensing (JCAS); Internet of Things (IoT); orthogonal frequency
division multiplexing (OFDM); radar sensing; multi-carrier; single-carrier; discrete Fourier transform
(DFT); fast Fourier transform (FFT); decimation

1. Background and Motivation

Joint communications and sensing (JCAS) has attracted extensive attention lately due
to its potential of substantially improving the cost-, energy- and spectral-efficiency for a
myriad of modern wireless systems that require both communications and radar, e.g., many
smart IoT applications [1,2]. As a popular waveform in both communications and radar,
the orthogonal frequency-division multiplexing (OFDM)-based JCAS has regained great
interest after its arguable debut in 2007 [3]. The seminal work, however, did not illustrate
OFDM radar sensing, and was only focused on the impact of radar antenna set-ups
(unidirectional or omni-directional) on communication performances, e.g., bit error rate
and system throughput. Before the work in [3], OFDM radar had been studied since 2000,
yet without considering communications in general [4]. Early OFDM radar works between
2000 and 2009 mainly treat the OFDM waveform the same as the conventional radar
waveforms, e.g., chirp, and intend to design OFDM-based waveforms, e.g., the phases of
OFDM sub-carriers, to improve radar ambiguity functions [5–10]. Although many of these
works [4–10] mention the applications of OFDM in data communications, they barely take
into account any communication aspects, either in waveform design or in signal processing.

The true OFDM-based JCAS is enabled by the method first published in 2009 [11]
and is more comprehensively elaborated on in [12]. At a radar receiver, the method [11]
treats each OFDM symbol as in communication systems by first removing the cyclic
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prefix (CP) and then taking the discrete Fourier transform (DFT). In the frequency-domain,
the method [11] removes the communication data symbols, as added on sub-carriers at the
transmitter, through a point-wise division (PWD), attaining the scaled sum of the outer
products between the range and Doppler steering vectors. A two-dimensional Fourier
transform is then taken over the sub-carrier and time-domains, resulting in the so-called
range–Doppler map (RDM), matrix or profile. Target detection and estimation can be
performed using the RDM, which will be further illustrated in Section 3.

The sensing method [11,12] has been extensively applied in the past decade and has
become a de facto standard for OFDM radar, particularly in automotive sensing [13–23].
For illustration convenience, we call the method [11] the classical OFDM sensing (COS)
hereafter. Recent OFDM sensing works are mainly based on COS, but also introduce new
techniques to improve the RDM quality. The work in [16] introduces the stepped carrier
technique to increase the overall baseband bandwidth of the OFDM radar and, hence, the
resolution of RDMs. The work in [17] randomizes the stepped carrier and exploits the
compressive sensing technique to reconstruct a high-resolution RDM. Whereas previous
works generally ignore the inter-carrier interference (ICI) issue, the work in [18] considers
the impact of ICI on OFDM sensing and develops novel signaling, which repeats the same
OFDM symbol over (slow-)time, to facilitate the estimation and suppression of ICI.

The OFDM sensing methods [11,12,16–18] reviewed above are for the single-antenna
transceiver. One of the greatest advantages of using OFDM as a radar waveform is that
multiple antennas can be utilized to realize orthogonal MIMO radar-like sensing. (In theory,
given M transmitter antennas and N receiver antennas, an orthogonal multiple-input and
multiple-output (MIMO) radar can achieve an extended virtual array of MN antennas.)
This advantage is first noticed in [24], where an equidistant sub-carrier interleaving scheme
is developed to make the signals transmitted by different antennas orthogonal. More specif-
ically, the scheme makes antenna m only use sub-carriers m + iM for m = 0, 1, · · · , M− 1
and i = 0, 1, · · · , where M is the antenna number. However, as noted in [19–22], the equidis-
tant interleaving can reduce the unambiguously measurable distance of a MIMO-OFDM
radar. To address the issue, a non-equidistant sub-carrier interleaving scheme is proposed
in [19], where the genetic algorithm (GA) is used to maximize the ranging performance in
terms of the sub-carrier interleaving patterns of transmitter antennas. In [20], the random
time–frequency multiplexing is proposed to enhance the inter-antenna signal orthogonality
of a MIMO-OFDM radar. For the same purpose, coded MIMO-OFDM radars are devel-
oped in [21,22], where special coding over time-, frequency-, space- and joint-domains
are developed.

Targeted at sole radar applications, the methods reviewed above pay little attention
to (MIMO-)OFDM data communications. Recently, the communication community has
been highly active in promoting JCAS. In fact, given its potential in improving the cost-
/energy-/spectral-efficiency and in substantially benefiting emerging use cases of mobile
networks, e.g., smart home/city/ transportation [25], JCAS has been envisioned as a
hallmark technology of the future sixth generation mobile communications (6G) [26]. The
communication-centric JCAS designs in the communication community generally fall into
two broad categories: general designs and communication standards-based ones.

The general JCAS waveforms have been designed in spatial, time and frequency-
domains without referring to some specific communication standards. In the spatial-
domain, dual-functional precoders/beamformers are generally designed to, e.g., approach
desired sensing waveforms subject to signal-to-interference-plus-noise ratio (SINR) require-
ments for multi-user downlink MIMO communications [27]. In the time- and frequency-
domains, existing works mainly resort to designing the frame structure [28], sub-carrier
occupation [29], power allocation [30] and pilot/preamble signals [31]. These JCAS
works [27–31] evaluate the sensing performance by statistical or asymptotic metrics, e.g., the
signal-to-interference-plus-noise ratio (SINR) and the Cramer–Rao low bound (CRLB). They
either do not discuss specific sensing methods or refer to some common ones, e.g., COS [11]
reviewed above.
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Standards-based JCAS designs generally integrate sensing into an existing communica-
tion system and prioritize communications. In this line of research, the IEEE 802.11ad-based
millimeter-wave (mmWave) communication system is a popular choice. To counteract
the severe attenuation of mmWave signals, IEEE 802.11ad mainly uses the DFT-spread
OFDM (DFT-s-OFDM) waveform (DFT-s-OFDM is also known as the single-carrier OFDM
(SC-OFDM). It performs DFT precoding before modulating data symbols onto sub-carriers
and generally achieves a lower peak-to-average-power ratio (PAPR) than OFDM [32]) for
data transmission. In [33,34], different sensing methods are developed using the Golay
complementary sequences (GCSs) in the preamble of IEEE 802.11ad communication signals.
In [35], the Doppler resilience of IEEE 802.11ad-based sensing is improved by incorpo-
rating Prouhet–Thue–Morse sequences in the preamble. In [31], an adaptive mmWave
JCAS based on IEEE 802.11ad is developed, where a few non-uniformly placed preambles
are transmitted to construct several receive virtual preambles for enhancing the velocity
estimation accuracy at the cost of a small reduction in the communication data rate. While
these methods exploit the superb auto-correlation feature of GCSs for a high ranging
performance, it can be non-trivial to adapt them for other communication standards. This
is more the case for existing wifi-based JCAS designs that mainly exploit the channel state
information estimated by wifi devices [36].

The standards-based JCAS designs reviewed above exploit only a small portion of
available signals in a standardized communication system. To further improve the sensing
robustness against interference and noises, data signals of IEEE 802.11ad, with a much
wider availability than preamble signals, are exploited for sensing in [37,38]. In [37], the gen-
eralized likelihood ratio test (GLRT) is employed to formulate a maximum likelihood (ML)
problem for target detection and estimation. An adaptive algorithm is developed to solve
the ML problem by iteratively estimating the current strongest target, reconstructing the
target echo signal and removing it for estimating the next strongest target. While the
method [37] results in a ML-like sensing performance, it has a much higher computational
complexity than COS [11]. However, COS, if directly applied to DFT-s-OFDM, can cause
a severe noise enhancement, as the communication signals modulated on sub-carriers
approximately conform to a centered Gaussian distribution. To address the noise enhance-
ment issue, the work in [38] modifies COS by replacing PWD with a point-wise product
(PWP). Since the PWP of two frequency-domain signals plus a Fourier transform result in
the cyclic cross-correlation (CCC) of the corresponding time-domain signals, we call the
method [38] C-COS hereafter.

COS and C-COS have complexity only dominated by Fourier transforms. Thus, they
particularly suit communication platforms needing (or benefiting from) radar sensing with
limited computing ability, such as low-profile IoT devices. Although COS and C-COS have
a sub-optimal sensing performance compared with the optimal ML estimation, they can
provide a satisfactory sensing performance for numerous scenarios, such as detecting car
presence in a car park or people presence indoors. Moreover, we can also perform COS
and C-COS for initial sensing and can then exploit ML to refine the initial results. Such
a combination can have much lower computational complexity than using ML directly.
Further, as they do not make changes to communications, COS and C-COS allow for sensing
to be added onto existing communication systems with minimal changes. Therefore, we
envision that COS and C-COS will promisingly contribute to speeding up the market
penetration of JCAS in the near future. This would be more the case if the following issues
of COS and C-COS can be effectively addressed.

