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Abstract: Multivariate time series forecasting has long been a research hotspot because of its wide
range of application scenarios. However, the dynamics and multiple patterns of spatiotemporal
dependencies make this problem challenging. Most existing methods suffer from two major short-
comings: (1) They ignore the local context semantics when modeling temporal dependencies. (2) They
lack the ability to capture the spatial dependencies of multiple patterns. To tackle such issues, we
propose a novel Transformer-based model for multivariate time series forecasting, called the spatial–
temporal convolutional Transformer network (STCTN). STCTN mainly consists of two novel attention
mechanisms to respectively model temporal and spatial dependencies. Local-range convolutional
attention mechanism is proposed in STCTN to simultaneously focus on both global and local context
temporal dependencies at the sequence level, which addresses the first shortcoming. Group-range
convolutional attention mechanism is designed to model multiple spatial dependency patterns at
graph level, as well as reduce the computation and memory complexity, which addresses the second
shortcoming. Continuous positional encoding is proposed to link the historical observations and
predicted future values in positional encoding, which also improves the forecasting performance.
Extensive experiments on six real-world datasets show that the proposed STCTN outperforms the
start-of-the-art methods and is more robust to nonsmooth time series data.

Keywords: multivariate time series forecasting; spatiotemporal; convolutional Transformer; attention
mechanism

1. Introduction

Time series forecasting has a wide range of application scenarios in transportation,
finance, medical, and other fields. Precise forecasting of time series can help people
prepare for future changes, assist production management decisions, and demonstrate
its important application value in traffic jam prevention, financial investment decisions,
disease prevention, etc. [1–3].

The challenge of multivariate time series forecasting is the need to simultaneously
capture complex spatiotemporal dependencies, which are mainly reflected in two aspects:

• Dynamic. Due to the changes in the external environment (such as events, weather,
etc.), the spatiotemporal dependencies will dynamically change over time.

• Multiple patterns. Both temporal and spatial dependencies have multiple patterns.
The temporal dependencies not only depend on the pointwise value of the observation
point but also the local context of the surrounding observation points. In the spatial
dimension, we need to consider not only local connectivity but also global semantic
proximity. For example, in traffic time series, road nodes belonging to the same type of
functional area have strong global semantic proximity, although they are not adjacent
geographically [4,5].
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Many achievements have been made in the study of time series in the past decades.
Early time series forecasting studies mainly relied on statistical models, including autore-
gressive (AR), ARIMA [6], VAR [7], fuzzy method [8], etc. In order to extract nonlinear
dependencies of time series, many machine learning and deep network methods were
proposed, such as SVR [9], FC-LSTM [10], LSTNet [11], DBN [12], ST-ResNet [13], etc.
The development of graph neural networks (GNNs) has brought time series forecasting
to a new level and numerous GNN-based methods for spatiotemporal data prediction
have been proposed, such as DCRNN [14], STGCN [15], ASTGCN [16], MTGNN [17],
STSGCN [18], StemGNN [19], etc. Although these methods have shown good ability in
time series forecasting tasks, they also face two major shortcomings.

First, basically all forecasting methods only consider the relationships between differ-
ent time steps when modeling temporal dependency but do not consider the dependencies
between time periods. External events often occur within a period and will affect the values
of multiple consecutive observation points in the time series, and this is a local context
semantic. The local context semantics should also be an important consideration when
modeling temporal dependencies.

Second, from the perspective of spatial dependencies, the univariate time series fore-
casting methods [6,7,10,11,20,21] does not consider the spatial dependencies between
multiple variables in the time series, and some of the latest deep learning methods either
rely on a predefined graph structure or only learn a stable spatial relationship among
multiple time series [4,14–17], which limits their ability to capture spatial dependencies
with multiple patterns.

In this work, we innovate the Transformer framework to tackle these two shortcomings
and present a novel Transformer-based method named spatial–temporal convolutional
Transformer network (STCTN) for multivariate time series forecasting tasks. In STCTN, we
proposed two novel attention mechanisms, namely the local-range convolutional attention
mechanism and the group-range convolutional attention mechanism, which address the
two shortcomings we have aforementioned. The two novel attention mechanisms capture
multiple patterns of temporal dependencies and spatial dependencies at the sequence level
and graph level, respectively. The local-range convolutional attention mechanism exploits
convolutional kernels with various sizes to learn rich local context and simultaneously
focus on both global and local context dependencies, which addresses the first shortcoming.
The group-range convolutional attention mechanism uses multihead attention to learn the
latent graph structures among multiple time series, extracting dynamic and multimodal
spatial dependencies, which addresses the second shortcoming. In summary, our main
contributions are as follows:

• We design a novel Transformer-based encoder–decoder framework for multivariate
time series forecasting that can dynamically model spatiotemporal dependencies.

