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Abstract: Blind modulation classification (MC) is an integral part of designing an adaptive or
intelligent transceiver for future wireless communications. Blind MC has several applications in
the adaptive and automated systems of sixth generation (6G) communications to improve spectral
efficiency and power efficiency, and reduce latency. It will become a integral part of intelligent
software-defined radios (SDR) for future communication. In this paper, we provide various MC
techniques for orthogonal frequency division multiplexing (OFDM) signals in a systematic way. We
focus on the most widely used statistical and machine learning (ML) models and emphasize their

advantages and limitations. The statistical-based blind MC includes likelihood-based (LB), maximum
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a posteriori (MAP) and feature-based methods (FB). The ML-based automated MC includes k-nearest
neighbors (KNN), support vector machine (SVM), decision trees (DTs), convolutional neural networks
(CNNSs), recurrent neural networks (RNNs), and long short-term memory (LSTM) based MC methods.
This survey will help the reader to understand the main characteristics of each technique, their
advantages and disadvantages. We have also simulated some primary methods, i.e., statistical- and
ML-based algorithms, under various constraints, which allows a fair comparison among different

doi.org/10.3390/522031020 methodologies. The overall system performance in terms bit error rate (BER) in the presence of MC is

Academic Editor: Peter Han also provided. We also provide a survey of some practical experiment works carried out through

Joo Chong National Instrument hardware over an indoor propagation environment. In the end, open problems
and possible directions for blind MC research are briefly discussed.
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1. Introduction

Blind modulation classification (MC) determines the modulation type of the received
signal, ensuring proper demodulation and retrieval of the transmitted data [1-4]. Recently,
MC has played a significant role in both military and civilian communications, such as
cognitive radio, signal intelligence, link adaptation, signal control, and SDR [3-7]. With an
intelligent receiver, blind parameter estimation and classification algorithms may be used,
resulting in a substantial increase in spectral efficiency since no predefined training or pilot
sequence is needed [8-10].

Over the years, various MC algorithms for single-carrier (SC) systems have been
4.0/). developed, which can be divided into likelihood-based (LB) and feature-based methods
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(FB) [1,5,6,11-17]. Although the LB approaches are optimal in a Bayesian context, they have
high computational complexity [11]. They often necessitate prior information about the
signal parameters in order to distinguish modulation formats, which is typically undesir-
able in an intelligent or adaptive transceiver system. Furthermore, FB algorithms, which
consist of features extraction and classifier construction, usually provide a sub-optimal
solution. They are inherently simpler to implement, have less computational complexity,
and may not necessitate prior information about the signal parameters and channel statis-
tics. To identify the modulation schemes, existing FB approaches extract specific features,
such as cumulants [12,13], cyclic statistics [5,6,14-16], and wavelet transform [17], and use
threshold values to distinguish the extracted features. As a result, they are better fit for fad-
ing and additive white Gaussian noise (AWGN) channels. The algorithms [5,6,14-16,18-21]
based on higher-order cyclic statistics are reliable and perform well in flat fading as well
as in frequency-selective fading channels. They consider M-ary phase-shift keying (M-
PSK) and M-ary quadrature amplitude modulation (M-QAM) modulation schemes by
using non-zero cyclic frequencies of received signals. The combination of higher-order
correlation-, cumulant-, cyclic cumulant-, and cyclostationarity-based MC algorithm for
multiple-antenna systems is analyzed in [5]. The algorithm described in [6] is designed
for single-antenna and single-carrier (SC) systems. It requires the combined features of
cumulants and cyclic cumulants and performs well over flat fading channels. Further-
more, the algorithm proposed in [5,6] can also distinguish various quadrature PSK (QPSK)
variants, such as offset QPSK (OQPSK), minimum-shift keying (MSK), and 7t/4-QPSK
modulation types.

Recent advances in machine learning (ML) and data science have resulted in its ex-
tensive application in various fields. Artificial intelligence (AlI) and other advanced ML
approaches have significantly improved state-of-the-art outcomes in computer vision,
speech recognition [22], drug discovery, genomics, and, most recently, physical layer com-
munication [23]. MC algorithms [24-36] focused on various ML algorithms. In [24], the MC
technique is evaluated using genetic programming (GP) and K-nearest neighbor (KNN).
Cumulants are utilized by GP as input features to distinguish modulation types. In [25],
extreme learning machine (ELM) and higher-order statistics-based MC algorithms for mul-
tiple antenna systems are presented. Convolutional neural networks (CNNs) are explored
in [26] that can distinguish modulation schemes even at low signal-to-noise ratio (SNR)
scenarios. Furthermore, CNN-based MC techniques are robust to prediction errors on car-
rier phase offset and SNR. The approach investigated in [27] extracts unique characteristics
using higher-order cumulants (HOCs), and then the feed-forward neural network model is
developed to distinguish modulation schemes. In comparison to typical centralized train-
ing, distributed learning-based MC (DistMC) based on several edge devices can achieve a
faster training process and reduce communication costs through collaborative training [28].
Multi-task learning (MTL) based MC has a single trained model for all SNRs under carrier
frequency offset (CFO) and phase offset (PO) conditions [29,30]. In [35], an adversarial
transfer learning-based MC developed a framework for SC systems that combines transfer
learning with adversarial networks to handle the problem of limited data in a realistic
scenario. A complex-valued network [36] is presented to illustrate the enormous potential
for MC and show the higher classification performance as compared to the real-valued
network. The authors [37] studied a phoneme-based distribution regularization algorithm
for speech enhancement by utilizing speech recognition information in the modulation
domain. However, the approaches mentioned above [1,5,6,11-17,24-36] are only applicable
to SC systems.

Orthogonal frequency division multiplexing (OFDM) is a well-known multicarrier
modulation technology used in advanced wireless communications systems. OFDM is
employed in the 4G Third-Generation Partnership Project (3GPP) Long Term Evolution-
Advanced (LTE/LTE-A), Worldwide Interoperability for Microwave Access (WiMAX),
and high-speed wireless local area network (WLAN) standards such as 802.11n [19]. It is
also an integral part of 5G New Radio (NR) cellular. The key feature of OFDM is the ability
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to convert frequency-selective fading to flat fading channels. Due to the high spectrum
utilization and strong anti-multipath interference ability, the OFDM modulation scheme has
been employed as the main transmission approach for high data rate systems [38,39]. M-PSK
and M-QAM are the two most popular modulation schemes that are used with OFDM. MC
for OFDM signals is a critical research challenge for 5G and beyond wireless communication,
where Al would be a fundamental aspect of the communication system [40—43].

Various MC algorithms for the OFDM systems were carried out in [44-97]. The al-
gorithms for multiple-input multiple-output and OFDM (MIMO-OFDM) systems based
on deep neural network (DNN) and Gibbs sampling are investigated in [44]. Moreover,
these methods are restricted to known channel conditions and/or perfect synchroniza-
tion. The likelihood-based MC algorithm for index modulation investigated in [47,71] is
applicable to both known and unknown channel state information (CSI). However, both
techniques require perfect synchronization classification of M-PSK/M-QAM modulation
types. The likelihood and maximum a posteriori [50] based MC approach are employed
when CSI is known. The MC approach based on the statistical features of the received
OFDM signal is studied in [61]. This technique uses mean, skewness, and kurtosis as
features to distinguish QPSK, 16-QAM, and 64-QAM modulation schemes. However,
this technique does not perform well with timing and frequency synchronization errors.
The MC algorithm based on amplitude moments is discussed in [62]. This method dis-
tinguishes between 16-QAM and 64-QAM modulation schemes by using the correlation
between any two subcarriers. The non-parametric Kolmogorov-Smirnov (KS) based tech-
nique presented in [98,99] is used to classify M-PSK/M-QAM modulation schemes. It
operates in the presence of known timing offset and unknown frequency and phase offsets,
and the non-Gaussian noise channel. Most of the above MC algorithms for the OFDM
signal are restricted to known CSI and/or perfect synchronization cases. Moreover, a dis-
crete Fourier transform (DFT) and normalized higher-order cumulant [63] based blind
MC is discussed to classify the lower-order digital modulation schemes for the OFDM
system. However, the classification accuracy is unsatisfactory, subjected to channel degra-
dation. In [96], the authors developed a high-performance deep residual network (ResNet)
with a triple-skip residual stack (TRNN) based MC algorithm for real-time OFDM signal
classification in dynamic fading channel conditions.

The objective of this paper is to present a comprehensive review of various MC tech-
niques for OFDM signals. The statistical approach and the Al approach are two main classes
of MC algorithms that will be discussed in detail. We concentrate on the most common
statistical and ML models, emphasizing their benefits and drawbacks. The contributions of
various research papers are summarized into compact forms. This will make it easier for the
reader to recognize the important features of each approach. Furthermore, we also present
results obtained by applying some statistical and ML algorithms with a testbed based on
the National Instrument (NI) radio frequency (RF) hardware over an indoor transmission
environment. Finally, challenges and potential research directions are briefly explored.