1. Passively reusing communication signals without making any changes makes COS
and C-COS suffer from the sensing constraints imposed by communication signal
formats. In particular, the maximum sensing distance is limited by the CP length of
the underlying communication systems, and the maximum measurable velocity is
inversely proportional to OFDM symbol duration. Thus, can we relieve the sensing
limits without changing communication signal formats?
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2. COS and C-COS provide two different ways of generating RDMs. While their com-
putational complexity is the same, a question follows naturally: which one gives the
better sensing performance? It was shown through simulations in [38] that the C-COS
can have a better sensing performance than COS in certain low SNR regions. This,
however, is not always the case, as disclosed in our recent work [39]. A comprehensive
analytical comparison between COS and C-COS is still missing;

3. Can COS and C-COS be applied to future variants of OFDM? Recently, the orthogonal
time–frequency space (OTFS) waveform has become increasingly popular due to its
unique ability of handling fast time-varying channels. Like DFT-s-OFDM, OTFS is
also a DFT-precoded OFDM. Unlike DFT-s-OFDM, which is only precoded once along
the sub-carrier dimension, OTFS is additionally precoded over (slow-)time. However,
directly applying COS or C-COS to OTFS can be hard, as the OTFS with a reduced
cyclic prefix (RCP), i.e., a single CP for the whole block of OTFS symbols, is the main
trend in the OTFS literature;

4. Indeed, COS and C-COS already have quite a low computational complexity. How-
ever, should we rest on our laurels? In time-critical JCAS applications, we may require
sensing to be carried out as fast as possible. This can be extremely challenging, partic-
ularly when the spatial volume to be sensed is large. All of these factors create highly
stringent requirements for the sensing efficiency. Therefore, it is always beneficial to
further reduce the sensing computational complexity, even only slightly.

We remark that the issues highlighted above have been rarely treated so far in the
literature, including effective solutions. To raise awareness of these issues in the JCAS
community, we will provide a short tutorial on them in Section 3 after we establish the
signal model in Section 2. These two sections act as a fundamental basis to understand
the recent progress and new solutions to be introduced sequentially. In particular, we
will illustrate in Section 4 some recent research efforts, which are based on our own
works [39,40], in addressing the first three issues mentioned above. Moreover, in Section 5,
we will unveil that there exists non-trivial redundancy in OFDM-like sensing signals. To the
best of our knowledge, such redundancy has not been explicitly treated in the literature
yet. Noticing that, we develop a novel low-complexity sensing method based on COS by
introducing efficient signal decimation. We also provide analysis and extensive simulations,
demonstrating that the decimation-based COS can reduce the sensing complexity in a non-
trivial manner, yet incurs only a minimal impact on the sensing performance.

2. Signal Model of OFDM-, DFT-s-OFDM- and OTFS-Based Sensing

Consider a general JCAS scenario where OFDM communication symbols are also
used for sensing through a full-duplex synchronized receiver (Rx) co-located with the
transmitter (Tx). We assume that proper full-duplex techniques are used to avoid/remove
self-interference from Tx to Rx; see, e.g., [2] for a review of such techniques. In addition,
single-antenna Tx and Rx are employed to introduce the core idea that is independent of
spatial information in theory. Note that we start with OFDM for illustration clarity and
will extend the signal model to DFT-s-OFDM and OTFS later.

For the m-th (m = 0, 1, · · · , M− 1) OFDM symbol, there are N data symbols to be
transmitted, as denoted by sm(n) (n = 0, 1, · · · , N − 1). In OFDM, these N data symbols
are multiplied onto N orthogonal sub-carriers, which essentially are single-tone signals at
center frequencies of n/T. Here, T is the duration of the sub-carriers in the time-domain.
This further indicates that the bandwidth of the considered OFDM system is B = N/T.
Let Ts denote the sampling time that satisfies Ts = 1/B = T/N in OFDM. Accordingly,
the m-th OFDM symbol can be expressed as a discrete function of time index k, i.e.,

xm(k) =
1
N

N−1

∑
n=0

sm(n)ej2πnkTs/T =
1
N

N−1

∑
n=0

sm(n)ej2πnk/N , k = 0, 1, · · · , N − 1. (1)



Sensors 2022, 22, 1613 5 of 23

From (1), we see that multiplying data symbols with N orthogonal sub-carriers is
equivalent to taking the N-dimensional inverse DFT (IDFT) of the data symbols. In turn,
taking the DFT of xm(k) with respect to (w.r.t.) k can recover sm(n).

According to the circular shift property [41], the DFT of any circularly shifted xm(k) is
still sm(n), yet with extra phase shifts. Based on (1), we can write

xm(〈k− l〉N) =
1
N

N−1

∑
n=0

(
sm(n)e−j2πln/N

)
ej2πnk/N , k = 0, 1, · · · , N − 1, ∀l (2)

where 〈·〉N denotes modulo-N. Since the sample delay l resembles the echo delay in the
sensing Rx, it is implied by (2) that the sequence of sm(n) can always be recovered from the
target echo as long as a complete (circularly shifted) OFDM symbol is available. To ensure this,
a CP is generally added to xm(k) by copying the last Q samples and pasting them to the
beginning of xm(k); refer to Figure 1. Denoting the number of samples in the CP by Q,
the m-th OFDM symbol becomes

x̃m(k̃) = xm(〈k̃−Q〉N), k̃ = 0, 1, · · · , N + Q− 1, (3)

which is obtained by plugging k = 〈k̃−Q〉N into (1). The timing relation between x̃m(k̃)
and xm(k) is described in Figure 1.

Symbolm

Symbol m+1Symbolm

Symbol m+1

Symbol m

Add CP: copy and paste

Sample

Symbol m+1

Tx

Rx

Q samples

Q
N+Q

Figure 1. Illustrating the changes in signal timing in OFDM sensing, where CP is short for cyclic
prefix and Q is the number of samples in a CP. The top signal, xm(k) given in (1), is the essential part
of OFDM symbols. The middle signal, x̃m(k̃) given in (3), illustrates the CP-OFDM symbols to be
emitted. The bottom signal, ỹm(k̃) given in (4), is the baseband echo at the sensing Rx, where the
delay of kr samples account for the round-trip traveling from Tx to Rx.

Next, we build the signal model for target echoes. For illustration convenience and
clarity, we model a single sensing target whose range, velocity and reflection coefficient
are r, v and α, respectively. We also assume that r, v and α keep constant over M OFDM
symbols, as complied with the Swerling-I target fluctuation model [42] [Ch.7]. The round
trip (from Tx to the target and then back to Rx) causes a delay of kr = 2r/(CTs) samples in
the target echo, as compared with the transmitted OFDM symbol, where C is the microwave
propagation speed. Note that kr may not be an integer. The target velocity incurs a Doppler
frequency that can be calculated as µ = 2v fc/C, where fc denotes the carrier frequency of
the JCAS system. Taking into account kr and µ, the target echo can be modeled as

ỹm(k̃) = αg(k̃)x̃m(k̃− kr)ej2πmT̃µ, k̃ = 0, 1, · · · , N + Q− 1 (4)

where g(k̃) = 0 for k̃ = 0, 1, · · · , bkre − 1 and g(k̃) = 1 for the remaining values of k̃; and
T̃ = T + QTs denotes the time duration of a CP-OFDM symbol. Here, bxe rounds x to
the nearest integer. The echo timing with reference to the emitted signal is exemplified
in Figure 1. Though noises are inevitable in any practical Rx, they are suppressed in (4)
for brevity. Moreover, the “stop-and-hop” model [42] has been used to account for the
Doppler effect by omitting the intra-symbol Doppler-related change. (Despite its wide
applicability in conventional radar processing, the “stop-and-hop” model can be subjected
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to the condition that 4πv2TCPI
λC is less than a fraction of π radians, e.g., π/4 [43]. Here, TCPI

is a coherent processing time interval. Interested readers are referred to [43] [Chap. 2] for
how the phase term is derived.)