• Two novel range convolutional attention mechanisms are proposed to effectively
extract dynamic and multimodal spatiotemporal dependencies and also reduce the
computation complexity.

• Continuous positional encoding is also proposed to link the historical observations and
predicted future values in positional encoding and improve prediction performance.

The rest of this paper is organized as follows. In Section 2, we briefly review the
existing time series forecasting approaches. In Section 3, we define the multivariate time
series forecasting problem and introduces the self-attention mechanism in Transformer as
the background of this work. In Section 4, we describe in detail the proposed framework
and elaborates the components. In Section 5, we conduct extensive experiments in six
real-world datasets and compare the proposed method with ten baselines. We also conduct
ablation experiments and model analysis in Section 5. This paper ends with conclusions
and the future work in Section 6.
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2. Related Work

Time series forecasting has been an important topic in data mining for decades. Early
time series forecasting studies mainly relied on statistical models, including historic average
(HA), autoregressive (AR), autoregression integrated moving average (ARIMA) [6], VAR [7],
fuzzy method [8], etc. These statistical models have strong stationary assumptions and
are difficult to capture nonlinear dependencies in time series. Machine learning and
neural network methods can capture the nonlinear characteristics of time series more
effectively. The RNN-based methods [22–25] adopt the recurrent neural network or its
variants to capture nonlinear time patterns. Yu et al. [26] utilized matrix factorization to
model the relationship across multiple time series. However, these models either ignore the
spatial dependencies among multiple variables or only capture linear spatial dependencies,
making them perform poorly in actual predictions.

Spatial–temporal forecasting methods hope to capture both temporal and spatial
dependencies. Convolutional neural networks (CNNs) have shown powerful performance
in learning local and shift-variant features [27]. There are some methods to model the
spatial features using CNNs [13,22,28–31]. Lv et al. [30] integrated an RNN and CNN,
whereby the RNN was in charge of temporal features and used CNN to capture the spatial
features. Ma et al. [31] adopted deep CNNs for traffic speed prediction. Zhang et al. [13]
proposed ST-ResNet based on residual convolution network for crowd flows prediction.
However, these methods can only be used for standard grid data. ConvLSTM [22] extended
the convolutional network to long short-term memory (LSTM) network to extract spatial
and temporal information separately. Graph neural networks have achieved great success
in capturing the spatial dependency of unstructured data [14–19,32–34]. DCRNN and
STGCN [14,15] are the first two studies that introduced graph convolution networks into
spatial–temporal data forecasting to better model spatial dependency. ASTGCN [16] added
attention layers to the spatiotemporal network to capture the dynamics of spatiotemporal
dependencies. Some methods [4,17–19] adaptively learn the adjacency matrix to solve the
limitation that the general GNN-based methods require a predefined graph. However,
these methods only learn a stable graph adjacency matrix, which limits their ability to
capture spatial dependencies with multiple patterns.

Transformer [35] is a novel sequence modeling architecture, which introduced the
self-attention mechanism to learn long-range sequential dependency. Transformer has
achieved great success in many fields [35–42]. In particular, for time series forecasting tasks,
Li et al. [38] proposed a method to enhance the locality and break the memory bottleneck of
Transformer on time series forecasting. Wu et al. [39] proposed a new time series forecasting
model named adversarial sparse Transformer based on generative adversarial networks.
The obstacles of applying Transformer to multivariate time series forecasting are that the
standard self-attention mechanism is only used at the sequence level and cannot capture
the spatial dependencies, and it is also weak in capturing the temporal dependencies of
multiple patterns. How to solve the challenges and extract the complex spatiotemporal
dependencies are still the key issues in extending the Transformer to multivariate time
series forecasting.

3. Background
3.1. Problem Definition

Let X =
{

xi
t
}
∈ RN×T denote N related univariate time series, where T is the number

of timestamps and xi
t ∈ R denotes the value of time series i at time t. We denote the

observation values of multivariate time series at time t as Xt =
{

x1
t , x2

t , · · · , xN
t
}

. The
multivariate time series forecasting problem can be described as: learning a mapping
function f that maps the observed values of historic P time steps [Xt−P+1, Xt−P, · · · , Xt]
into the future values of next Q time steps [Xt+1, Xt+2, · · · , Xt+Q].