The remainder of the paper is organized as follows. The signal model of the received
OFDM system is presented in Section 2. The statistical approach for MC is discussed
in Section 3. We summarize the advantages and the limitations of Al models in MC in
Section 4. Finally, challenges and future research directions involved in MC are discussed
in Section 5. The organization of the paper is provided in Figure 1. The abbreviation used
in the rest of the paper is listed in Table 1.
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Table 1. List of abbreviations in alphabetical order.

Acronym

Explanation

Al
ALRT
AMAP
ASB
AWGN
BAT
BFSF
BICM-ID
CNN
csl
DBN
DVB

FB

FCP
FFT
FNSF
FPGA
FSF
FSST
GLRT
HGWO
HLRT
HOC
HOS
ICI

1Q

IQL
KNN
KS

LLR
MAP
MC
MFCC
MDNCC
NOMA
OFDM-IM
PCC
PDF
PER
PSO

sC

SDR
STFT
TDD
TF-HMS
UMP
VLC
WOA
WPS
WT

Artificial Intelligence

Average Probability Ratio Test
Approximated Maximum a Posteriori
Amplitude Spectrum of Bispectrum
Additive White Gaussian Noise

Bit Allocation Table

Bi-Fold Signal Fortification
Bit-Interleaved Coded Modulation Iterative Decoding
Convolutional Neural Network

Channel State Information

Deep Belief network

Digital Video Broadcasting

Feature Based

False Classification Probability

Fast Fourier Transform

Frequency Non-Selective Fading Channel
Field Programmable Gate Array
Frequency Selective Fading Channel
Fourier Synchrosqueezing Transformation
Generalized Likelihood Ratio Test
Hybrid Grey Wolf Optimization

Hybrid Likelihood Ratio Test

Higher Order Cumulant

Higher Order Statistics

Inter-carrier Interference

In-phase and Quadrature

Improved Q-learning

K-Nearest Neighbors
Kolmogorov-Smirnov

Log-likelihood ratio

Maximum a Posteriori

Modulation Classification

Mel Frequency Cepstral Coefficient
Multi-Distance-Based Nearest Centroid Classifier
Non-Orthogonal Multiple Access
Orthogonal Frequency Division Multiplexing with Index Modulation
Percentage of Correct Classification
Probability Density Function

Packet Error Ratio

Particle Swarm Optimization

Single Carrier

Software-defined Radio

Short-Time Fourier Transform

Time Division Duplex

Twin-Functioned Human Mental Search
Uniformly Most Powerful

Visible Light Communication

Whale Optimization Algorithm

Wavelet Packet Signals

Wavelet Transform
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Research Directions

Figure 1. The organization of the paper.

2. OFDM Signal Model

The system model of MC for the OFDM system is shown in Figure 2. It consists of an
adaptive OFDM transmitter, a receiver with statistics-based MC, ML-based MC, and DL-
based MC. The transmitter can adjust its baseband modulation format and the number of
subcarriers according to the requirement of the data rate and the available CSI. The signal
is transmitted over a frequency-selective fading channel. This channel introduces all kinds
of impairments into the transmitted signal, including timing, frequency, and phase offsets.
The receiver consists of an MC system pre-processing block and selection of a proper MC
algorithm. In the following subsections, we provide the mathematical framework of the
OFDM signal for MC.

The discrete baseband OFDM samples d,, [11] of the mth OFDM symbol, obtained by
N-point inverse discrete Fourier transform (IDFT), which can be written as

Blind Modulation
Classification for OFDM
Signals
Section 1 : N Average Likiilﬁ;)d Ratio Test
Introduction ( )
N Generalized Likelihood Ratio Test
(GLRT)
. Section 3.1 :
Section 2 : [ —
OFDM Signal Model Likelihood-based (LB) Approach Hybrid Likelihood Ratio Test
_)
(HLRT)
—> Quasi HLRT (QHLRT)
Section 3 : Section 3.2 :
Statistics-Based Approach F+—>»{ Maximum a Posteriori (MAP) > Instantanous
To MC Approach features
—>| Statistical features »| Moments, Cgmqlants,
Cyclostatioarity
Section 3.3 : Fourier transform,
Feature-based (FB) Approach —>»| Transform features —>» Wavelet transform, S-
tranform
Ly Other features | Constellation §hape,
Zero-crossing
. K-Nearest Neighbors (KNN), Support Vector
Section 4.1 : » Machine (SVM), Decision Trees (DTs), Random
Machine Learning (ML) based MC ” ’ F ’
Section 4 : orest
Artificial Intelligence-
Based Approach To MC
PP Section 4.2 : Convolutional Neural Networks (CNN),
. e »Recurrent Neural Networks (RNNs), Long Short-
Deep Learning (DL) based MC Term Memory (LSTM)
Section 5 :
Challenges and Future

N-1 ,
du[n] = Y Dulkle?™/N, 0<n<N-1,
k=0

@
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where N = ps X Ny, ps is the oversampling factor, N; is the number of data subcarriers,
and Dy, [k| is the baseband modulated oversampled data obtained by zero-padding the
baseband modulated information, i.e., M-PSK/M-QAM and denoted by D, [k]. Thus, D, [k]
is given by

Dulk] 0<k<Ngz/2-1

Dulk] = { Zg Ny /2 <k < Ny(ps—1/2) —1 )
Dulk] Ny(ps—1/2) <k<N-1,

where Z; is a vector of zeros of length N, (ps — 1). To combat the effect of intersymbol
interference (ISI), a cyclic-prefix (CP) of N, samples from the end of the OFDM symbol
are added at the beginning of the OFDM symbol before the transmission. The transmitted
baseband OFDM symbol d,;, 1] of length N + N, with CP is then given by
doln] = {dm[n +N] —Nyp<n<-—1 )

dp[n] 0<n<N-1.

After passing through a frequency-selective fading channel with impulse response g[!]
of length L, the received baseband OFDM samples of the mth OFDM symbol are given by

o L71 -
Xp[n] = U/ NTO N o) dyn — 1 — 7] +wln], 0<n<N;—1 (4)
=0

where € is the normalized carrier frequency offset (CFO), ¢ is the phase offset, T is the

symbol timing offset (STO), N; length of the OFDM symbol with CP, Ns = N + N, and

Nep > L, and wn] is the AWGN with zero mean and variance 02.

Data In
—>

Baseband
Modulation: M-PSK
and M-QAM

Channel
—— il X N0/ R
Serial > >
o | DU | dn 1]
Parallel Dm[Zl; dm[z]'ParIzIIeI Cyclic
(SIP) | Dul3 | IDFT | 3] erigl 2] PP Preprocessor Demodulation
and : erial
(CP)
Zero- | .| (PB)
" An-n| -1 . v
Padding i Local Oscillator Local Oscillator,
Modulation
Classification
Algorithm

Figure 2. Block diagram of blind modulation classification for OFDM system.

3. Statistics-Based Approach to MC
3.1. LB Approach

In the LB system, MC refers to numerous composite hypothesis problems. The LB-MC
is based on the assumption that the probability density function (PDF) of the analyzed
waveform includes all classification information, depending on the embedded modulated
signal. The average likelihood ratio test (ALRT) [47], generalized likelihood ratio test
(GLRT) [46], and hybrid likelihood ratio test (HLRT) [47] are the main three LB-MC tech-
niques studied in the literature, based on the model selected for the unknown parameter.
In some works in the literature, quasi-ALRT [46] and quasi-HLRT [45,46] are also described.
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ALRT: In this method, unknown parameters are considered random variables with
specific PDFs. For the hypothesis H i which represents the jth modulation, j = 1,2, ..., M,
the likelihood function (LF) is as follows

Ny rr = Y Alx[nllog, Hp(vj|Hy), ®)
i

where A[xy[n]|v;, H;] denotes the conditional LF of the received signal x, [n] associated
with noise over H;, conditioned on the undefined vector v; under H;. By integrating over
v; and using its known PDF, the problem is reduced to a basic hypothesis-testing problem.
The conditional LF for a baseband complex AWGN is provided by

1 «N-1 2
1 P 2n:0 |xm(n) - Sm[nH
Alxp([n]|vj, Hi] = ——exp | — L Ny

No (6)

where Ny represents the power spectral density (PSD) of AWGN in W/Hz, with the auto-
correlation E{w[n], w*[n + t]} = Nyd[n], with E{.} denoting the expectation and * repre-
senting the complex conjugate. Furthermore, here s, [n] = eU27€n/N+9) yol= L o[1]d,, [n — 1 —
7]. ALRT produces an optimal classifier in the Bayesian context when the chosen p(v;|H;)
is the same as the true PDF.

GLRT: This approach considers the unknown parameters to be unknown deterministic.
The best result is obtained by carrying out the so-called uniformly most powerful (UMP)
test [100]. If UMP test does not exist or is difficult to obtain, a rational technique is used to
estimate the unknown parameters based on the assumption that H; is true, and then utilize
these estimations in ALRT as if they were accurate. When maximum likelihood is applied
for estimations, the hypothesis test is known as GLRT. The unknown parameters of GLRT
are, of course, considered deterministic unknowns, and LF under Hj is provided by

A]éLRT[xm[n]] = H};?-XA[xm[n”'Uj, H]] )

HLRT: This is the combined approaches of the above techniques, where the LF under
H; is defined by

i —
Abirr = max ) Al o), 0, Hj p(oj,| Hj)do,, ®)
1 ‘sz
T L
where v; = {v e jz} with 1 as the transpose and v, and v}, are vectors of unknown

parameters treated as unknown deterministic and random variables, respectively. Generally,
v;, and v;, are made up of parameters and data symbols, respectively.