Extension to DFT-s-OFDM: As mentioned in Section 1, DFT-s-OFDM is a DFT-precoded
OFDM. The precoding happens along the sub-carrier-domain. Thus, instead of directly
modulating communication data symbols onto sub-carriers, a DFT is taken first, and then
the results are mapped to OFDM sub-carriers in interleaving or consecutive manners. Let
s̃m(ñ) (ñ = 0, 1, · · · , Ñ − 1) be the communication data symbols to be transmitted, where
Ñ is generally a fraction of N. Assume Ñ = N

L , with L being an integer (related to the
number of users in frequency division multiple access). Taking the Ñ-point DFT of s̃m(ñ),
we obtain s̆m(n̆) (n̆ = 0, 1, · · · , Ñ− 1). Then, we can map s̆m(n̆) onto N sub-carriers. In the
interleaving mapping, we have

s̄m(n) = s̆m(n̆) for n = l + n̆L, ∀l = 0, 1, · · · , L− 1. (5)

In the consecutive mapping, we have

s̄m(n) = s̆m(n̆) for n = lÑ + n̆, ∀l = 0, 1, · · · , L− 1. (6)

If multiple user-ends are served, they can be assigned with different l’s. Replacing sm(n)
in (1) with s̄m(n), the signal given in (4) also models the echo signal in DFT-s-OFDM sensing.

Extension to OTFS: Compared with DFT-s-OFDM, OTFS adds another DFT precoding
over the slow time dimension. Let s̄m(n) (m = 0, 1, · · · , M− 1; n = 0, 1, · · · , N− 1) denote
the signal modulated onto sub-carriers. Different from OFDM, s̄m(n) is not directly from a
communication constellation and, instead, is now a two-dimensional symplectic Fourier
transform of data symbols, as denoted by s̃m̃(ñ) (m̃ = 0, 1, · · · , M− 1; ñ = 0, 1, · · · , N− 1).
If no window function is used, s̄m(n) is just the DFT of s̃m̃(ñ) over ñ and the IFDT of the
DFT results over m̃. Note that m̃ has a physical meaning of the Doppler index and ñ the
range index. They are dual variables of m (slow-time) and n (sub-carrier), respectively.
Replacing sm(n) in (1) with s̄m(n), we obtain the time-domain symbols. In CP-OTFS [44],
each time-domain symbol is added with a CP, as shown in Figure 1. However, the OTFS
with reduced CP (RCP-OTFS) is more popular in existing OTFS studies, as illustrated
in Figure 2. Although the CP leads to a cyclically shifted version of the whole block of
symbols at the sensing receiver, the ICI can be severe, particularly when the block duration
is large. The severe ICI invalidates COS and C-COS for OTFS, as they implicitly require
negligible ICI to generate RDMs. This will be made clear shortly in Section 3.

Symbol 0 Symbol 1

Sample

Tx

Rx

Q samples

Q

Symbol M 1

Symbol 0 Symbol 1

Add CP: copy
and paste

Symbol 0 Symbol 1

Figure 2. Illustrating the signal timing in RCP-OTFS sensing, where, different from OFDM shown in
Figure 1, only a single CP is added to a whole block of symbols.

Remark 1. For OFDM, the frequency-domain signals, i.e., those modulated onto sub-carriers, are
independently drawn from a communication constellation, such as PSK and QAM. Thus, they
conform to uniform distributions with a limited number of values. For DFT-s-OFDM and OTFS,
however, their frequency-domain signals approximately conform to centered Gaussian distributions.
This is because they are DFT(s) of the communication data symbols independently drawn from



Sensors 2022, 22, 1613 7 of 23

some constellations, while such DFT results converge in distribution to complex Gaussian random
processes [45].

3. COS and C-COS

In this section, we first review COS [11] and C-COS [38] based on the signal model
established above. Then, we further illustrate the issues highlighted at the end of Section 1.

The diagram of the two methods is illustrated in Figure 3. They share the same signal
preprocessing. Namely, they first remove the CP of each received symbol, i.e., ỹm(k̃) given
in (4), and then transform the CP-removed symbol into the frequency-domain via a DFT.

From Figure 1, we see that the non-trivial part of ỹm(k̃) contains a circularly shifted
OFDM symbol if kr ≤ Q is satisfied, where kr is the target delay and Q is the CP length.
Under the condition, removing the first Q samples of ỹm(k̃) yields ȳm(k) = αxm(〈k −
kr〉N)ej2πmT̃µ for k = 0, 1, · · · , N − 1. By taking l = kr in (2), the DFT of xm(〈k− kr〉N) w.r.t.
k is sm(n)e−j2πnkr/N . Since αej2πmT̃µ is a coefficient independent of k, the DFT of ȳm(k) w.r.t.
k can be directly given by y̆m(n) = αsm(n)e−j2πnkr/Nej2πmT̃µ. The next step of removing the
communication data symbol sm(n) differentiates COS and C-COS.

targets per symbol, i.e.,m

RF Chain
of S Rx

RF Chain
of C Tx

a copy to Rx

D
F
T

R
e
m
o
v
e

C
P

PWD

PWP B
u
ff
e
r
M

sy
m
b
o
ls

2
D
D
F
T

Receiving Processing at S Rx

R
D
M

COS

C COS

Figure 3. Illustrating the processing diagram of COS and C-COS, where C-Tx stands for communica-
tion transmitter, S-Rx for sensing receiver, PWD for point-wise division, PWP for point-wise product
and RDM for range–Doppler map.

In COS , PWD is used, leading to

ym(n) = y̆m(n)/sm(n) = αe−j2πnkr/Nej2πmT̃µ, (7)

where we assume that the sensing receiver has a copy of sm(n), as shown in Figure 3.
Taking the 2D-DFT of ym(n) gives the following RDM,

Yb(k) = α
N−1

∑
n=0

wN(n)e−
j2πnkr

N e−j
2πkn

N ×
M−1

∑
m=0

wM(m)ej2πmT̃µe−j
2πbm

M , (8)

where wN(n) and wM(m) denote window functions of lengths N and M, respectively.
If rectangular window functions are used, the n- and m-related summations will approach
two sinc functions. They have mainlobes centered around k = k† = 〈N − bkre〉N and
b = b̃† = bµT̃Me, and sidelobes elsewhere. As in the digital filter design, a proper window
function, such chebshev, can be employed to suppress the sidelobes over k and b at the cost
of an increased mainlobe width [41]. Given kr = b2r/(CTs)e and µ = 2v/λ, r and v can be
estimated as

r̂ u (N − k†)CTs/2, v̂ u b†C
/
(2M fcT̃), s.t. b† =

{
b̃† if b̃† ≤ M/2
b̃† −M otherwise

, (9)

where b† is a modified version of b̃† to account for negative velocities.
In C-COS, the PWD performed in (7) is replaced with PWP, which can be expressed

as

zm(n) = y̆m(n)× s∗m(n) = α|sm(n)|2e−j2πnkr/Nej2πmT̃µ, (10)
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where ()∗ denotes a conjugate. Then, a 2D-DFT of zm(n) yields the following RDM,

Zb(k) = α
M−1

∑
m=0

wM(m)

(
N−1

∑
n=0

wN(n)|sm(n)|2e−
j2πnkr

N e−j
2πkn

N

)
ej2πmT̃µe−j

2πbm
M , (11)

where Zb(k) 6= Yb(k) if |sm(n)| 6= 1; otherwise Zb(k) = Yb(k). Note that, if wN(n) = 1, the
n-related summation in Zb(k) can be rewritten into

N−1

∑
n=0

sm(n)s∗m(n)e
− j2πnkr

N e−j
2πkn

N
(a)
=

N−1

∑
n=0

N−1

∑
k′=0

s̃m
(
〈k′ − kr〉N

)
e−j

2πk′n
N s∗m(n)e

−j 2πkn
N

(b)
=

N−1

∑
k′=0

s̃m
(
〈k′ − kr〉N

)
s̃∗m
(
〈k′ + k〉N

)
, (12)

where s̃m(k) denotes the IDFT of sm(n) (which is the frequency-domain signal),
(a)
= is ob-

tained by replacing sm(n) with its DFT expression, i.e., the k′-summation in the middle

result, and
(b)
= is because the n-summation can be seen as the conjugate of the IDFT of sm(n).

Note that the last result is the CCC of s̃m(k) and s̃m(〈k− kr〉N). Thus, the n-related summa-
tion in (11) resembles the matched filtering in the conventional radar signal processing.

As illustrated in Remark 1, sm(n) approximately conforms to a centered Gaussian
distribution. Since IDFT is a unitary transformation, s̃m(k), as the IDFT of sm(n), is also
a centered Gaussian signal. Thus, the CCC result given in (12) will present a mainlobe
around k = k† = 〈N−bkre〉N , which is the same as in COS. The difference is that we do not
have an analytical model to depict the CCC result. Moreover, the sidelobe levels in the CCC
result are unpredictable; c.f., the deterministic sidelobes of |Yb(k)| over k’s. On the other
hand, comparing (8) and (11), the two RDMs share the same Doppler measurement ability,
which is solely dependent on the m-related summation. Based on the above elaboration,
we conclude that the estimates given in (9) also apply to C-COS.