[Xt−P+1:t]
f→ [Xt+1:t+Q] (1)
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3.2. Self-Attention Mechanism

The self-attention transforms the input Z ∈ Rn×d into query matric Q = ZWQ, key
matric K = ZWK, and value matric V = ZWV , where WQ, WK ∈ Rd×dk and WV ∈ Rd×dv

are learnable parameters. After those linear projections, the scaled dot-product attention
computes the attention scores α:

α = softmax(
QKT
√

dk
) or α = softmax(

QKT
√

dk
·M) (2)

where M is the mask matrix with all upper triangular elements set to −∞. When the mask
option is chosen, the mask matrix is applied to filter out rightward attention. Afterward,
the output of the self-attention is:

O = Attention(Q, K, V) = αV (3)

4. Methodology
4.1. The Overall Architecture

Many competitive neural networks for time series modeling have an encoder–decoder
structure [14,39,43]. Here, the STCTN also follows a Transformer encoder–decoder structure
with multiattentions. Figure 1 illustrates the framework of our proposed STCTN, which
consists of four components: continuous position encoding module, spatial–temporal
encoder, spatial–temporal decoder, and output module. The spatial–temporal encoder is
composed of a temporal encoder and a spatial encoder in parallel, which can facilitate the
parallelization of model computing. The spatial–temporal decoder consists of a temporal
decoder and a spatial decoder stacked successively. Both the encoders and the decoders
are composed of a stack of L identical layers with residual connections. The outputs of the
temporal encoder and the spatial encoder are fused to obtain an encoded output. Then, the
outputs of the encoder are fed into the decoder to generate multistep predictions as a whole.
Two kinds of novel attention mechanisms, that is, local-range convolutional attention and
group-range convolutional attention, are also proposed in STCTN to improve the accuracy
and efficiency of the network. To facilitate the residual connections, all layers in STCTN
produce outputs of dimension dmodel .

4.2. Novel Attention Mechanisms

In this section, we introduced in detail the novel attention mechanisms proposed
in STCTN.

4.2.1. Local-Range Convolutional Attention

The temporal dependency of multivariable time series has many patterns. External
events often occur within a period and will affect the values of multiple consecutive
observation points. However, the standard self-attention calculates the attention score
through the pointwise value of the observation point, that is, it only pays attention to
the dependency between points in the global scope, and ignores the relationship between
different local contexts. In order to model these characteristics, we propose the local-
range convolutional attention to simultaneously focus on the global dependency and local
context dependency.
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Local-range convolutional attention is applied at the sequence level and captures
temporal multimodal dependencies, and its architecture is shown in Figure 2. Given
the input to the local-range convolutional attention is HT ∈ RN×T×dmodel , we use causal
convolution with S different kernel sizes to learn local context with different range sizes,
and then use self-attention to learn temporal dependencies on local context representations.
Unlike standard self-attention [35], we use causal convolution mapping instead of linear
mapping to calculate query matrix, key matrix, and value matrix:

Qm = f [m]
LRC(HT)W

Q
m

Km = f [m]
LRC(HT)WK

m

Vm = f [m]
LRC(HT)WV

m

(4)

Qm
LRC = αmVm = softmax(

QmKT
m√

dk
·M)Vm (5)

where f [m]
LRC represents the causal convolution of kernel size m with stride 1 and proper

paddings, WQ
m , WK

m ∈ Rdmodel×dk and WV
m ∈ Rdmodel×dv are learnable parameters. The

parameters are shared among all variables. The final output of the local-range convo-
lutional attention OLRC ∈ RN×T×dmodel is the linear projection of the concatenation of
O1

LRC, O2
LRC, · · · , OS

LRC. In this paper, the size of the convolution kernels is {1,2,3,4}, re-
spectively. When the kernel size is relatively large, a wide range of local contexts can be
extracted. When the kernel size is 1, it just performs a linear mapping before computing the
attention score, so that the model can still learn the dependency based on a pointwise value.
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Masked Self-Attention

Figure 2. The Local-Range Convolutional Attention. Q, K, V represent query matrix, key matrix,
value matrix, respectively.

4.2.2. Group-Range Convolutional Attention

We use multihead attention to capture the latent relationships among multiple time
series in different subspaces, that is, the latent graph structures. However, the standard
self-attention has a time and memory complexity of O(n2). On the other hand, since there
is no or weak relationship among many variables in the time series, it is unnecessary to
calculate the pairwise relationship between all nodes. To address those limitations, we
propose the group-range convolutional attention which divides variable nodes into groups
and calculates the groupwise relationships. Group-range convolutional attention is applied
on graph level and the architecture is illustrated in Figure 3.
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Figure 3. The Group-Range Convolutional Attention.