It is to be noted that ALRT necessitates multidimensional convergence, while GLRT
necessitates multidimensional maximization. ALRT could be unrealistic due to the diffi-
culties of performing multidimensional integration in the presence of a large number of
unknown parameters and the requirement to know the PDFs. Furthermore, maximiza-
tion over unknown parameters in GLRT results yield the same LF value for nested signal
constellations, such as BPSK and QPSK, 16-QAM, and 64-QAM, resulting in inaccurate
classification. However, with HLRT, averaging over unknown data symbols eliminates
the GLRT problem of nested constellations. In the case of a two-hypothesis classification
problem, a decision is made on the basis of

AD [ [1]] /AP [y 1] % m,1 = A(ALRT), G(GLRT), H(HLRT), ©)

Hp
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where 7; represents the threshold. The left-hand side of (9) represents the likelihood ratio,
and the test is referred to as the ALRT, GLRT, and the HLRT, respectively, depending on
the approach used to estimate the LE. The extension of (8) to multiple classes is simple.
Likewise, the log function can be extended to the two members of the inequality (9). Table 2
lists multiple LB-MC algorithms proposed in the literature, outlining the modulation types,
uncertain parameters, and the channel employed.

Table 2. Summary of LB approaches for OFDM signals.

i . Average PCC
Author(s) Classifier(s) Modulation(s) Parameter(s) Channel at 20 dB SNR
T. Yucek [45] Sub-optimum algorithm BPSK, QPSK, Imperfect noise variance AWGN 99.9%

16-QAM and 64-QAM

. Quasi-log-likelihood Ratio BPSK, QPSK, Known channel correlation o
J. Leinonen [46] Test based classifer 16-QAM and 64-QAM between adjacent subchannels AWGN 98.50%
, ALRT, HLRT and BPSK, QPSK, Known CSI, Known noise . o
J. Zheng [47] Energy-based detector 8-PSK and 16-QAM variance and unknown CSI Rayleigh  97.40%
Expectanor} maximization BPSK, QPSK, Unknown CSI and unknown Acoustic
T. Fang [48] block-quasi HLRT 8-PSK and 16-QAM noise Dower Ravleigh 100%
(EM-Block-QHLRT) O15¢ pO yielg
fterative EM-based MC Presence of synchronization
M. Marey [49] algorithm, bit-interleaved QPSK, 64-QAM, error and known and unknown  Rayleigh ~ 99%

coded modulation iterative 1024-QAM and 8194-QAM

CSI

decoding (BICM-ID) scheme

An LB-MC for the OFDM system is studied in [45]. The aim of this work is limited
to reliable blind MC schemes. A maximum likelihood that provides optimal performance
in the presence of AWGN is introduced. A sub-optimal classifier is obtained based on
the optimal maximum-likelihood classifier to minimize the computational complexity.
The accuracy of such classifiers is evaluated through Monte Carlo simulations. In the
simulation, an OFDM system with 64 subcarriers is considered. The subcarriers are divided
into 4 bands, each of which has 16 subcarriers. In each sub-band, four distinct modulation
formats, namely BPSK, QPSK, 16-QAM, and 64-QAM, are used to transmit the signal
according to the channel conditions. Perfect CSI is considered for the simulation. It is
observed that the proposed sub-optimal algorithm achieves near to optimal performance
with significantly less complexity. As a result, it can be used rather than signaling in realistic
systems to improve spectral efficiency.

In the proposed method [46], a modified quasi-log-likelihood ratio (QLLR) based MC
for the OFDM system is studied. The ALRT- and GLRT-based classifiers need few symbols
to achieve acceptable classification performance in the presence of appropriate channel
estimation with relatively high SNR. To achieve acceptable performance, a modified QLLR-
based classifier needs high SNR and more symbols but their computational complexity
remains lower compared to the ALRT- and GLRT-based classifiers. In order to classify
QPSK, 16-QAM, and 64-QAM, the modified QLLR test is applied on received symbol sets.
This method seems to be feasible if the operating point of SNR is comparatively high as
compared to ALRT- and GLRT-based classifiers.

Another LB-MC for OFDM with index modulation (OFDM-IM) is analyzed in [47].
The modulation parameters in OFDM-IM often include the number of active subcarriers
in addition to the constellation of signals, which distinguishes them from traditional
modulations. Specifically, two MC cases are assumed. One is the MC with known CSI,
and another is the MC with unknown CSI. ALRT, HLRT-LLR, and HLRT-energy-based
classifiers are considered for the case of known CSI. When compared to ALRT, both HLRT-
LLR and HLRT-energy have lower computational complexity, but show degradation in
classification performance. In the case of unknown CSI, the energy-based detector is first
used to recognize the active subcarriers, then the expectation-maximization (EM) algorithm
is employed to estimate the CSI for each hypothesis. The number of subcarrier N = 128,
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CP length Ncp = 15, number of channel tap L = 5 and Rayleigh channel are considered
the simulation parameters. The simulation results revealed that with an increment in the
observed data, the classification accuracy of MC with unknown CSI is near the MC with
known CSI. Furthermore, a numerical analysis of MC for OFDM and OFDM-IM shows
that OFDM-IM has less classification accuracy than the OFDM. It illustrates that OFDM-IM
would have less MC efficiency than OFDM because of the identification of the additional
parameter, i.e., the number of active subcarriers that would be necessary for OFDM-IM.

In [48], a MC for OFDM signal underwater acoustic multipath channel is studied.
It works in the presence of unknown channel impulse response (CIR) and noise power.
Channel is first estimated by the EM block. If the number of blocks in EM increases,
the channel estimation increases accordingly. Then, the QHLRT method is used to classify
the subcarrier modulations. The EM-block-QHLRT method is compared with the EM-
QHLRT. The number of subcarrier N = 1024, CP length N., = N/4, sampling frequency
48 kHz and acoustic Rayleigh channel are considered the simulation parameters for this
technique. It is observed that after 5 dB SNR, the classification rate achieved by EM-block-
QHLRT is higher than 90%, which shows a higher accuracy compared to the EM-QHLRT-
based classifier.

In [49], an iterative EM-based MC algorithm is used for OFDM-SDR systems. The soft
information provided by the channel decoder of bit-interleaved coded modulation iterative
decoding (BICM-ID) scheme is utilized as a priori information to the proposed classifier.
Simulation is done for the perfect CSI and imperfect CSI for higher-order modulations over
the Rayleigh fading channel. The results show a slight difference between the perfect CSI
and imperfect CSI, which shows the robustness of the suggested method. The suggested
method improves significantly with iterations and outperforms traditional uncoded al-
gorithms. The suggested method obtained acceptable classification performance in the
presence of synchronization error, i.e., timing, frequency, and phase offset with reduced
processing time. Furthermore, as the constellation size increases, the identification per-
formance degrades. This is because of the less reliable soft information provided by the
channel decoder.

3.2. Maximum a Posteriori (MAP) Approach

MC is the process of determining the modulation format of received signals from a
set of L modulation formats 91 = {Mj, i=12,..,M }, based on a series of N received
samples Xy, = [X[0], X [1], ..., x;u[Ns — 1]]. The maximum a posteriori (MAP) criteria can
be used to find the optimal modulation classifier by using the Bayes decision principle [57].
For received signal xy,, the a posteriori probability of M,; is defined as P(M;[x ), and the
decision is made by

~

M; = arg Al/’I?eaf));? P(M;|xm), (10)

Another well-known classifier originating from the MAP criteria is the ML classifier.
The a posteriori probability can be expressed using the Bayes’ rule as

P(xm|Mj) P(M;)

P(M]'|Xm) = P(xm) ’

(11)
where P(x,, \M]) denotes the likelihood of the received samples x,; when the modulation
format M; is given, P(M;) is the prior likelihood of the modulation format M;, and P(xy,)
is the marginal likelihood of the received samples x;,, which is independent of M;. When
all the candidate modulation formats are equiprobable, then the MAP classifier is identical
to the ML classifier [51].