Figure 4a illustrates the RDM Ym(b) by plotting its amplitude against range and
Doppler grids. Three targets are set, with parameters summarized in Table 1. From
Figure 4a, we see three mainlobes corresponding to three targets. Based on the illustra-
tion below (8), the indexes of the range grids of the three targets can be calculated as
〈N − bkre〉N × 16 = 4064, 4040 and 4016, where multiplying 16 is due to the increasing
of the DFT size (as illustrated in the caption of Figure 4). Similarly, we can calculate the
indexes of the Doppler grids of the targets, as given by bµT̃Me × 16 = 32, 32 and 64. We
see from Figure 4a that the peak locations match the above calculations.

Table 1. Target parameters, where three targets are simulated, U[x,y] denotes the uniform distribution
in [x, y] and γ denotes the SNR 1.

Var Value Var Value

α [ejx1 , ejx2 , ejx3 ] (xi∼U[0,2π] ∀i) kr [2, 3.5, 5]
µT̃M [2, 2, 4] M 128

N 256 γ −10 dB
1 Note that γ is defined based on the time-domain echo signal given in (4). The signal power is averaged over the
three targets and, hence, is one. The noise, though not shown in (4), is a complex Gaussian signal with the power
set as 10 dB in the simulation.
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Figure 4. Illustrating RDMs, where “-” in the color bar is the negative sign.Note that |Ym(b)| with
constant modulus sm(n) is plotted in (a), demonstrating OFDM under PSK constellations processed
by either PWD or PWP. Moreover, |Ym(b)| (obtained under PWD) with noise-like sm(n) is plotted
in (b). In addition, |Zm(b)| (using PWP) with noise-like sm(n) is plotted in (c). According to
Remark 1, DFT-s-OFDM and OTFS have their frequency-domain signals, i.e., sm(n), conform to
normal distribution. Thus, subfigures (b,c) can represent either DFT-s-OFDM or OTFS. Here, R and
D stand for range and Doppler grids, respectively. When generating the RDMs as performed in (8)
and (11), the DFT sizes in both dimensions are increased by 16 times to make the grids denser.

Target detection: If there exists a single target, detecting the target can be readily
achieved through identifying the peak of |Yb(k)| or |Zb(k)|. The single-target scenario
may sound unrealistic to the conventional radar community. However, in mmWave JCAS,
the single-target sensing can be practical and has been studied in [31,33,37]. To counteract
the severe path loss of mmWave signals, mmWave communication systems generally use
large-scale antenna arrays to steer highly directional beams. Therefore, a mmWave signal
in the beam direction is likely to be blocked by the first target.

In multi-target scenarios, there can be multiple mainlobes in the RDM. Directly iden-
tifying the peak of the RDM will detect the strongest target. Then, the parameters of the
strongest target can be estimated based on (9). With its parameter estimates, the target can
be reconstructed and removed from the RDM, enabling the detection of the next strongest
target. Such a sequential detection can be time-consuming, as the detection of each target
will involve searching over the whole range-Doppler space.

Classical radar detectors can be employed to detect multiple targets efficiently. The
constant false-alarm rate (CFAR) detector is one of the most commonly used radar de-
tectors [42]. Briefly speaking, CFAR tests all range and Doppler grids, as indexed by k
and b, respectively, to check the presence of a target. At a grid under test (GUT), CFAR
calculates the background interference-plus-noise (IN) power by averaging the power of
the grids around GUT. The adjacent grids around GUT are generally excluded from the
power evaluation to reduce the impact of the strongest sidelobes of a target. The estimated
IN is amplified by a coefficient and used as a threshold, where the coefficient is dependent
on the expected false-alarm rate. If the power of the GUT is greater than the threshold, then
CFAR reports the presence of a target at the GUT; otherwise, CFAR reports target absence.
A simulation tutorial of CFAR is provided by MathWorks in [46].

Target estimation: After targets are detected, their locations can be submitted to (9)
for estimating their parameters. However, the range and velocity estimations obtained

in (9) suffer from errors as large as CTs/4 and C
/
(4M fcT̃), respectively. In fact, we can

further refine the estimations using, e.g., the classical multiple signal clarification (MUSIC)
algorithm [47]. Some newer estimators [48–50], which are efficient with low complexity,
are also good candidates for refining target estimations. These estimators interpolate DFT
coefficients around the integer range–Doppler grid of a target, as obtained in the target
detection, and then solve the accurate parameter estimations from a pre-established relation
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between the interpolations and target parameters. Interested readers are referred to [48–50]
for more details.

CP-limited maximum measurable range (MMR): To obtain the RDMs in (8) and (11),
we have assumed that the maximum target delay is no greater than the CP duration, Q.
This, in turn, indicates that the MMR of COS and C-COS is limited by CP. In particular,
it can be given by CQTs/2, where Q is the CP length. Unfortunately, such a limitation
remains for COS and C-COS, even when we have a sufficient link budget for sensing a
longer distance. In essence, the MMR limitation exists because each communication symbol,
e.g., in Figures 1 and 2, is treated as an independent sensing waveform, and the zero inter-
symbol interference is pursued in COS and C-COS. If we treat a block of consecutive
symbols, e.g., symbol 0, · · · , M− 1 in Figure 2, as a single waveform, and use the whole
signal block as a matched filter coefficient to process the received echo signal, the MMR
limitation discussed here may be lifted. This whole-block processing, however, can suffer
from a non-negligible intra-block Doppler impact. A pointwise Doppler compensation can
be performed before range processing [14,18]. Moreover, a two-dimensional maximum
likelihood-based range and Doppler simultaneous estimation can also be performed [34,51].
These options generally have a non-trivially higher complexity than COS and C-COS.

Symbol-limited maximum measurable Doppler (MMD): From the echo signal model
given in (4), we see that the sampling interval over the slow time is T̃ = (N + Q)Ts, which
is dominated by the OFDM symbol duration. The sampling frequency is 1/T̃. Then,
the maximum measurable Doppler frequency is given by 1/(2(N + Q)Ts). Moreover,
the Doppler resolution can be given by 1/(M(N + Q)Ts), which is inversely proportional
to the overall time of a whole block.

COS versus C-COS: As shown in Figure 3, COS and C-COS are differentiated by the
way they handle frequency-domain communication signals. Recall that COS and C-COS
apply PWD and PWP, respectively, as given in (8) and (11). When the communication
signals have a constant modulus in the frequency-domain, PWD and PWP yield the same
result. However, for DFT-s-OFDM and OTFS, the communication signals conform to a
centered Gaussian distribution, as illustrated in Remark 1. In such cases, PWD can severely
enhance the background noise in the RDM, as the signal being or approaching zero is used
as a divisor; see (8) (For illustration simplicity, we ignored the noise term in (8), though it is
inevitable in practice). PWP is proposed to relieve noise enhancement [38]. Comparing
Figures 4b,c, we see that PWP indeed leads to a smaller noise background in the RDM.
However, PWP can lead to a non-negligible noise floor in moderate and high SNR cases.
Thus, analytical comparisons between PWP and PWD are worth investigating to provide
the guidance in an ad hoc selection between them.

4. Recent Progress

The three issues discussed at the end of the last section have rarely been noticed in the
literature, not to mention any solutions. Recently, we have performed some preliminary
studies on relieving the issues [39,40]. In this section, we highlight some interesting results
and remaining challenges.

Whether the waveform is OFDM, DFT-s-OFDM or OTFS, we are actually facing the
same problem: to detect and estimate targets given a block of communication signals, e.g., the middle
signals in Figures 1 and 2, and the target echo signals, e.g., the lower signals in Figures 1 and 2.
We emphasize that, in the considered JCAS, we do not intend to make any changes to the
underlying communication system. In the COS and C-COS reviewed earlier, they segment the
communication signals at a sensing receiver by fully complying to communications format,
i.e., (N + Q) samples a symbol and M symbols in total. From the end of Section 3, we have
seen that such compliance is the root of the sensing restrictions.

In light of the above observation, we proposed a novel sensing framework recently
in [39]. Here, we unitedly use x(i) to denote the communication-transmitted signal in
the time-domain, where the communication system can be based on either OFDM, DFT-
s-OFDM or OTFS. That is, x(i) can be the middle signal in either Figure 1 or Figure 2.
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Moreover, we point out that x(i) is a signal sequence with i = 0, 1, · · · , I − 1. In the case
of CP-OFDM and DFT-s-OFDM, we have I = M(N + Q)− 1, where M is the number of
symbols and (N + Q) is the number of samples per symbol (including CP); see Figure 1.
In the case of RCP-OTFS (as illustrated at the end of Section 2), we have I = MN + Q− 1,
where a single CP of Q samples is applied to a block of M symbols; see Figure 2. As shown
on the left of Figure 5, x(i) hits targets and propagates to the sensing receiver, resulting in
the echo signal denoted by y(i). Thus, y(i) is the scaling of the time-delayed x(i), similar
to the relation between ỹm(k̃) and x̃m(k̃− kr) depicted in (4). As mentioned in Section 2,
the co-located transceiver is considered in this paper. Thus, it is reasonable to assume that
the sensing receiver shares the same clock as the transmitter and has a copy of x(i) stored
for sensing processing.