We employ 1D convolution of kernel size k with stride k to transform the inputs
HS ∈ RNg×T×dmodel (with proper padding) into different groups. The number of groups is:

Ng = [N/k] + 1 (6)

where [·] represents the integer function. The convolution kernel k determines the group
size and the number of groups. The 1D convolution gathers the node information within
the group, and then the attention mechanism is applied to calculate the groupwise at-
tention score matrix, which is served as the adjacency weight matrix for the graph. Ac-
cording to Equations (2) and (3), the outputs of groupwise attention are obtained as
Oatt ∈ RNg×T×dmodel .

Shuffle Operation

To extract the spatial dependencies of multiple patterns, we need to perform 1D
convolution and groupwise self-attention many times. However, there is a problem that
1D convolution is carried out according to the row order of the input matrix, if we do not
change the row order, the grouping results are the same. Since the node variables do not
have order relationships in the real physical space, we do not need to consider the row
order of the input matrix. Therefore, different groupings can be obtained by disrupting the
order of node variables in the input matrix, the operation can be written as follows:

Hi
s f = shuffle(HS, 0) i = 1, 2, · · · , h (7)

where shuffle(HS, 0) represents randomly permute the rows of the input matrix, and h
denotes the grouping times.

Repeat Operation

To facilitate the residual connection behind the attentions, we use the repeat op-
eration to convert the output of groupwise self-attention from Oi

att ∈ RNg×T×dmodel to
Oi

rp ∈ RN×T×dmodel ; the repeat operation can be represented as:

Oi
att =

{
Oi

1; · · · ; Oi
S; · · · ; Oi

Ng

} repeat→ Oi
rp

=
{

Oi
1; · · · ; Oi

1; · · · ; Oi
S; · · · ; Oi

S; · · ·Oi
Ng

; · · ·Oi
Ng

} (8)

Oi
rp = Oi

rp[0 : N, :, :] i f (Ng × k) > N (9)

where Oi
S represents row S of attention output matrix Oi

att. Here, we copy each row k times.
Since the paddings in convolution may cause (Ng × k) > N, we only take the previous N
rows of Oi

rp ∈ R(Ng×k)×T×dmodel from the repeat operation.
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Position-Align Operation

The shuffle operation changes the original order of variable nodes. In order to concate-
nate the output of all groupwise self-attentions, we must restore the arrangement order
of variable nodes in the repeat operation output Oi

repeat to the arrangement order in the
input HS, which is the position-align operation. The position-align operation generates the
output Oi

ali ∈ RN×T×dmodel .
As depicted in Figure 3, after the shuffle operation, the group-range convolutional

attention can learn different spatial dependency graph patterns in parallel; then, a series of
outputs O1

ali, O2
ali, · · · , Oh

ali are obtained after repeat operation and position-align operation.
Finally, these outputs are concatenated and a linear mapping is performed to generate
the final outputs OGRC ∈ RN×T×dmodel . The time and memory complexity are reduced by
k2 times through groupwise attention. This cuts of the bottleneck of computation and
memory, and the increase in complexity caused by the convolution is acceptable compared
to the gains obtained by the groupwise attention. The group-range convolutional attention
algorithm is given in Algorithm 1.

Algorithm 1: Group-Range Convolutional Attention Algorithm

Input: Node feature representations Hin, Number of nodes N, grouping times m, group size k
Output: Learned spatial features Hout
1: compute the number of groups Ng
2: for i = 1 to m do
3: Hi

s f = ShuffleOperation(Hin)

4: Hi
g = Grouping Hi

s f for Ng groups with 1D convolution

5: Hi
att = Attention(WQ

i Hi
g, WK

i Hi
g, WV

i Hi
g)

6: Oi
rp = RepeatOperation(Hi

att)

7: if (Ng × k) > N then
8: Oi

rp = Oi
rp[0 : N]

9: end if
10: Oi

ali = PositionAlignOperation(Oi
rp)

11: end for
12: Hout = Linear(Concat[O1

ali, O2
ali, · · · , Om

ali])
13: return Hout

4.3. Continuous Positional Encoding

Since our model contains no recurrence, to utilize the order of the sequence, we
follow [35] to compute the positional encoding using sine and cosine functions of different
frequencies:

PE(pos,2i) = sin(pos/10, 0002i/dmodel )

PE(pos,2i+1) = cos(pos/10, 0002i/dmodel )
(10)

where pos is the position and i is the dimension. However, almost all Transformer frame-
works that have position encoding [35,44] use independent position encoding for the
encoder and decoder. In time series forecasting tasks, the historical observations and
predicted future values are not independent in sequence and have a front-to-back posi-
tion relationship. To consider this position relationship, we design continuous positional
encoding, as shown at the bottom of Figure 1. The positioned embeddings are calculated
as follows:

PE =
{

PE0, PE1, · · · , PEP+Q
}

(11)

Xin
ENC = Xin ⊕ PE1:P (12)

Xin
DEC = PEP+1:P+Q (13)

where PE1:P ∈ RN×P×dmodel denote the first P columns and PE(P+1:P+Q) ∈ RN×Q×dmodel

denotes the last Q columns of the second dimension of PE, the ⊕ operation represents the
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elementwise addition. Xin
ENC is then used as input to the encoder and Xin

DEC is used as input
to the decoder.