M; = arg Al/’I?eaf));? P(xm|M;). (12)

Table 3 lists multiple MAP-based MC algorithms studied in the literature, outlining
the modulation types, uncertain parameters, and the channel employed.
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Table 3. Summary of maximum a posteriori (MAP) based classifiers for OFDM signals.
i . Average PCC
Author(s) Classifier(s) Modulation(s) Parameter(s) Channel at 20 dB SNR
L. Haring [50] ?fﬁfnﬁl?é’if t}rﬂit BPSK, 4-QAM, Perfect knowledge Rayleigh  99%
' & . p y 16-QAM and 64-QAM about data rate yi€1g °
in TDD systems
no modulation, BPSK, Perfect synchronization
L. Haring [51] ML and MAP Algorithm QPSK, 16-QAM Y Rayleigh  99%
and unknown CSI
and 64-QAM
that atilized frame siractare,  FOmOduIation, BPSK,  p g
L. Haring [52] e frame SIUCTUre,  por 16-QAM eriect knowredge AWGN  100%
channel reciprocity, total and 64-QAM about data rate
number of transmitted data
s Improved Approximated QPSK, 16-QAM - o
L. Haring [53] MAP Algorithm and 64-QAM Perfect synchronization - 79.5%
Signalling-assisted Known CSI, knowledge
L. Héring [54] gn S i M-QAM about total number of AWGN 98.5%
modulation classifier . .
loaded bits and coding rate
- Jointly optimizes the bit g Perfect synchronization and o
L. Héring [55] loading algorithm M-QAM knowledge about signalling AWGN 9%
o Influence of imperfect Unknown CSI and knowledge . o
L. Haring [56] reciprocity IEEE 802.11a/n about total number of loaded bits Rayleigh ~ 100%
. BPSK, QPSK, Perfect time and frequency o
C.Husmann [57] MAP Algorithm 16-QAM and 64-QAM synchronization AWGN 97.5%
Improved Approximated N
S. Bahrani [58] MAP Algorithm, channel BPSK, QPSK, 16-QAM . Perfect synchronization and AWGN 98%
L 64-QAM and no modulation unknown CSI
prediction method
. . BPSK, QPSK, 16-QAM Perfect synchronization o
M. Karabacak [59] Adaptive Pilot Based and 64-QAM and known CSI AWGN 99.8%
. Rate adaptive (RA) BPSK, QPSK, 16-QAM Perfect synchronization . o
S. bahrani [60] bit loading algorithm and no modulation and unknown CSI Rayleigh 100%

A MAP-based MC algorithm in time division duplex (TDD) based OFDM systems

with adaptive QAM modulation is studied in [50]. It takes advantage of the channel
reciprocity in TDD systems and the data rate of transmission. Unlike the signaling-free
adaptive modulation technique, MC and data detection are decoupled here, resulting in
significantly decreased computational complexity. Moreover, this technique utilizes the
fixed bit allocation table (BAT) for all transmission frames. As a result, more symbols
of the same modulation scheme can be employed to make a decision. Compared to the
traditional ML method, simulations have validated the superior classification performance
of the modified MAP algorithm. This technique allows adaptive modulation to be applied
in wireless OFDM systems without reducing the effective data rate due to the signaling of
the BAT.

A novel efficient MC algorithm in wireless TDD-based OFDM systems with adaptive
modulation is analyzed in [51]. The frequency-selective behavior of the channel is expe-
rienced by a finite impulse response (FIR) filter model with Rayleigh fading coefficients.
Jakes’ spectrum with the Doppler frequency f;,, is used to model the time correlation of
the different path coefficients. This adaptive modulation approach adapts modulation
formats among BPSK, QPSK, 16-QAM, and 64-QAM to a group of two adjacent subcarriers.
The conventional maximume-likelihood method is modified to a MAP classifier that uses
reciprocity of the channels in TDD systems. Moreover, a less computationally complex
classifier based on the MAP criteria is developed and evaluated, which is desirable for real-
time implementations. The feasibility of complexity reductions is validated by simulations.
The classification performance of the proposed technique is slightly reduced in terms of the
packet error rate compared to perfectly known modulation schemes.
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A framework of MAP algorithms for MC in OFDM-based communication systems
with adaptive modulation is studied in [52]. This work extends the achievements in
MAP-based MC [50,51] by adding a new constraint to the framework. In this paper,
a metric approximation is used, whose accuracy increases with rising SNR; the reason
behind using this is the high computational complexity of the optimal algorithm. The side
information like the known frame structure, channel reciprocity, and the knowledge of
total data transmission rate, which are typically available in wireless TDD systems are
intensively utilized by the proposed classifiers. By utilizing this information, the proposed
likelihood-based MC algorithms are highly effective for the short OFDM frames.

Another MAP-based MC for OFDM systems with adaptive coding and modulation
(ACM) is carried out in [53]. The proposed classifier for QAM schemes utilizes the channel
reciprocity in TDD systems that requires knowledge about the joint probabilities of the
subcarrier-wise bit efficiencies at the transmitter and receiver sides. In contrast to prior
heuristic approaches [52], these probabilities are calculated analytically if the transmitter
and receiver apply the same bit loading (BL) algorithm on their erroneously estimated
channel state information. Furthermore, the performance of the proposed MC algorithm
employing analytical results is comparable to the simulated joint probabilities. However,
it is still somewhat superior due to the subsidiary-independent technique’s sub-optimal
approach [50]. Analytical and simulation results outperform the heuristic approach [52],
especially at higher SNRs.

Another modulation classification algorithm for wireless TDD-based OFDM systems
with adaptive modulation and coding is analyzed in [54]. The proposed MAP-based
classifiers use the distinct signaling bits that are transmitted along with the information
symbol. Thus, these can be viewed as a hybrid of MC and a signaling-based transmission
principle. According to the signal structure of the received data symbols, these classification
algorithms are characterized as bit allocation tables, i.e., a list of modulation formats
used on each subcarrier. These received bit allocation tables are explicitly transmitted
auxiliary information. Numerical studies indicate that the reliability of the classifier can
be significantly enhanced by the use of the specified auxiliary information in a standard
indoor propagation environment. Moreover, the simulation results of effective spectral
performance show that the proposed method can be a reliable alternative in pure signaling-
based or MC schemes in adaptive OFDM transmission. It outperforms the non-adaptive
OFDM transmission system. However, this algorithm works in the presence of known CS]I,
knowledge about the total number of loaded bits, and coding rate.

An adaptive transmission algorithm for TDD-based wireless OFDM systems is carried
outin [55]. In this technique, at the transmitter side, the BL algorithm and at the receiver side
modulation classification algorithm are jointly optimized. To increase the effective data rate,
a MAP modulation classification algorithm is applied in place of signaling the complete BAT
to the receiver. The classification reliability is increased while preserving the enhanced link
quality and low signaling overhead with this optimization on the BL algorithm. The idea
behind this contribution is to maximize the effective bandwidth efficiency by this joint
optimization of the BL algorithm at the receiver side and the modulation classification
algorithm at the receiver side. Thus, the data rate loss caused by the signaling overhead is
reduced. The simulations are performed in a typical indoor propagation scenario using
burst transmission. It shows the enhancement of bandwidth and reduces the signaling
overhead compared to the conventional methods.

A reciprocity-based MC algorithm for adaptive OFDM transmission systems in TDD
mode is studied in [56]. This proposed transmission technique used the BL algorithm at the
transmitter and MC at the receiver. A MAP-based MC is proposed, which is already effec-
tive for short frames if channel reciprocity in TDD systems is assumed. In this contribution,
the authors analyze the performance of an improved version of this algorithm in a more
realistic scenario. Simulations are carried out to validate the accuracy of the MC algorithm
in the presence of imperfections caused by channel time-variance, channel estimation errors,
and non-reciprocal transceiver filters. Simulation setup investigations are focused on indoor
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propagation scenarios typical for WLAN. For calibrated transceivers, the simulations show
superior performance of the proposed adaptive transmission scheme with MC compared to
a non-adaptive transmission in a typical indoor propagation scenario. It also has superior
classification performance as compared to the signaling-based technique.

A simplified MAP-based MC is analyzed in [57]. An adaptive OFDM based on an
IEEE 802.11a system is simulated. The system occupies a bandwidth of 20 MHz, which is
split into N = 64 subcarriers. Among these subchannels, N; = 48 subchannels are used
for data transmission: 4 are reserved for channel tracking and synchronization purposes
and the remaining 12 are unused. Throughout this paper, they have assumed perfect
time and frequency synchronization, which they consider to be a typical indoor scenario.
The number of multipath components is assumed to be 16 such that the length of the guard
interval is set to be 16 too. The maximum Doppler frequency is assumed to be f; = 55 Hz
corresponding to a speed of 3.33 ms, and the Doppler spectrum follows Jakes” model.
The correlation is very strong in the considered system due to the quantized structure of
the effective channel. The quantization is a result of adaptive power allocation. In the
context of this paper, a MAP-based MC approach is investigated in wireless local area
network (WLAN) based OFDM systems with adaptive modulation. The receiver has to
estimate the channel, which is modeled by a slowly varying multipath Rayleigh fading
channel and AWGN. The performance of the MC algorithm is measured in terms of the
end-to-end packet error rate (PER). Package errors occur due to data detection errors and
MC classification errors. The PER of the proposed MC algorithm is almost identical to the
PER of an error-free MC algorithm. This exemplifies the potential of MC applications in
real-time scenarios.

Another MAP-based MC for the TDD-based OFDM system is studied in [58]. This
paper proposes a channel prediction approach for improving the efficiency of the MC used
in the adaptive OFDM scheme. To achieve an acceptable prediction performance, effective
noise reduction and interpolation techniques are used. The channel is supposed to be
frequency-selective, with Rayleigh fading coefficients and a power delay profile decided
by the standard indoor environment for IEEE 802.11a models. For time correlation, Jakes’
Doppler spectrum is presumed, with the maximum Doppler frequency f; set to 20 Hz by
default. Finally, simulations for the channel modeled with the Gaussian Doppler spectrum
are carried out to explore the robustness of the proposed approach to the channel model.
The probability of incorrect classification for both Jakes” and Gaussian Doppler spectrum is
compared, in the case f; = 20 Hz. In this case, it can be shown that the proposed technique
is sufficiently robust to the model of the channel’s time variance.