The sensing framework [39] starts with a segmentation, as performed on both x(i)
and y(i) in the same way. In particular, we ignore the signal format of the underlying
communication system and segment x(i) and y(i) in a sensing-favorable manner. As shown
in Figure 5, x(i) and y(i) are segmented into consecutive sub-blocks (SBs) evenly, with Ñ
samples per segment, where Ñ = N is no longer necessary. Adjacent SBs are allowed to
overlap for Q̄(≥ 0) samples. Let xm(n) and ym(n) denote the signal in the m-th SB. Due to
target delay, ym(n) only contains a part of xm(n), with the remaining part right after ym(n);
see the illustration in Figure 5. Thus, we can add the Q̃ samples right after ym(n) onto the
beginning of ym(n), making ym(n) contain cyclically shifted versions of xm(n). This will
require Q̃ to be no smaller than the maximum target delay. Clearly, the Q̃ samples have a
similar role as the CP in OFDM. Thus, we call them the virtual CP (VCP). However, we
emphasize that VCP is not related to the original CP in any way. A key difference between
them is that CP is determined by the communication system, but VCP is designated at the
sensing receiver for sensing purposes. However, as shown in Figure 5, adding VCP can
introduce inter-SB interference, which is the price paid for pursuing flexible sensing.

Tx
x(i)

Rx
y(i)

A block of communication signals

Echo signals

SB 1

SB 2

SB 3

S
e
g
m
e
n
t
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d
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in
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samples from per SB,

i.e., m

Figure 5. A novel sensing framework that suits OFDM, DFT-s-OFDM and OTFS, where SB stands for
sub-block and VCP for virtual CP. The left sub-figure shows the sensing diagram, where the DFT
results will go through the last three steps in Figure 3 to generate RDMs. The right sub-figure is a
novel signal segmentation proposed in [39], where x(i) can be the middle signal in Figures 1 or 2.
That is, the sensing framework suits OFDM or DFT-s-OFDM with regular CPs (one per symbol), as well as
the OTFS with a reduced CP (i.e., a single CP for a long block of symbols).

The DFT results in Figure 5 can be input to PWD and PWP for generating RDMs.
For clarity, we summarize the novel sensing framework in Algorithm 1. In Step 1, the m-th
SB starts at the m(Ñ − Q̄)-th sample and has Ñ samples. Given I signal samples in x(i)
and based on the illustration in the right sub-figure of Figure 5, the number of SBs is
M̃ = b I−Q̃−Q̄

Ñ−Q̄ c, where b·c takes flooring. In Step 2, VCP is added for the echo signal so
that the m-th SB of the echo signal becomes underlain by the m-th SB of the transmitted
signal, as illustrated in the right sub-figure of Figure 5. Steps 3–5 are the same as the last
three steps of COS and C-COS illustrated in Figure 3. However, by introducing the novel
segmentation and VCP, an ad hoc adjustment can be made to the sensing framework, and,
hence, there is better catering for different sensing scenarios. For example, we can increase
Q̃ for sensing a longer distance, we can reduce Ñ to increase the maximum measurable
Doppler frequency and we can adjust Q̄ in accordance with Ñ and Q̃ to improve sensing
SINR. Next, we provide more elaborations on how to determine these key parameters.
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Remark 2. The criteria of configuring the sensing framework are illustrated below. First, we can
set Q̃ based on rmax, the required MMR. As it is related to the VCP length Q̃, the MMR can be
given by CQ̃Ts

2 , which, equating with rmax, yields Q̃ = 2rmax/CTs. Second, we determine M̃ given
the requirements on the velocity measurement. The maximum measurable Doppler frequency is
half the sampling frequency over SBs (equivalent to the slow time in radar processing), which is

1
/(

2(Ñ− Q̄)Ts
)
. Here, (Ñ− Q̄)Ts is the difference between the starting times of any two adjacent

SBs (and hence the sampling time over the slow-time-domain); see Figure 5. Consequently, to cater

for the maximum measurable Doppler, as denoted by µmax, we need to keep Ñ ≤ 1
/(

2µmaxTs
)
+ Q̄.

Third, given Ñ, we can then set Q̄. To increase the SINR in both RDMs, we expect to have Q̄ as
large as possible; see (13) and (14), which are to be illustrated shortly. However, the larger the Q̄,
the more correlated the signals between adjacent sub-blocks can be; see Figure 5. The correlation can
make the results in (13) and (14) less precise. The detailed impact, however, is difficult to analyze.
As shown through the simulations in [39], the SINRs in (13) and (14) are consistently precise, even
when Q̄ takes as large as M̃/2− Q̃.

Algorithm 1 A novel sensing framework [39].
Input: x(i) (i = 0, 1, · · · , I − 1) (a copy of communication-transmitted signal sequence), y(i) (echo
signal at a sensing receiver), Ñ (SB length), Q̃ (VCP length), Q̄ (overlapping between adjacent SBs)

1. Segment x(i) and y(i) evenly into consecutive sub-blocks (SBs), as given by xm(n) and ym(n).
The m-th (m = 0, 1, · · · , M̃) sub-block consists of samples i = m(Ñ− Q̄) + (0, 1, · · · , Ñ− 1);

2. Add VCP, i.e, the Q̃ samples right after ym(n), onto the beginning of ym(n), leading to ỹm(n);
3. Take the DFT (w.r.t. n) of xm(n) and ỹm(n), yielding Xm(k) and Ym(k);
4. Under PWD, we have Ũm(k) = Ym(k)./Xm(k), whereas using PWP, we obtain Ṽm(k) =

Ym(k)× X∗m(k);
5. Taking the 2D-DFT of Ũm(k) and Ṽm(k), generate the RDMs Ub(n) and Vb(n), respectively.

The analytical SINRs of the two RDMs are helpful in investigating the sensing
framework. The SINR of Ub(n), as obtained in Step 5 of Algorithm 1, can be expressed
as [39] [(33)]

γU


γ0� 1

σ2
P≈

Ñ
(
(I−Q̃−Q̄)
(Ñ−Q̄)

)
γ0σ2

P(
1+ Q̃

Ñ

)
b(ε)

(a)
≈ Iγ0σ2

P(
1− Q̄

Ñ

)(
1+ Q̃

Ñ

)
b(ε)

γ0� 1
σ2

P≈ I
/((

1− Q̄
Ñ

)
Q̃
Ñb(ε)

) , s.t. b(ε) = 2 ln

 2(1− ε)(
e
√

ε(2− ε)
)
, (13)

where γ0 is the SNR in the time-domain echo signal, i.e., y(i) in Algorithm 1; I is the total
number of samples of y(i); σ2

P is the total power of targets; e is the natural number; and ε is
a sufficiently small number, e.g., 1/I. Note that b(ε) accounts for the noise enhancement
when diving a centered Gaussian signal by another one; see [40] for a detailed analysis
of this issue. The SINR of Vb(n), as obtained in Step 5 of Algorithm 1, can be expressed
as [39] [(35)]

γV


γ0� 1

σ2
P≈ Iγ0σ2

P

/((
1− Q̄

M̃

)(
1 + Q̃

M̃

))
γ0� 1

σ2
P≈ I
/((

1− Q̄
M̃

)(
1 + Q̃

M̃

)) . (14)

Remark 3. Based on (13) and (14), we can make the following comparisons between the PWD-
and PWP-based RDMs:

(3a) In low SNR regions where γ0 � 1/σ2
P, Vb(n) has an SINR that is b(ε) times the SINR in

Ub(n), where b(ε) > 1 in general;
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(3b) In high SNR regions where γ0 � 1/σ2
P, Ub(n) can have a greater SINR than Vb(n), provided

b(ε) ≤ M̃
Q̃

;

(3c) Regardless of γ0, the Vb(n) always has a greater SINR than Ub(n), if b(ε) > M̃
Q̃
+ 1.

The comparisons made above are helpful in selecting between PWD and PWP when generating
RDMs.