4.4. Spatial–Temporal Encoder

As shown in Figure 1, the encoder is composed of a spatial encoder and a temporal
encoder in parallel. Each spatial encoder layer contains two sublayers, which are group-
range convolutional attention and fully connected feed-forward network. We also employ
the residual connection and layer normalization around each of the sublayer similar to
the standard Transformer [35]. The historical observation data is first transformed to Hin

PE
using 1× 1 convolution layer and then fed into the spatial encoder to produce the output
Hout

SE ∈ RN×P×dmodel . Each temporal encoder layer consists of a local-range convolutional
attention mechanism and a feed-forward network. The other parts are the same as the
spatial encoder. After continuous position embedding, Xin

ENC are fed to the temporal
encoder and produce output Hout

TE ∈ RN×P×dmodel .
The spatial encoder and the temporal encoder respectively generate outputs Hout

SE and
Hout

TE . These outputs are concatenated and then a 1× 1 convolution layer is used to generate
the final output of the encoder module Hout

ENC ∈ RN×P×dmodel .

4.5. Spatial–Temporal Decoder

The decoder is composed of a temporal decoder and a spatial decoder serially. Each
temporal decoder layer uses the local-range attention mechanism. The temporal decoder
takes the output of the continuous positional encoding module Xin

DEC as input and generates
output Hout

TD ∈ RN×Q×dmodel after L stacked layers. The attention mechanism used in the
spatial decoder layer is group-range convolutional attention. The spatial decoder has
another sublayer, the cross group-range convolutional attention, which performs attention
over the encoded output Hout

ENC. The spatial decoder generates the final output of the
spatial–temporal decoder Hout

DEC ∈ RN×Q×dmodel .

4.6. Output Module

In the output module, the spatial–temporal features output by the final spatial decoder
are fed as input. The output module consists of two 1× 1 standard convolution layers,
transforming the final decoded output Hout

DEC into the expected prediction output Ŷ ∈ RN×Q,
which can be formulated as:

Ŷ = Conv(Conv(Hout
DEC)) (14)

Mean absolute error (MAE) between predicted values and ground truths are then
adopted to train the model as:

Loss =
1

N × T

N

∑
i=1

P+Q

∑
t=P+1

∣∣∣Yi
t − Ŷi

t

∣∣∣ (15)

5. Experiments
5.1. Datasets and Data Preprocessing

We evaluate the performance of STCTN on six public datasets. The PEMS03, PEMS04,
PEMS07, and PEMS08 are traffic time series datasets with priori graph topology, released
by [45]. Traffic and Electricity are pure multivariate time series datasets without priori
graph topology, released by [11].

PEMS03, PEMS04, PEMS07, and PEMS08 are collected by the Caltrans Performance
Measurement System (PEMS). The four datasets are constructed from four different districts
in California and aggregated into 5 min from the raw data which was sampled every 30 s.
Each dataset records three different road attributes: traffic flow, average speed, and average
occupancy. We evaluate the performance of traffic flow forecasting in our experiments. In
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particular, the distance between the sensors recorded in the dataset was used to construct
the prior graph topology.

Traffic, Electricity are pure multivariate times series datasets without prior graph
topology. The Traffic dataset describes the road occupancy rates measured by 862 sensors
in San Francisco Bay area freeways. The Electricity dataset recorded the electricity con-
sumption of 321 clients from 2012 to 2014. The sampling interval of both datasets is one
hour. In particular, following [46], the electricity data is first transformed into a range of
0 to 1 and the evaluation is performed on the rescaled data for all the methods.

For the PEMS datasets, we use one-hour historical data to predict the next hour data
and evaluate the average prediction result. Therefore, the input sequence length and the
output sequence length are both 12. For the Traffic and Electricity datasets, we use 24-h
historic data to predict the values in the next 12 h, and evaluate the prediction results of
step 3, step 6, and step 12. The input sequence length is 24 and the output sequence is 12.
All the inputs are normalized by the Z-Score method as Xnorm = (X− µ(x))/σ(X), where
µ denotes the mean value and σ denotes the standard deviation. The dataset description
and statistics are summarized in Table 1.

Table 1. Dataset description and statistics.