The importance of adaptive modulation for effective usage of channel capacity in the
OFDM system is shown in [59]. The need to transfer the information about modulation to
the receiver is abolished by the MC algorithm, and thus, these algorithms are a very useful
method to increase the channel capacity. However, in practice, two different sets of pilot
symbols are used for the identification of the modulation type and for the estimation of the
channel impulse response. The author proposes only one set of pilot symbols to find the
information about the modulation type as well as the channel in this paper. As the pilot
symbols are related to the modulation type, so they are named “adaptive pilots”. The iden-
tification of the modulation type is successfully done with the help of these adaptive pilots
without affecting the performance of the channel estimation. By assigning unique pilots to
every possible modulation type, the modulation information is embedded. BPSK, QPSK,
16-QAM, and 64-QAM are the possible pilot patterns with corresponding modulation types.
It is shown by the simulation results that modulation types are successfully identified
by the proposed adaptive pilots, while no effect is introduced to the channel estimation
process. For the application of the proposed algorithm, pilots can be located at different
locations with different values. However, when more number modulation formats are
involved in the communication, more adaptive pilots may be required, which degrades the
spectrum efficiency of the transmission.
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The MC approach enables the estimation BAT technique in adaptive OFDM sys-
tems [60]. The authors analyze a less computationally complex MAP-based MC algorithm.
They derive an estimation of the probability of classification error of a MAP-based classifier.
Moreover, based on the derived estimation, a rate-adaptive (RA) BL algorithm is developed.
The findings of the simulation reveal that the proposed RA algorithm greatly improves the
accuracy of modulation classification. Furthermore, it is also shown that, in comparison to
traditional RA methods, the proposed BL approach improves classification performance
for SNR above 15 dB.

3.3. FB Approach

In the FB algorithm, the expert domain feature needs to be extracted first and then
decisions are made for the classification. Some of the expert domain features are the vari-
ance of the normalized signal amplitude, phase, and frequency [101], the variance of the
zero-crossing interval [102], moments, cumulants [63], cyclic cumulants [5], cyclostationar-
ity [103], Fourier transform [63], wavelet transform (WT) [17], and constellation shape [104]
of the received signal. The fuzzy logic [105], entropy [106], and constellation shape recovery
technique also have been used for MC. Various decision-making approaches have been em-
ployed, including maximum-likelihood detector [63], Hellinger distance [107], Euclidean
distance [108], and unsupervised clustering techniques [109].

MC with Higher Order Statistics (HOS)

Here, we provide a framework of the MC method with HOS [110]. The moment with
the kth order and pth conjugations for x,, associated with x,,[n] is defined as

Myp v, = E[x " (x3)7] (13)

where ()* represents a complex conjugate. The corresponding cumulant with kth order and
pth conjugations is defined as

Chpam = CU (X, Xty vy Xy Xy Xy eer X)), (14)

k—p P

where cum() represents the joint cumulant function. HOS provides an integrated technique
as well as a nonlinear signal processing viewpoint. Nevertheless, the information in the
power spectrum of the second-order statistics is only appropriate for describing Gaussian
processes statistically. In MC applications [111], a general fourth-order statistics Cyp »,, is
frequently used. According to (13) and the fourth-order cumulant formula for four random
variables, X, Y, Z, and W can be expressed as

cum(X,Y,Z,W) = E[XYZW] — E[XY]|E[ZW] — E[XZ|E[YW] — E[XW]E[YZ], (15)
and

* *
C42,Xm = Cum(xi’l’l/ Xm, xm/ xm)

2 (16)
= E(benl®) = ([30])" =28 ().
In a similar fashion, a typical second-order cumulant can be written as
Cot e = E(Jul”). (17)

The normalized fourth-order cumulant [12] is typically used to calculate MC, de-
fined as

A Capx
Cap, = 5 (18)
21,xm
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The FB-MC approaches are listed in Table 4, which highlights selected features, modu-
lation types, channels, and undefined parameters.
Table 4. Summary of FB approaches for OFDM signals.
. Decision-Making Average PCC
Author(s) Feature(s) Modulation(s) Parameter(s) Channel Approaches at 20 dB SNR
Mean, Variance, R .
A.D.Pambudi [61]  Skewness, Kurtosis QI;SI&}SSI\AAM - Rayleigh Eh;ebh‘)ld based 91%
and Moment Order an echnique
. Amplitude, Moments Prior knowledge Threshold based o
D. Shimbo [62] and Correlation 16-QAM and 64-QAM about CFO AWGN technique 89%
Using discrete Fourier Unknown Signal
transform (DFT) and BPSK, QPSK, MSK, Parameters, unknown . P .
R. Gupta [63] normalized fourth-order OQPSK, and 16-QAM CSI and imperfect Rayleigh Likelihood ratio test  97.5%
cumulants synchronization
) Wavelet transform (WT), 4-FSK, QPSK, . .
J. Zhang [64] Transient characteristics 16-QAM and OFDM Unknown Signal Parameters Rayleigh - 100%
Kurtosis coefficient, 2-ASK, 4-ASK, 2-FSK, Unknown symbol rate and AWGN, FNSF, Threshold based o
Y. Zhu [65] Power spectral parameter, 4-FSK and OFDM ior £ FSE and Ravleigh hni 97%
E distributi " -FSK and O! carrier frequency SF and Rayleig] technique
nergy distribution parameter
Constellation cluster, QPSK, 8-QAM, 16-QAM, . Peak-density o
Y- Ma [60] number of cluster center 32-QAM and 64-QAM Rotation plane and angle AWGN clustering algorithm 87.5%
Identification estimation
Tomoya [67] method, Modulation parameters C}FSXMCEEQAA’ aanOCk - AWGN - 92.5%
of rotation planes and angles ° 00
OFDM, 2-FSK, 4-FSK,
Inter-class identification, 8-FSK, BPSK, QPSK, . Threshold based o
J. Chen [68] Higher order cumulants 8-PSK, 16-QAM, Perfect CSI Rayleigh technique 100%
32-QAM and 64-QAM
Empirical Distribution Unknown symbol duration,
H. Li [69] PIr . M-QAM cyclic prefix duration and AWGN - 95%
Function-Based Gaussian Test .
number of subcarriers
Latent Dirichlet
Y. Liu [70] Bayesian network, QPSK, 8-PSK and 16-QAM  Imperfect CSI and unknown SNR  Flat fading - 97.5%
Gibbs sampling method
Optimal Bayesian Method, QPSK, 8-PSK,
Y. Liu [71] latent Dirichlet model, mean 16-Q A’M an d’ 16-PSK Imperfect CSI and unknown SNR  Flat fading - 97%
field variation inference 4
Using DFT and normalized Unknown Signal Parameters,
A K. Pathy [72] fourth-order and BPSK, QPSK, MSK, unknown CSI and Rayleigh Likelihood ratio test  97%

sixth-order cumulants

OQPSK, and 16-QAM

imperfect synchronization

Multicarrier modulation given by the OFDM signal generator using an IEEE 802.16e

standard is studied in [61]. Based on the standard of IEEE 802.16e, three possible modu-
lation formats can be used, such as QPSK, 16-QAM, and 64-QAM. The mean, variance,
skewness, kurtosis index, and moment order of the received signal are all considered and
compared in order to determine the modulation scheme non-line-of-sight (NLOS) with six
multipath components. The dominant statistic features capable of separating the QPSK
modulation scheme from 16-QAM and 64-QAM are skewness, kurtosis, and variance,
as determined by the statistical properties of the received signal. Furthermore, the high
order moment is one of the most important statistical features that distinguish the 16-QAM
modulation scheme from the 64-QAM modulation scheme. However, in the context of
timing and frequency synchronization issues, this approach does not perform well.

In another FB-MC [62], the amplitude moments and correlation properties are used to
classify the modulation scheme for OFDM systems. This technique considers the presence
of CFO, which is the cause of intercarrier interference (ICI) in the amplitude moments of the
received signal. Therefore, the ICI component is estimated by using the correlation between
the subcarriers. To determine the influence of ICI components in the amplitude moments,
the authors derive the amplitude moment in the form of infinite series of elementary
functions. It is observed that the amplitude moments increase as the frequency offset
increases. Considering 4096 subcarriers in an OFDM symbol, at least 10 OFDM symbols
are required to achieve the desired classification accuracy at 30 dB SNR. This approach
outperforms the existing amplitude moment-based approach with the prior information
about CFO. This is due to the estimation and elimination of the ICI components in the
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amplitude moments. However, this MC algorithm is restricted to known CSI and proper
synchronization circumstances.