Before ending the section, we use a set of simulation results to showcase the superiority
of the sensing framework illustrated in Algorithm 1 over conventional OFDM sensing
(COS) in terms of the maximum measurable range. The simulation parameters are given
in Table 2. Note that the CP length Q is much smaller than the sample delay of the target,
i.e., kr. This setting is particularly employed to validate the point made at the end of
Section 3 (in terms of the limited maximum measurable range of COS and C-COS). Based
on the review on COS and C-COS given in Section 3, we know that these conventional
methods would not be able to sense the target set in Table 2. In contrast, the sensing
framework given in Algorithm 1 can flexibly set Q̃ and Ñ according to Remark 2 so as
to cater to different sensing needs. In particular, to sense kr = 320, we set Q̃ = 321,
Ñ = 2Q̃ = 642 and Q̄ = 128. The settings further lead to M̃ = 78. For convenience,
random signals, conforming to a centered Gaussian distribution with the unit variance,
are loaded onto the OFDM sub-carriers. This essentially simulates DFT-s-OFDM, as the
frequency-domain signal presents such randomness according to Remark 1. Thus, C-COS
is used to simulate the conventional OFDM sensing.

Table 2. Simulation settings for Figure 6, where fc is the carrier frequency, fs denotes the sampling
frequency and γ is the SNR of the time-domain echo signal y(i).

Var Value Var Value

α ejx (xi∼U[0,2π] ∀i) kr 320

µ

480 Hz M 128

N 256 Q 64
fc 2.4 GHz fs(=B) 3.84 MHz
γ −10 dB – –

Figure 6 compares the RDMs generated by C-COS and the novel sensing framework
(NSF). The results in the first row are obtained by C-COS. We see from Figure 6a that the
RDM of C-COS is noise-like over the whole range–Doppler bins. Then, a close look at
the range–Doppler bins around the theoretical target location is provided in Figure 6b.
We still see no obvious target. The theoretical range bin of the target is kr = 320. Since
it is greater than N, a modulo is taken, leading to 64. Based on the elaboration right
after (8), the theoretical Doppler bin of the target can be calculated as bµM(N +Q)/ fse = 5.
The range and Doppler cuts of the RDM of C-COS are given in Figure 6c,d, respectively.
Again, we do not see any obvious targets. That is, C-COS fails to detect the target set in
Table 2.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. Comparing RDMs of C-COS and the novel sensing framework (NSF) illustrated in
Algorithm 1, where simulation parameters are summarized in Table 2, the results in the first row are
for C-COS and the results in the second row are for NSF. More specifically, the RDM of C-COS is
given in subfigure (a), while that of NSF is in subfigure (e). Subfigures (b) and (f) are the zoomed
in versions of subfigures (a,e), respectively, where the zoom-in centers are the true target range and
Doppler bins. Subfigures (c) and (d) illustrate the range and Doppler cuts of the RDM given in
subfigure (a); similarly, subfigures (g) and (h) give those of the RDM in (e). Note that COS and NSF are
performed with the same communication-transmitted and sensing echo signals.

The results in the second row are obtained by the NSF. Substantially different from
Figure 6a,e presents a normal RDM with the target shown as a sharp peak. The theoretical
range bin here is the same as that for C-COS, i.e., 320. The theoretical Doppler bin of
NSF needs to be recalculated as bµM̃(Ñ − Q̄)/ fse = 5 (the result, however, is the same).
Figure 6f zooms in on the RDM around the bin pair (321, 6) (both theoretical bins are
added by one due to the fact that the MATLAB index starts from one and not zero in
our calculation). From Figure 6f, we can see that the target peak is approximately 40 dB
stronger than the background noise. This strongly contrasts with Figure 6b, validating
the significant improvement of the novel sensing framework over the conventional COS.
Range and Doppler cuts of NSF are given in Figures 6g,h, respectively. We clearly see
strong peaks at target locations.

There is a remaining issue of NSF on false targets. We see from Figure 6g that, other
than the true target at the 321-th range bin, there are two other weaker targets, which are
located at the 65-th and 577-th range bins. These numbers have implicit relations with
321. Specifically, we have 321 + N(= 256) = 577 and 312− N = 65. These fake targets are
generated due to the partial periodicity shown in the signal after adding VCPs; see Step 2 in
Algorithm 1. The issue was also revealed in [39]. However, to date, there is no solution yet.
One potential solution of suppressing fake targets is to employ the special relation between
the locations of fake targets and that of the true target, in combination with the amplitude
and phase features of their peaks. Another potential way of suppressing fake targets is
to design NSF parameters, Ñ, Q̃ and Q̄, so that the partial periodicity leading to the fake
targets can be removed. Validating these solutions or others calls for more research efforts.
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5. A Novel Design to Further Reduce Sensing Complexity

We proceed to introduce an efficient design that further reduces the sensing complexity.
Let us revisit the PWD-processed echo signal in COS, i.e., ym(n), as originally given in (7)
and rewritten below

ym(n) = αej2πmT̃µe−j2π(nTs)
kr

NTs = αej2πmT̃µe−j2π(nTs)
kr B
N , (15)

where the last result is due to B = 1/Ts. From the above expression, we see that the
frequency of ym(n) is krB/N. As underlined in Section 3, COS requires kr ≤ Q. This
indicates that the bandwidth of ym(n) is no greater than QB/N = B/D, where D = N/Q.
In OFDM communication systems, Q� N is generally satisfied [32]. Thus, we make the
following assertion: Provided that the maximum sample delay in the target echo is no greater than
the CP length, and that the CP length is much less than the sub-carrier number, the PWD-processed
echo signal has a much smaller bandwidth than an OFDM symbol. Although we base our
illustration on COS, the analysis and method are also applicable to C-COS and the novel
sensing framework given in Algorithm 1.

Based on the signal models in Section 3, the above assertion can be interpreted as:
provided kr ≤ Q� N, ym(n) has a much smaller bandwidth than xm(k) given in (1). With
this fact noted, we can further conclude that only 1/D of the whole frequency band contains
useful information for sensing, and that the rest is filled with noises. In other words, ym(n)
can have considerably redundant information. To this end, we propose decimating ym(n)
to remove the inherent redundancy and, hence, to reduce the number of signal samples along the
n-dimension, prior to sensing. The decimation leads to a smaller RDM and, hence, reduces
the complexity of RDM-dependent target detection and estimation.

Remark 4. The assertion made for ym(n) also applies to zm(n), the PWP-processed signal given
in (10), and ỹm(n), the VCP-added signal obtained in Step 2 of the algorithm summarized in
Algorithm 1. Therefore, the decimation proposed above can also benefit C-COS and the novel
sensing framework in Algorithm 1 in reducing the RDM dimension and the complexity of target
detection/estimation.

5.1. Efficient Decimation

We proceed to illustrate the efficient implementation of the proposed decimation. As
seen from (15), ym(n) is a bandpass signal with frequency band [−B/D, 0]. To decimate
ym(n) by the factor of D, we develop the following procedure, as illustrated in Figure 7a.

(1) Anti-aliasing filtering: is performed on ym(n) to suppress out-of-band interference
and noises. The passband of the filter is the same as that of ym(n), whereas the
stopband is given by [−B/2, B/2]� [−B/D, 0], where � denotes a set difference.
The frequency spectrum of an ideal bandpass filter is shown in Node B of Figure 7b.
The signal spectrum before and after filtering is shown in Nodes A and C of Figure 7b,
respectively. As ideally illustrated in Node C, out-of-band noises are totally removed,
which is impractical, but can be well approximated by designing the anti-aliasing
filter with a large stopband attenuation;

(2) Downsampling: is denoted by “D ↓” in Figure 7a. It keeps every D-th sample
(starting from sample 0) and deserts others. After downsampling, the sampling
frequency is reduced to B/D, and the spectrum center becomes −B/(2D); see Node
D of Figure 7b;

(3) Frequency shifting: shifts the spectrum center of the downsampled signal to zero,
which leads to the spectrum shown in Node E of Figure 7b.

Above are the general steps of a bandpass decimation. By invoking the polyphase structure,
the decimation can be implemented more efficiently.
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Figure 7. (a) Illustration of general steps for decimation; (b) spectrum features at different stages
of decimation; (c) decomposing the anti-aliasing filter in (a); (d) the polyphase structure-based
decimation specifically tailored for OFDM sensing.