Datasets #Timesteps #Nodes Sample Rate Start Time Input Steps Predict Steps

With priori
graph topology

PEMS03 26,208 358 5 min 9 January 2018 12 12
PEMS04 16,992 307 5 min 1 January 2018 12 12
PEMS07 28,224 883 5 min 5 January 2017 12 12
PEMS08 17,856 170 5 min 7 January 2017 12 12

Without priori
graph topology

Electricity 26,304 321 1 h 1 January 2012 24 12
Traffic 17,554 862 1 h 1 January 2015 24 12

5.2. Baseline Methods

To assess the performance of our method, we compare STCTN with the traditional time
series analysis method VAR [7], the latest deep learning methods including FC-LSTM [10],
N-BEATS [47], Transformer-based models (i.e., Transformer [35], informer [43]), and several
GNN-based models (i.e., DCRNN [14], STGCN [15], ASTGCN [16], Graph Wavenet [4],
MTGNN [17]). Note that other GNN-based methods except Graph WaveNet and MTGNN
require a predefined graph, and they can only be used in the datasets with a priori graph
topology. The detail of the baselines are as follows:

• VAR: An advanced time series model, which can capture the pairwise relationships
among time series [7].

• FC-LSTM: A recurrent neural network with fully connected LSTM hidden units [10].
• DCRNN: Diffusion convolutional recurrent neural network that integrates graph

convolution into sequence-to-sequence architecture [14].
• STGCN: Spatial–temporal graph convolutional network, which integrates graph con-

volution into 1D convolution [15].
• ASTGCN: Attention-based spatial–temporal graph convolutional network, which

designs temporal and spatial attention mechanisms [16].
• Graph WaveNet: A spatial–temporal graph convolutional network, which combines

graph convolution with dilated causal convolution [4].
• MTGNN: Multivariate time series forecasting model with graph neural networks,

which utilizes a graph learning module to extract the relations among variables [17].
• N-BEATS: A deep learning architecture based on backward and forward residual links

and fully connected layers [47].
• Transformer: The first deep learning network that proposed a self-attention mechanism

and used it for sequence modeling tasks [35].
• Informer: A deep learning method based on Transformer, which improves the attention

mechanism for long series time series prediction [43].
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5.3. Experimental Settings

All the datasets are split into training sets, validation sets, and test sets with a ratio of
6:2:2. To prevent information leakage in the future, we keep the chronological order of the
data when splitting the dataset, that is, the sampling time of the training data is always
before the test data. We also use the time of the day as an auxiliary feature.

All the experiments are conducted under the environment with one Inter(R) Xeon(R)
CPU E5-4650 V4 @ 2.20GHz and two NVIDIA TITAN RTX GPU cards. Adam optimizer
is chosen to train our model with gradient clip 5. The initial learning rate is 0.001 and the
weight decay is 0.0001. We train the model 100 epochs on each dataset and the batch size is
32. Dropout with 0.3 is applied after each stacked layer of encoder and decoder. Early stop
strategy was applied during the training process to prevent overfitting. The performance
of the model on the validation set is evaluated at the end of each epoch. When the loss
on the validation set does not decrease for 20 consecutive epochs, the training is stopped.
We save the model that performs best on the validation set during training and used it for
testing. Other hyperparameters vary by dataset.

• PEMS08. The number of model channels dmodel is 16. The number of stacked layers is
set to 4 and the group size in the group-range convolutional attention is set to 10.

• PEMS03, PEMS04, and Electricity. The number of model channels is 16. The number
of stacked layers is set to 4 and the group size is set to 50.

• PEMS07 and Traffic. The number of model channels is 8. The number of stacked layers
is set to 3 and the group size is set to 100.

5.4. Evaluation Metrics

Following [17], we use three widely used metrics to evaluate the performance, in-
cluding mean absolute error (MAE), mean absolute percentage error (MAPE), and root
mean square error (RMSE). Lower values mean better performance for those metrics. MAE,
MAPE, and RMSE can be calculated as follows:

MAE =
1

N × T

N

∑
i=1

T

∑
t=1

∣∣∣Yi
t − Ŷi

t

∣∣∣ (16)

MAPE =
1

N × T

N

∑
i=1

T

∑
t=1

∣∣Yi
t − Ŷi

t
∣∣

Yi
t

× 100% (17)

RMSE =

√√√√ 1
N × T

N

∑
i=1

T

∑
t=1

(Yi
t − Ŷi

t )
2 (18)

where Yi
t and Ŷi

t are predicted values and ground truths of the ith time series at time step t,
respectively.

5.5. Results and Analysis

The main experimental results are shown in Tables 2 and 3. Table 2 shows the compar-
ison of the average prediction performance of multistep (12 steps) predictions on datasets
with a priori graph topology. Table 3 shows the comparison of different approaches for
3-step, 6-step, and 12-step ahead predictions on datasets without priori graph topology.