In [63], another FB blind MC approach is suggested and implemented on radio fre-
quency (RF) testbed for OFDM signals. The authors use the combined features of DFT
and the fourth-order cumulant, as shown in Figure 3. This algorithm does not need prior
information about the signal parameters and CSI. It also works effectively when there are
synchronization problems, such as timing, frequency, and phase errors. Before the feature
extraction process, a random uniformly distributed timing offset is added in each OFDM
symbol to reduce the influence of the timing offsets. The authors have listed BPSK, QPSK,
OQPSK, MSK, and 16-QAM for the OFDM signal. The number of subcarrier N = 1024,
CP length N¢, = N/4, channel tap L = 4, number of OFDM symbol 50, normalized CFO
—0.5 < € < 0.5, symbol timing offset [-N /2, N /2|, sampling rate 50 Msamples/s, symbol
rate 1 Msymbols/s, and Rayleigh channel are considered the simulation parameters for
this technique. Classification is carried out in two stages. First, the received signal is
transformed into the frequency domain by using the DFT operation, then the normalized
fourth-order cumulant of the frequency domain signal is calculated. The modulation for-
mats OQPSK, MSK, and 16-QAM can be distinguished by the normalized fourth-order
cumulant, which is expressed as

. 2
1K C42Xm ‘ Zg;ole_ﬂﬂv/K(T-'_G“)X%[v]‘

Km:l % L5701 X [0] >~ Cuw '

Caop = (19)

where X,,[v] represents the DFT of the received signal x,,[n], Co1w = 03, represents the
estimated variance of AWGN, and K is the total number of OFDM symbols.

The histogram of the above is given in Figure 4. The second stage performs the DFT
of the square of the received signal then calculates the normalized fourth-order cumulant,
which is expressed as

2

3 1 K Cay, —}% YA e Ao/ KT8 [o]
C42u = E Z 1 K—1 2 ’ (20)
m=1 X Zv:() |um [U} ‘ - C21,W

where Uy, [v] = X [v] ® Xin[v], ® denotes the linear convolution operator. For BPSK and
QPSK modulation schemes, the above Equation (20) gives different values, as shown in
Figure 5.

Received OFDM signal x,,[n]

Unknown frequency, timing and phase
offsets

Feature Extraction

Introduce uniformly distributed offsets
0 in each OFDM symbol

Stage 1 N us Stage 2

{l}

[ MSK (OQPSK] EI.G QAM] [BPSK) [QPSK)

Figure 3. Schematic diagram of blind modulation classification studied in [63].
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Figure 4. Histogram of Cu « for BPSK, QPSK, OQPSK, MSK, and 16-QAM. Adapted with permission
from Ref. [63]. Copyright 2021 IEEE.
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Figure 5. Histogram of Cyp,, for BPSK and QPSK. Adapted with permission from Ref. [63]. Copyright
2021 IEEE.

In the paper [64], the authors use a method for applying wavelet transform (WT) to
OFDM and SC signals to extract their transient characteristics and then use the transient
characteristics to identify the two types of signals. Good performance can be achieved
in low SNR and multipath channel conditions. In addition, the effects of the sample rate
and symbol rate on the identification algorithms are analyzed and simulated. The author
conducts a variety of simulation experiments to assess the performance of the proposed
identification algorithms and the effects of the sample rate and symbol rate on the iden-
tification algorithms. All results are based on 100 Monte Carlo trials. The percentage of
correct classification (PCC) versus the SNR plot represents the average variance of signals
versus SNR. Every 8000 data samples make up of a trial source. We notice that the average
variance is large in the OFDM curve and small in the SC curve. The result is well separated
between OFDM and SC modulations. When SNR is 0 dB, the PCC between OFDM and SC
signals can reach 100% when the symbol rate is greater than 20 kHz.

Another FB-MC [65] is using spectrum analysis to classify the OFDM and SC. The au-
thors utilize the energy distribution parameter and the kurtosis of the power spectrum
coefficient to classify OFDM and SC. This method does not need any prior information
about the symbol rate, carrier frequency, etc. In simulation results, it is found that extracted
spectrum parameters have better performance over AWGN as well as Rayleigh fading
channels. It has a classification rate of up to 97% with an SNR at 10 dB.

In [66], the peak-density clustering algorithm is used to investigate an MC technique
for adaptive optical OFDM systems. The clustering technique is used to find the centers
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of the signal constellation clusters. The number of cluster centers is calculated using the
density and distance metrics of samples. The number of cluster centers is utilized to distin-
guish M-QAM. The OFDM signals are fed into an arbitrary waveform generator (AWG)
with a sampling rate of 50 GSamples/s. The electrical OFDM signal is then converted
into an optical signal using an external cavity laser (ECL) and an intensity modulator.
The modulated optical signal is then routed through a variable optical attenuator (VOA)
and an erbium-doped fiber amplifier (EDFA) to alter the signal SNR and mimic different
transmission circumstances. They use a 50 GSamples/s real-time oscilloscope to capture
data and another VOA to regulate the input power before the photodetector. Finally, OFDM
MC and demodulation are conducted for a test sample of 8192 lengths in each optical SNR.

In the paper [67], the identification of these orthogonal modulations, i.e., OFDM, code
division multiple access (CDMA), is studied. The classification method is based on general
orthogonal modulations, whose modulation parameters should be estimated. The iden-
tification method applies to both adaptive modulation and increased security in radio
communications. General orthogonal modulations are employed to identify modulations.
First, the modulation parameters of rotation planes and angles are estimated. Orthonor-
mal vectors are derived by received signal samples and rotated to hold orthogonality
among time slots. Then, the inverse rotation corresponds to the modulation parameters
to be estimated. The difference vector between the received signal vectors is used for
this method. In computer simulations, OFDM, CDMA, a block of QAM, and so on are
considered candidate modulations. The bit error probability of the estimated modulation
is presented to compare the performance from the point of view of SNR and the number
of samples. The proposed estimation performance is evaluated in the AWGN channel by
computer simulations.

Based on the higher-order cumulants, an MC algorithm is carried out that discrimi-
nates the OFDM signals from SC signals [68]. First, OFDM signals are discriminated from
SC signals based on distinct features parameters over the Rayleigh channel. In order to
verify the effectiveness, the modulation set is assumed as OFDM, 2-FSK, 4-FSK, 8-FSK,
BPSK, QPSK, 8-PSK, 16-QAM, 32-QAM, and 64-QAM. The combination of the second- and
fourth-order cumulants is used as the feature to discriminate the OFDM signals from the
SC signals. Simulation results show that the algorithm is stable with low computational
complexity and high PCC in low SNR level.

In the paper [69], a classification technique is devised for identifying the OFDM signals
from the SC. In addition to differentiating the OFDM signals from SC, some important
parameters of OFDM signals are estimated for further processing. The estimated param-
eters include the number of subcarriers, the length of the OFDM symbol, and the CP
length. Using these parameters, traditional modulation classification techniques may be
used to identify the linear modulation format on each OFDM subcarrier. The analytical
distribution function-based Gaussian test technique is shown to differentiate OFDM from
SC modulations effectively, and the correlation test is shown to estimate the cyclic prefix
length effectively. A fast Fourier transform (FFT) is used to effectively estimate the num-
ber of subcarriers. The simulation findings show that the proposed technique provides
classification performance of more than 90% for SNR greater the 15 dB.

In the paper [70], a Bayesian inference-based MC technique for the MIMO-OFDM
signal is used. This technique uses the Gibbs sampling convergence approach on a latent
Dirichlet model as a baseline. However, the inference-based technique has a significant
computational overhead, and it also needs perfect synchronization at the receiver.

In the paper [71], an MC algorithm for the MIMO-OFDM system is analyzed under
the unknown frequency-selective fading channels and SNR. This work is an extension of
the achievements in MAP-based MC [50,51] by adding a new constraint to the framework.
The classification problem is presented as a Bayesian inference task, with solutions provided
based on Gibbs sampling and mean-field variational inference. The Gibbs sampling method
yields the best Bayesian result. It is shown that after multiple iterations, switching to the
mean-field variational inference technique improves classification accuracy for the small
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length of the received signal. However, most of the existing MC consider channels as flat
fading when the number of receiving antennas exceeds the number of transmitting antennas.
However, under more general circumstances, the proposed algorithm works quite well. It is
shown that the proposed Bayesian methods outperform existing non-Bayesian techniques
based on independent component analysis (ICA). However, this inference-based technique
is quite difficult, and it also necessitates perfect synchronization at the receiver.

A tree-based blind MC method for asynchronous MIMO-OFDM is developed in [72].
It extracts unique features for different modulation schemes using normalized fourth-order
and sixth-order cumulants. It then performs a threshold-based classification using the
likelihood ratio test to determine the modulation format of the received signal. The number
of subcarrier N = 128, CP length N, = N/4, number of channel tap L = 4, number of
OFDM symbol 50, normalized CFO —0.5 < € < 0.5, symbol timing offset [-N/2,N /2],
sampling sampling rate 50 Msamples/s, symbol rate 1 Msymbols/s, and Rayleigh channel
are considered the simulation parameters for this technique. The classification performance
of this algorithm is validated by using the RF testbed in a realistic scenario. The authors
consider the higher number of transmitting and receiving antennas in the simulation
process. However, the actual experimental systems in this paper only contain at most two
transmitter antennas and two receiver antennas.