At the core of the polyphase structure is the decomposition of the anti-aliasing filter.
Consider an (L− 1)-order finite impulse response anti-aliasing filter. Let h(l) denote the
l-th (l = 0, 1, · · · , L− 1) filter coefficient. The z-transform of h(l) can be expressed as [52]
[Ch.6]

H(z) =
L−1

∑
l=0

h(l)z−l =
D−1

∑
d=0

z−d
P−1

∑
p=0

h(d + pD)z−pD =
D−1

∑
d=0

z−d Hd(zD), (16)

where the second equality is obtained by decomposing l = d + pD and the p-related
summation is denoted by Hd(zD) in the last result. Note that L = PD is assumed in the
above decomposition. The condition can be readily satisfied by specifying the filter order
as (PD− 1) when designing the anti-aliasing filter. Based on (16), we can see that the filter
can be implemented in D parallel branches, as illustrated in Figure 7c. The input signal
ym(n) goes into different branches simultaneously, and the outputs of the branch-filters,
denoted by Hd(zD) (∀d), are supposed to be summed and then downsampled. However, in
Figure 7c, we move the downsampler to before the summation and equivalently put a
downsampler in each branch. Carrying this out allows us to invoke the notable identity,
as illustrated in Figure 7c, to exchange the orders of the filter and downsampler in each
branch. The order exchanging makes the delay block, z−d, adjacent to a downsampler.
To this end, the samples to be filtered by the d-th (∀d) branch-filter become ym(D̃− d +
qD) (q = 0, 1, · · · , Q− 1), where “−d” reflects the d-delay block in branch d, D̃ = (D− 1)
is added to sample indexes to ensure that the indexes are no less than zero and qD is
a result of the downsampler. Based on (16), the coefficients of the d-th branch-filter are
hd+pD (p = 0, 1, · · · , P− 1).

The filter decomposition and the order exchanging illustrated above lead to the
polyphase structure of bandpass decimation, as shown in Figure 7d. In the figure, we use a
buffer to collect continuous Q samples, i.e., ym(D̃− d + qD) (q = 0, 1, · · · , Q− 1) for the
d-th branch, and each branch-filter is implemented in the frequency-domain due to the
following relation

hd+pD ~ ym(D̃− d + qD) ≡ IFFTQ̃

{
FFTQ̃{hd+pD} � FFTQ̃

{
ym(D̃− d + qD)

}}
,

where “~” denotes linear convolution, “≡” means that the calculations on its two sides are
equivalent, IFFTQ̃ and FFTQ̃ denote size-Q̃ IFFT and FFT, respectively, and “�” calculates
the point-wise product. Note that the above equivalence requires Q̃ ≥ (P + Q− 1). For
radix-2 (I)FFT, we can take Q̃, such that log2 Q̃ = dlog2(P + Q− 1)e. Since each branch-
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filter produces (P− 1) transient outputs and takes Q samples as an input, the indexes of
valid filter outputs are P− 1, P, · · · , Q− 1. Thus, we keep the valid outputs and dump
others, as shown in Figure 7d).

Referring back to Figure 7a, we are now at the last step of decimation, i.e, shifting the
filtered and downsampled signal to the baseband. To differentiate with ym(n), we use n̂ to
denote the index of valid samples after downsampling, as also highlighted in Figure 7d.
Based on (15), the filtered signal, after removing transients, can be expressed as

αej2πmT̃µe−j2πn̂Dkr/N = αej2πmT̃µe−j2πn̂kr/Q, n̂ = 0, 1, · · · , Q− P.

As a discrete function of n̂, the spectrum center of the above signal is now at π,
since the mean value of kr is Q/2. According to the frequency shift property of Fourier
transform, we know that an angular frequency shift of π can be equivalently realized by
multiplying the time-domain sequence with ejπn̂ = (−1)n̂, which leads to the frequency
shift block shown in Figure 7d. Accordingly, the final output of the polyphase structure-
based decimation is

ŷm(n̂) = αej2πmT̃µe−j2πn̂kr/Q × ejπn̂ = αej2πmT̃µe−j2πn̂ kr+Q/2
Q . (17)

5.2. Decimation-Based COS (DCOS)

Similar to COS reviewed in Section 3, sensing can also be performed based on ŷm(n̂),
leading to DCOS. Taking the two-dimensional DFT of ŷm(n̂) w.r.t. m and n̂ generates the
below RDM (referred to as DCOS-RDM), which has a smaller size than the RDM given
in (8) (similarly referred to as COS-RDM),

Ŷb(k̂) = α
Q−1

∑̂
n=0

wQ(n̂)e
− j2πn̂(kr+Q/2)

Q e−j
2πk̂n̂

Q ×
M−1

∑
m=0

wM(m)ej2πmT̃µe−j
2πbm

M . (18)

Identifying the peaks of |Ŷb(k̂)| along k̂- and b-dimensions can estimate the range
and velocity, respectively. Assume that the n̂-related summation achieves the maxi-
mum at k̂ = k̂†. It is easy to see from (18) that the maximum is only achieved when
kr + Q/2 + k̂† = aQ, where a takes an integer or zero. Solving the equation subject to
kr ∈ [0, Q− 1] yields

k̂r = Q/2− k̂†, if k̂† ∈ [0, Q/2]; k̂r = 3Q/2− k̂†, if k̂† ∈ [Q/2 + 1, Q− 1], (19)

where k̂r denotes the estimate of kr. Comparing (8) and (18), we see that COS and DCOS
have the same velocity measurement. To sum up, DCOS has the following range and
velocity estimates, where v̂ is given in (9),

r̂d = k̂rTsC/2, v̂ u b†C
/
(2M fcT̃). (20)

Again, we highlight that the illustration in this subsection can be similarly applied
to C-COS and the novel sensing framework in Algorithm 1. Details are suppressed here
for brevity.

The RDMs of COS and DCOS are compared in Figure 8, where the parameter settings
are given in Table 3. From Figures 8a,b, we can see a high similarity between the RDMs
of the two methods. This validates the efficacy of the newly introduced decimation. It is
noteworthy that DCOS reduces the complexity of generating the RDM shown in the figure
by almost an order of magnitude, compared with COS. This can be readily validated by
substituting the parameter settings in the above complexity analysis. Figure 8c compares
the range cuts between COS and DCOS. We see that DCOS has a slightly wider mainlobe
than COS, which is caused by different window lengths. Figure 8d compares the velocity
cuts of the two methods. As expected, our design does not affect the velocity measurement.



Sensors 2022, 22, 1613 18 of 23

Table 3. Simulation settings for comparing COS and DCOS, which are with reference to [12] [Tab.2].

Var Value Var Value

α ejxi (xi∼U[0,2π], ∀i) M 1

N 1024 Q 128
fc 24 GHz fs(= B) 93 MHz

(a) (b) (c) (d)

Figure 8. Illustration of target detection, where COS-RDM is given in (a), DCOS-RDM in (b), the range
cuts at v = −10 m/s are shown in (c) and the velocity cuts at r = 56 m in (d). Most settings in Table 3
are again used here, except that the number of OFDM symbols is M = 256 and the hamming window
is used in (8) and (18) for both range and velocity measurements. In addition, three targets are set
here. Their ranges and velocities are [50, 56, 56] m and [−10,−10, 0] m/s, respectively. Note that the
symbol “-” in the axes of all subfigures is the minus sign (not hyphen).

5.3. Comparison between COS and DCOS

Here, we compare COS and DCOS from numerous aspects, through which, the
advantages and disadvantages of introducing the efficient decimation are analyzed.

Computational Complexity: DCOS reduces the sensing complexity in two ways: first,
it has a lower complexity than COS in generating RDM; second, DCOS-RDM has a smaller
dimension than COS-RDM, thus reducing the complexity of RDM-dependent target estima-
tion. From Figure 3, we can see that the computational complexity of COS-RDM is
dominated by the 2D-DFT. The complexity is O(MN log2 N + NM log2 M), which is equal
to O(MN log2(MN)) by basic logarithmic laws.

DCOS has two parts of computations: the 2D-DFT for generating DCOS-RDM and dec-
imation. Like COS, the first part of computation has the complexity of O

(
MQ log2(MQ)

)
.

According to Figure 7d, the computational complexity of the polyphase decimation is
dominated by the first column of FFTs and the third columns of IFFTs. Their complexity
is given by O

(
2DQ̃ log2 Q̃

)
, since the first (third) column has D numbers of Q̃-size FFTs

(IFFTs). By designing the anti-aliasing filter such that P� Q, we can take Q̃ ≈ Q, and then
O
(
2DQ̃ log2 Q̃

)
becomes O(2DQ log2(Q)). Note that 2DQ log2(Q) is much smaller than

MQ log2(MQ), since M can take several hundreds, whereas D is around ten. Thus, the com-
putational complexity generating DCOS-RDM is dominated by O

(
MQ log2(MQ)

)
.

For target detection, COS and DCOS have the same complexity if the same detection
algorithm, e.g., CFAR, is used. For target estimation, particularly, the range estimation, COS
would have a higher complexity than DCOS. This is because range estimation mainly relies
on the row dimension of the RDM, i.e., Yb(k), given in (8) for COS, and Ŷb(k), given in (18)
for DCOS. Whereas Ŷb(k) has N rows, Ŷb(k) only has Q (a fraction of N). A wall-clock time
comparison between the complexities of COS and DCOS will be provided shortly through
simulations.