Table 2 shows that our STCTN achieves the start-of-the-art prediction performance
in almost all the datasets and metrics. In the baseline models, DCRNN, STGCN, and
ASTGCN capture spatial dependencies based on a predefined graph, they perform bet-
ter than methods that only consider temporal dependencies. However, this limits their
application to pure multivariate time series without a predefined graph. Graph WaveNet
and MTGNN develop an adaptive dependency matrix to represent the spatial correlations,
but the dependency matrix is fixed once learned without considering the dynamics and
multipatterns of the spatial dependencies. Compared to the GNN-based models that rely
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on a predefined graph or learn fixed graph structure from data, STCTN still achieves
state-of-the-art prediction performance without the aid of a predefined graph.

Table 2. Performance comparison of different approaches on datasets with priori graph topology.

Methods
VAR FC-LSTM DCRNN STGCN ASTGCN Graph

WaveNet MTGNN Transformer STCTN
Datasets Metrics

PEMS03

MAE 23.65 21.16 18.18 17.49 17.69 19.85 17.79 20.01 16.89

MAPE
(%) 24.51 23.33 18.91 17.15 19.40 19.31 18.84 23.12 15.75

RMSE 38.26 35.11 30.31 30.12 29.66 32.94 28.75 30.01 28.02

PEMS04

MAE 23.75 27.14 24.70 22.70 22.93 25.45 23.31 24.06 22.53

MAPE
(%) 18.09 18.20 17.12 14.59 16.56 17.29 17.89 17.25 15.21

RMSE 36.66 41.59 38.12 35.55 35.22 39.70 36.07 37.66 35.09

PEMS07

MAE 75.63 29.98 25.30 25.38 28.05 26.85 25.28 28.07 24.24

MAPE
(%) 32.22 13.20 11.66 11.08 13.92 12.12 12.48 14.13 10.12

RMSE 115.24 45.94 38.58 38.78 42.57 42.78 38.91 41.42 37.52

PEMS08

MAE 23.46 22.20 17.86 18.02 18.61 19.13 17.96 18.93 17.15

MAPE
(%) 15.42 14.20 11.45 11.40 13.08 12.68 12.03 13.69 10.93

RMSE 36.33 34.06 27.83 27.83 28.16 31.05 27.76 28.11 26.63

Table 3. Performance comparison of different approaches on datasets without priori graph topology.

Models

Horizon 3 Horizon 6 Horizon 12

MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE
(10−2) (%) (10−2) (10−2) (%) (10−2) (10−2) (%) (10−2)

Traffic

VAR 1.63 73.34 3.17 1.84 77.51 3.51 1.95 78.36 3.69
FC-LSTM 1.68 46.52 4.01 1.71 47.81 4.05 175 52.25 4.02

Graph WaveNet 1.77 60.49 3.90 1.99 69.08 4.56 1.82 60.56 4.05
N-BEATS 1.24 38.24 3.00 1.39 49.42 3.23 1.46 44.32 3.40
MTGNN 1.29 47.28 3.01 1.34 50.82 3.15 1.43 45.46 3.23

Transformer 1.62 47.53 3.79 1.69 50.56 3.85 1.73 52.03 3.97
Informer 1.38 43.84 3.38 1.59 45.89 3.42 1.65 47.25 3.59

STCTN 1.15 37.13 2.78 1.27 42.25 3.05 1.30 42.59 3.04

Electricity

VAR 5.96 19.72 8.65 8.58 28.39 12.02 8.97 33.78 13.22
FC-LSTM 7.03 19.34 9.91 6.99 19.45 9.86 7.16 24.18 10.08

Graph WaveNet 4.71 14.67 7.22 6.32 21.48 9.17 5.04 16.50 8.08
N-BEATS 3.41 10.12 5.66 3.73 11.43 6.38 3.90 12.55 7.18
MTGNN 3.20 10.19 5.23 3.55 11.20 6.11 3.81 12.69 6.55

Transformer 4.85 15.32 8.43 5.32 17.69 9.25 5.98 19.37 9.91
Informer 4.05 13.97 7.82 4.45 14.09 8.22 5.07 16.26 8.56