In the paper [112], signal parameter estimation, modulation classification, and syn-
chronization are carried out for the OFDM signal. At the first stage, the cyclic cumulant is
used to estimate the number of subcarriers, symbol length, useful symbol length, CP length,
and oversampling factor. At the second stage, the elementary cumulant is used to classify
the BPSK, QPSK, OQPSK, MSK, and 16-QAM modulation scheme over the Rayleigh fading
channel. After that, a modified maximum likelihood technique is used to estimate the CFO
and STO for the OFDM system jointly. After correction of the CFO and STO, recovery of
the constellation diagram of modulation schemes and BER analysis is performed. The BER
is found approximately 8.5 x 1073 and 6.5 x 1072 at 20 dB SNR for QPSK and 16-QAM
modulation schemes, respectively. This technique is also validated over the NI RF testbed
setup over an indoor propagation environment.

4. Artificial Intelligence-Based Approach to MC

Al is certainly the next big “game-changing” technology that includes both ML and
DL. In MC, ML finds lots of significance in terms of decision trees, KNN, support vector ma-
chine (SVM), artificial neural network (ANN), and some hybrid algorithms. DL is a kind of
a subsidiary of ML, which originates from the study of ANN. Neural networks are inspired
by biology and try to mimic the neural structure of the human brain [113,114]. Recently,
researchers in the field of wireless communication stated using DL extensively. It finds
applications especially in the field of communication systems, such as non-orthogonal mul-
tiple access (NOMA) technology, MIMO technology, resource allocation scheme, and signal
MC. Tables 5 and 6 lists a few of the ML- and DL-based MC algorithms studied in the liter-
ature, outlining the modulation types, uncertain parameters, and the channel employed.

4.1. ML-Based MC

In this paper [73], the authors extract the features by calculating higher-order cumu-
lants, then the extracted features are applied to naive Bayes classifier for MC. However,
the authors assume proper equalized and perfectly synchronized signals received at the
receiver. The features, combinations of fourth-order Cy and sixth-order cumulants Cg3
often produce better classification performance than using each of these features alone.
By using the same set of features, the naive Bayes classifier is compared with the ML-based
classifier and SVM-based classifier. It is observed that the naive Bayes classifier outperforms
the ML-based classifier and SVM-based classifier with less computational complexity.

This paper [74] introduces a technique for classifying OFDM signals using higher-
order moments and cumulants with multiple types of classifiers and cluster techniques.
There are four considered methods of classification, namely, KNN, ML, SVM, and neural
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network (NN) classifiers. Fuzzy k-Means and fuzzy c-means are two cluster techniques
that are used for the two classes of OFDM signals. One class is considered fixed WiMAX
(IEEE 802.16d), which includes BPSK, QPSK, 16-QAM, and 64-QAM modulations. Another
class is considered OFDM signals used in Wi-Fi (IEEE 802.11a), which includes and BPSK,
QPSK, 16-QAM, and 64-QAM modulations. In the simulations, the input signals are
normalized to have zero mean and unit variance after transmitting through the Rayleigh
fading channel. The normalized output signal is then used for the feature extraction process.
Higher-order moments and cumulants up to the 8th order are used to extract features.
The extracted features are used as input to the different types of classifiers, such as SVM,
KNN, ML, and NN classifiers, which use the fuzzy k-means and fuzzy c-means as clustering
techniques. The performance of the SVM classifier with the fuzzy k-mean is better than all

the combinations of classifiers and clustering algorithms for most of the SNR values.

Table 5. Summary of ML-based classifiers for OFDM signals.

- . Average PCC
Author(s) Classifier(s) Modulation(s) Parameter(s) Channel(s) at 20 dB SNR
Optimize Shannon’s
. BPSK, QPSK, Perfect o
M.L.D. Wong [73] cha}nnel capacity, 16-QAM and 64-QAM synchronization AWGN 96.8%
Naive Bayes classifier
Higher order moments
and cumulants, Fuzzy BPSK, QPSK, . o
S. E. El-Khamy [74] K-Means and 16 QAM, and 64 QAM - Rayleigh 100%
Fuzzy C-means
Higher-order cumulants, .
X. Yuan [75] random forest based QPSK, 16-QAM Imp erfect. time Frequ.e YT 100%
. and 64-QAM synchronization selective
MC algorithm
Least squares (LS) .
. . . BPSK, QPSK, Unknown noise . o
W. Machid [76] method apcl iterative 16-QAM, and 64-QAM variance and CSI Flat fading ~ 97.5%
closest point (ICP)
. BPSK, QPSK,
Y. Zhang [77] g;%ﬁgf%ﬁiﬁﬁ;ﬁ‘ﬁi GFSK, 16-QAM, Eﬁfﬁ“cjfge . Flat fading ~ 99.5%
64-QAM and OFDM 8
Higher order statistics,
. pattern recognition : Presence of CFO . o
B. Dehri [78] methods, ANN or SVM, QPSK and 16-QAM and Imperfect CSI Rayleigh 100%
or RFC or KNN
Peaks in the distribution of
amplitude, the variance of BPSK, QPSK,
Y. Gu [79] the amplitude, the variance 16-QAM, 64-QAM, Unknown CFO AWGN 100%
of the phase, and the variance 256-QAM and GMSK
of the spectrum, SVM classifier
Clustering and QPsSK, o
J. He [80] Gaussian model 16-QAM, 64-QAM ) AWGN 100%
High order cumulants and
. bi-spectral envelope peaks, Perfect . o
L. Gaohui [81] hierarchical iterative SVM M-QAM, MFSK and MPSK synchronization Rayleigh 100%

classifier model
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Table 6. Summary of DL-based classifiers for OFDM signals.

i . Average PCC
Author(s) Classifier(s) Modulation(s) Parameter(s) Channel(s) at 20 dB SNR
Mel Frequency Cepstral
- QPSK, 8-QAM,
R.M. Al-Makhlasawy [s2] ~ Costhcients (MFCCs) 16-QAM, 32-QAM, Pertect ion AWGN 100%
Y 64-QAM and 128-QAM o
-forward neural network
Bi trum and BPSK, 2-ASK,
Y. Li [83] O Aloenat model 2-FSK, 4-FSK, 8-FSK, - AWGN 97.5%
exnetmode LEM, and OFDM
o . BPSK, QPSK, 8-PSK, Perfect L. . o
S. Hong [84] CNN with dropout layer 16-QAM and 64-QAM synchronization Rician fading 99%
. CNN, ReLU and BPSK, QPSK, Presence of phase offset o
J. Shi [85] PReLu activation 8-PSK, and 16-QAM and imperfect CSI AWGN 100%
S. Hong [86] CNN g_l;)ssi’ 2111)31?64-15:1\1;4 ’ Perfect synchronization Rician fading 97.5%
E M 187] CNN with two step training, ?g_?};ka ()S- Ié’:i\ESK’ Unknown CFO Time invariant and 100%
-vieng Transfer learning 32—PSK/an d6 4-QIAM and unknown SNR frequency non-selective °
QPSK, BPSK, DPSK,
D. H. AINuaimi [85] MbNe oL AN bhOAM. Unknown CFO AWGN 86%
and 128-QAM
BPSK, QPSK, 8-PSK,
Z. Zhang [89] CNN-LSTM A A Presence of CFO and STO  Rayleigh 91%
4-PAM, 16-QAM, and 64-QAM
1Q and FFT window bank (FWB), QPSK, 16-QAM, . o
M.C. Park [90] CNN-LSTM-based classifier 32-QAM, and 64-QAM - Rayleigh 98.5%
Mixed order moment,
Y. Zhang [91] ?gllgésg; ngt‘)’r‘;lt;‘flm‘za“"“ %ﬁéﬁ&fﬁﬁ“&_() A Presence of CFO and STO  Rayleigh 100%
DNN-based classifier
AlexNet/GoogLeNet- BPSK, QPSK, 8-QAM, o
2. Zhao [2] TL-based classifier 16-QAM, 32-QAM and 64-QAM AWGN 100%
. Lightweight CNN (LCNN)-based - . o
J. Yin [93] Shuffle MC, FFT, I, regularization BPSK, QPSK, 8-PSK, 16-QAM - Rician fading 100%
Fourier synchrosqueezing
t £ ti FSST), Ind dent 16-QAM, 64-QAM, - . o
G. Kong [94] C?;;g;z;i :::al(ysis (}CX),epen en andQZS 6-Q Al\% Perfect Synchronization Rayleigh 90%
hierarchical CNN-based MC
Spectrum interference-based BPSK, QPSK, 8-PSK, 16-QAM,
Q. Zheng [95] two-level data augmentation 64-QAM, GFSK, CPFSK, 4-PAM, - Rayleigh 89.3%
method, deep CNN WBFM, AM-SSB, and AM-DSB
T. Huynh-The [97] CNN with integrated attention BPSK, QPSK, Presence of CFO Rayleigh 88%

and residual connections 8-PSK, and 16-QAM

The MC problem for MIMO systems employing OFDM under imperfect timing syn-
chronization scenarios is studied in [75]. The proposed algorithm first uses the HOC of the
received signal to extract the unique features, which show the robustness to STO. After that,
a random forest classifier is used as the decision criterion to perform the classification
problem. The main benefits of random forests are their better classification performance
and low exposure to noise. The number of subcarrier N = 128, CP length N, = N/4,
channel tap L = 5, number of transmitting antennas 2, number of receiving antennas 8
and frequency-selective channel are considered the simulation parameters. The simulation
results show that the proposed classifier can work well in the presence of STO with satisfac-
tory classification accuracy. In a realistic scenario, where perfect STO estimation is difficult
to achieve, these algorithms can provide conceptual help.