Processing Gain: COS and DCOS have approximately the same processing gain, which
is defined as the difference between the SINR in the RDM, i.e., in (8) and (18), and the SINR
in the pre-processed target echo, i.e., in (7). Let γ denote the SINR of ym(n) given in (7).
Although noises are not explicitly shown in the signal models, the SINR change is easy to
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track. COS-RDM is obtained from a two-dimensional DFT of ym(n), and, hence, the SINR
in COS-RDM becomes MNγ. Namely, the processing gain of COS is given by MN.

DCOS decimates ym(n) first. The decimated version ŷm(n̂) given in (17) has the SINR
of Dγ, since the decimation with factor D does not change the signal power whereas it
reduces the noise power by D times. The two-dimensional DFT performed in (18) improves
the SINR to M(Q− P+ 1)Dγ ≈ MNγ, where M(Q− P+ 1) ≈ MQ and the approximation
is valid given P� Q. We see that the processing gain of DCOS is approximately MN.

Remark 5. The impact of P on DCOS can be non-trivial. For instance, as P increases, a higher
quality filter can be obtained (e..g, one with a lower passband ripple, stronger stopband attenuation
and narrower transition bandwidth); however, a lower processing gain, as given by M(Q− P + 1),
is yielded. Analytically, it is difficult to tell which of the following dominates: the SINR improvement
earned by a better filter or the SINR degrading caused by the reduced processing gain. To this end,
we resort to simulation next.

Figure 9a,b illustrate that, as P increases from 1 to 50, the SINR in DCOS-RDM first
increases, then plateaus and then decreases. The same pattern is seen for both small
and large values of γ. From this observation, we conclude that the SINR in DCOS-RDM
can be maximized by properly setting P. For the OFDM system configured in Figure 9,
the maximum is achieved at P = 16. Using this value, we compare in Figure 9c the SINR in
DCOS-RDM with that in COS-RDM as γ increases. We see that the SINRs achieved by COS
and DCOS are almost identical in the whole region of γ. Note that the difference between
the y-axis and x-axis is the processing gain. Thus, the results in Figure 9c validate COS and
DCOS having approximately the same processing gain.
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Figure 9. Illustration of SNR in DCOS-RDM versus P in (a,b); and (c) a comparative illustration of the
SNR in RDM of both COS and DCOS versus γ, the SNR in (7). Parameter settings are summarized in
Table 3.

Range and Velocity Measurement: COS and DCOS share the same maximum unambigu-
ous range/velocity, and they also have the same range/velocity resolution. In terms of velocity,
the above statement is because the decimation does not incur any change to Doppler-
related information, as manifested in (8) and (18). Based on (8), the range of Doppler
frequency that can be unambiguously estimated is µ ∈ [− 1

2T̃ , 1
2T̃ ], where 1

T̃ resembles the
sampling frequency along the Doppler dimension. Since the number of samples is M,
the Doppler frequency resolution is ∆µ = 1

T̃M . Given the relation µ = 2v/λ, we obtain the
range of unambiguous velocity, i.e., v ∈ [− λ

4T̃ , λ
4T̃ ], and the velocity resolution, as given by

∆v = λ
2T̃M .

It terms of ranging, we can see from (8) and (18) that the range estimation has turned
into a problem of identifying kr in both COS and DCOS. Since kr(= b2rB/Ce) is indepen-
dent of the sampling rate (or range dimension) in different RDMs, its estimate remains
the same for COS and DCOS in theory. As illustrated in Section 3, kr ≤ Q is required
for OFDM sensing. Let R denote the maximum unambiguous detectable range. Solving
2RB/C = Q, we obtain R = CQ

2B for both COS and DCOS. We can see from (8) and (18) that
the resolution of kr detection is unit one for both methods, and, hence, the range resolution,
denoted by ∆r, can be solved from 2∆rB/C = 1, leading to ∆r =

C
2B .

Windowing Effect: For ranging, COS can achieve a better windowing effect than DCOS in
the sense that COS has a narrower range mainlobe than DCOS given the same attenuation of the
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peak sidelobe, whereas, for the velocity measurement, the two methods have the same windowing
effect. The reason is because the decimation in DCOS reduces the number of samples, and,
hence, the window length, along the range dimension (compared with those of COS),
whereas the decimation does not affect the velocity dimension.

Figure 10 compares the specific detection and estimation performances of C-COS
and DCOS. CFAR is employed to evaluate the detection performance, where a 10× 8
rectangular window is used to filter the RDMs (in power). The numbers of guard intervals
are two and four in the Doppler and range dimensions, respectively. For range and
Doppler estimations, the method in [48] is employed. From Figure 10a–c, we can see that
C-COS and DCOS have a very similar detection and estimation performance. This is not
surprising, as DCOS, simply removing redundancy through signal decimation, does not
lose any essential information related to targets. From Figure 10a, we can see that DCOS
has a slightly lower detection probability compared to C-COS. This can be caused by the
decimation filter with inevitable pass-band ripples and transition frequency bands. From
Figure 10d, we can see clearly that DCOS has a non-trivially lower running time than
C-COS, which validates the reduced complexity of DCOS.

(a) (b) (c) (d)

Figure 10. Comparing C-COS and DCOS in terms of detection and estimation performances, where
the OFDM parameters are given in Table 3, and a single unit-power target is set here with range and
velocity randomly generated over 104 independent trials. (a) illustrates the detection probability
of the two methods under 10−4 false-alarm rate and γ = −60 dB. (b,c) illustrates the range and
velocity estimation performance, respectively, where the estimation method [48] is employed for
both parameters. (d) compares the wall-clock time per run, including RDM generation, detection
and estimation, for the two methods, as averaged over 104 trials.

6. Conclusions

In this paper, we first provide an overview of existing works on OFDM sensing.
Through the overview, we highlight some low-complexity sensing methods that have
gained great popularity. We then point out some critical issues of the methods that have
long been overlooked. To raise the awareness of these issues, we provide a short tutorial,
providing the fundamental basis for the sequential review of some recent research efforts
in addressing the issues. To further reduce the sensing complexity, we develop a novel
method that reduces the dimension of RDM by removing the signal redundancy. Although
the recent research efforts, including our own [39,40], have relieved some issues pointed
out at the end of Section 1, we are still facing non-trivial challenges using communication
waveforms for sensing. Some are highlighted below.

(1) As demonstrated in Figure 6, the sensing framework reviewed in Section 4 can have
fake targets. This calls for new methods/designs to either differentiate the fake from
true targets or to holistically design the core parameters of the sensing framework to
prevent the fake targets from presenting. Moreover, though several core parameters
are shown to have a significant impact on the performance of the sensing framework,
a scenario-adaptive selection of the parameters is still missing;

(2) Most instances of multi-/single-carrier communication-based sensing reviewed in
Sections 1 and 4 are based on single-antenna transceivers. It may not be easy to
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extend these methods/designs to MIMO communications. Note that signals trans-
mitted from multiple antennas in MIMO communications are not as orthogonal as
those in conventional orthogonal MIMO radars. This is more the case when commu-
nication signals are subjected to little or no changes. Although the methods reviewed
in Section 4 do not require any changes made to a communication transmitter, they
alter the signal format at the sensing receiver. Consequently, they can weaken the
signal orthogonality among antennas if orthogonal waveforms are employed by the
communication transmitter array. Effective sensing using MIMO communication
signals needs further investigation;

(3) Practical communication systems apply pulse-shaping filters at transmitting and
receiving sides. The differences between transceiver filters and other hardware
imperfections can have a non-trivial impact on the sensing performance. Such
an impact, however, has not been taken into account in the method design and
evaluation of most works, including this one. Evaluating such an impact can be
difficult, as the hardware error sources may not be easy to model. Prototype-assisted
studies may be a better option to investigate the issue.
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Abbreviations
6G Sixth-generation mobile communications
CP Cyclic prefix
COS Classical OFDM sensing
CCC Cyclic cross-correlation
CRLB Cramer–Rao lower bound
C-COS CCC-based COS
CFAR Constant false-alarm rate
DFT Discrete Fourier transform
DFT-s-OFDM DFT-spread OFDM
DCOS Decimation-based COS
GA Genetic algorithm
GLRT Generalized likelihood ratio test
ML Maximum likelihood
IDFT Inverse DFT
ICI Inter-carrier interference
IN Interference-plus-noise
JCAS Joint communications and sensing
MMR Maximum measurable range
MMD Maximum measurable Doppler
MIMO Multiple-input and multiple-output
OTFS Orthogonal time–frequency space
OFDM Orthogonal frequency division multiplexing
PWD Point-wise division
PWP Point-wise product
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RDM Range–Doppler map
Rx Receiver
SINR Signal-to-interference-plus-noise ratio
SNR Signal-to-noise ratio
Tx Transmitter
VCP Virtual CP
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