STCTN 3.09 9.15 4.85 3.43 10.52 5.43 3.68 11.61 5.85

For the datasets without prior graph topology in Table 3, STCTN significantly out-
performs the baseline methods in all steps. Compared to Transformer and Informer, our
proposed method still achieves the best performance. The advantage of Informer lies in
the long sequence time series prediction, and it does not consider the spatial dependencies
between multiple variables, so STCTN outperforms Informer on the relatively short-term
prediction tasks. In particular, in the Traffic dataset that is not so smooth, the performance
of Graph WaveNet decreases significantly, indicating that it is more suitable for modeling
smooth data, and our method is robust to both smooth and unsmooth time series data.
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The multistep (12 steps) forecasting results on the PEMS08 and Electricity datasets
are shown in Figure 4. It shows that the multistep outputs generated by the baseline
models are relatively smooth, they always fit the overall trends while ignoring most of the
fluctuation information. Our method can pay more attention to the fluctuations and fit the
fluctuations more effectively. We further illustrate the visualization prediction results with
long-term prediction (144 steps and 288 steps) for baselines and STCGN, which are shown
in Figures 5 and 6. As we can observe that compared with N-Beats, Graph WaveNet, and
MTGNN, our model more accurately follows the changes of ground truth.
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5.6. Ablation Study

To better understand the effectiveness of the key components of STCTN, we design
three variants of STCTN and conduct ablation experiments. The differences of the variants
are described as follows:

• w/o CPE: We use the independent position encoding in the encoder and decoder
instead of continuous position encoding.

• w/o LCA: We replace the local-range convolutional attention mechanism in both the
encoder and decoder module with the standard multihead attention mechanism.

• w/o GCA: We replace the group-range convolutional attention mechanism in both the
encoder and decoder module with the standard multihead attention mechanism.

Table 4 represents the results obtained on the PMES08 dataset. It shows that these
key components in STCTN are indispensable. As we replace the local-range convolutional
attention mechanism with the standard multihead attention mechanism, the evaluation
metrics increase by a great amount, which indicates that local context semantic is the
important content of temporal dependencies. The group-range convolutional attention
mechanism is proved to be effective because it dynamically models the spatial dependencies
of multiple patterns. The continuous position encoding also helps improve forecasting
performance. Figure 7 shows the MAE, MAPE, and RMSE in each prediction step of STCTN
and the three variants. We observe that STCTN outperforms the variants in all prediction
steps, indicating the effectiveness of the designed modules. Moreover, as the prediction
step increases, the performance difference between the variants and STGCN gradually
increases, indicating that STGCN has stronger long-term prediction capabilities.

Table 4. Ablation study on PEMS08 dataset.

Methods w/o CPE w/o LCA w/o GCA STCTN

MAE 17.61 18.77 18.08 17.15
MAPE (%) 11.47 12.16 12.84 10.93

RMSE 27.57 28.90 28.44 26.63
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5.7. Model Parameter Analysis

To assess the effect of hyperparameters on the model, we conducted a parameter study
of three core parameters including the number of stacked layers L, the model channels
dmodel , and the range size of the group-range convolutional attention k. We conduct five
experiments each time with other parameters fixed and report the average of MAE. The
number of stacked layers ranges from 1 to 6. The range size of group-range convolution
attention ranges from 5 to 25. The number of model channels ranges from 4 to 16, with step
size of 4. All the experiments are conducted on the PEMS08 dataset. The boxplot of the
results is shown in Figure 8. STCTN achieves the best performance with 4 stacked layers.
The model achieves the best performance when the group size is 10, which illustrates
that the grouping of variable nodes is beneficial to the model performance, although our
original intention of designing the group-range convolution attention is to reduce the time
and space complexity of the model. This also verifies that there is no or weak relationship
among many variables in the multivariate time series. When the group size continues
to increase, more variable information is aggregated and its own characteristics could be
ignored, which increases the MAE loss. Figure 8c shows that the increase of model channels
will enhance the expressiveness of the model so that the MAE will gradually decrease.
However, it will also greatly increase the memory complexity of the model, so we can
increase the model channels as much as the memory complexity allows.
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6. Conclusions

In this paper, we propose a new Transformer-based deep learning model, called
STCTN, to improve the multivariate time series forecasting. Within STCTN, local-range
convolutional attention and group-range convolutional attention are introduced to solve
the difficulties of existing methods in capturing complex spatiotemporal dependencies.
Local-range convolutional attention mechanism can simultaneously focus on both global
and local context temporal dependencies. Group-range convolutional attention mechanism
is designed to model multiple spatial dependency patterns and also reduce the computation
and memory complexity. We also proposed continuous positional encoding to link the
historical observations and predicted future values in positional encoding and improve
prediction performance. Extensive experiments on six real-world datasets show that the
proposed method is superior to the existing methods.

In the future, we will apply our proposed framework to other spatiotemporal modeling
tasks, such as trajectory prediction. The local-range convolutional attention and group-
range convolutional attention can also be used in other sequence modeling and spatial
graph modeling tasks respectively, which are left for future work.
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