In the paper [76], a modulation classifier without knowing noise variance is studied for
the OFDM system. In order to estimate the amount of phase rotation caused by flat fading,
the authors investigate adopting the iterative closest point, which is a kind of template
matching technique. Combining the least squares-based phase estimation, the classification
performance of the proposed method can be improved significantly. The PCC at several
SNRs when each correction is performed in flat fading, where four types of modulation
schemes, i.e., BPSK, QPSK, 16-QAM, and 64-QAM, are used. From these results, it is found
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that, as compared with the method of using only the least-squares method, the method
combining the least squares (LS) method with the iterative closest point (ICP) algorithm
does not deteriorate the accuracy of the phase correction, even if the number of signal
points decreases.

In this paper [77], the classification of OFDM, BPSK, QPSK, Gaussian frequency-shift
keying (GFSK), 16-QAM, and 64-QAM is realized by MATLAB programming based on the
characteristic of HOCs. A new feature parameter is proposed according to the second- and
sixth-order cumulant. Simulations are conducted with classifiers, including KNN, SVM,
decision theory, and back-propagation neural network (BPNN). It is found that the average
classification rate is greater than 95%.

In the paper [78], the authors propose a blind MC algorithm for space-time block
coding (STBC)-based MIMO-OFDM system, which works in the presence of CFO, channel
estimation errors, and impulsive noise. Multiple signal classification (MUSIC) algorithms
are used to estimate the CFO and channel statistics. The estimated CFO and channels
are compensated and equalized, then features are extracted using higher-order moments
(HOMs) and HOCs. Finally, the extracted features are applied to ANN, SVM, RF classifier
(RFC), and KNN classifier. The simulation results show that the SVM and ANN classifiers
have better classification performance, even at low SNR.

In [79], an SVM-based MC algorithm is studied for the OFDM system in the presence
of frequency offset in which statistics-based features are used as input of the SVM classifier.
The number of peaks in the distribution of amplitude, the variance of the amplitude,
the variance of the phase, and the variance of the spectrum are extracted from the received
signal. These extracted features are used to make a dataset. This dataset is applied to the
SVM classifier to classify the modulation scheme of the received signal. The proposed
method shows great accuracy in high SNR channels with over 80% accuracy. It also
shows robustness against the frequency offset. However, when the signal is flooded
by noise and extremely influenced by frequency offset, the proposed still has over 50%
accuracy. The algorithm is tested experimentally on the SDR platform, which can realize
a variety of communication systems by updating the software. Based on such a popular
SDR hardware platform and using GNU Radio, the modulation formats are generated,
transmitted, and classified.

In [80], the design and implementation of the MC algorithm for the OFDM visible
light communication (OFDM-VLC) system are explored. Clustering and Gaussian model
analysis are used to obtain the classification feature values. The modulation format is then
classified using these classification feature values. The simulation results show that the
suggested method can achieve 100% classification accuracy at 1 dB to 2 dB lower than that
of the clustering scheme. Furthermore, the experimental findings show that the suggested
MC technique is feasible in an OFDM-VLC system.

In [81], an MC algorithm base on a hierarchical iterative SVM classifier is studied for the
OFDM signal. To extract characteristic values from OFDM signals, higher-order cumulants
and bi-spectral envelope peaks are used, and the resulting characteristic values are then
processed to create fresh training sample data. The feature extracted by using HOCs is
used to distinguish multicarrier signals from the SC signals. The bi-spectral envelope peaks
are used to distinguish the OFDM signal from the multicarrier signal. The training dataset
obtained from the higher-order cumulants and bi-spectral envelope peaks of the received
signal is applied to the input of a hierarchical iterative SVM classifier. The number of
subcarrier N = 128, CP length N, = N /4, symbol rate 1024 bps, sampling rate 3000 kHz
and Rayleigh channel are considered the simulation parameters for this technique. It is
found the classification accuracy of the SVM-based classifier is improved when compared
with the wavelet transform method and higher-order cumulant-based method.

4.2. DL-Based MC

A lot of focus has recently been drawn by DL due to its effective ability to integrate
offline preparation and online deployment [115]. DL is a specialist in automated feature
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extraction from a huge amount of data instead of the complicated and challenging nature
of man-made features [116,117].

In the paper [82], a cepstral algorithm for MC is proposed with adaptive modulation
in OFDM systems. The expert domain features of the received signal are extracted us-
ing Mel frequency cepstral coefficients (MFCCs), and the modulation formats and their
order are classified using a multi-layer feed-forward neural network. This classifier has
the capability of recognizing the M-ary amplitude-shift keying (M-ASK), MSK, M-PSK,
M-ary frequency-shift-keying (M-FSK), M-QAM signals and the order of the identified
modulation. The classification performance of the proposed technique is evaluated using
the false classification probability (FCP). The AWGN channel is taken into account when
creating the mathematical model for most of the results. The simulation results reveal
that the modulation format and order can identify by extracting cepstral features from
the received signal and with the help of the transforms, such as discrete cosine trans-
form (DCT), discrete sine transform (DST), and the discrete wavelet transform (DWT).
These classify the distinct features using a robust back-propagation feed-forward neural
network for different modulations, such as QPSK, 8-QAM, 16-QAM, 32-QAM, 64-QAM,
and 128-QAM. The proposition to identify the modulation type and order is proven to be
considered effective.

In the paper [83], the authors develop an MC algorithm that is based on the bispectrum
and CNN AlexNet models. As we know, bispectrum is a high-order statistic that suppresses
AWGN well and is frequently utilized in signal detection and nonlinear system characteri-
zation areas. Furthermore, AlexNet exhibits outstanding image classification performance
despite having a very basic structure of eight layers. First, the authors compute the bispec-
trum of received signals, then take the amplitude spectrum of the bispectrum (ASB), which
is used as input to the CNN network. After that, they fine-tune the chosen AlexNet, which
automatically extracts the distinct features from ASB images. Finally, these features are
passed into a softmax classifier, which classifies the modulation type. The simulations are
performed under different noise environments for the dataset that includes BPSK, 2-ASK,
2-FSK, 4-FSK, 8-FSK, linear frequency modulation (LFM), and OFDM signals. It is observed
that the bispectrum-AlexNet model has a classification accuracy greater than 97.7% when
the SNR is greater than 5 dB.

The above MC techniques are developed by utilizing feature extraction-based machine
learning. Moreover, the standard approaches face bottlenecks, where the PCC is very small
and it is also impossible to incorporate them in realistic OFDM systems because it is difficult
to extract distinct features from OFDM signals using conventional methods. In order to
address this problem, the authors [84] suggest a CNN-based MC system for recognizing
OFDM signals. In particular, a CNN is used to train in-phase (I) and quadrature (Q) samples
for OFDM signals. The authors construct two datasets with separate modulations for the
MC function. Dataset 1 contains BPSK, QPSK, 8-PSK, and 16-QAM modulations, while
dataset 2 contains BPSK, QPSK, 8-PSK, 16-QAM, and 64-QAM modulations. These two
datasets are utilized to test the robustness of the proposed system. Each modulation format
considers 20,000 data samples for training and research. Since CNN can efficiently extract
the distinct features of received OFDM signals, the simulation results indicate that CNN
trained on I and Q samples achieves better classification performance than conventional
machine learning based approaches.

In the paper [85], a CNN-based MC method by considering the phase offset effect is
studied. As shown in Figure 6, CNN-based MC is first trained by the received I and Q
samples in the presence of phase offsets at different values of SNR. As shown in Figure 7,
the DL-based MC technique is mainly implemented by CNN. The PReLU is used as an
activation function for all layers, except the last layer, and the softmax is used as an
activation for the last layer to implement a multi-classification problem. The authors use
two sets of data with different modulation modes for the MC issue, i.e., Dataset 1 and
Dataset 2, to verify the robustness of the classification technique [85]. The number of
subcarrier N = 16, CP length N, = 2, number of OFDM symbol 6 and AWGN channel
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are considered the simulation parameters for this technique. Comparative experiments
show that its performance of classification is much higher than the conventional extraction
methods. Moreover, the classification accuracy relatively reduces at the low SNRs due to
the presence of phase offsets. By gradually increasing the SNRs, effective classification
accuracy can be achieved eventually.

. MC-aided Receiver

Transmitter e !
' [ oFDM '
_ |
OFDM Channel ﬂ\ | Signal _’ProFc)erzzsin »CN’;\‘AtéasedaDemodulator:
system \g | | (Received) ; !
|
| |

H |
Noise i SNR J |
| estimation :

|

Figure 6. Framework of the proposed CNN-based MC system [85].
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An adaptive modulation model based on machine learning for a MIMO-OFDM system
is carried out in [44]. The 5G new radio (NR) technology can be used in a wider range of
internet of things (IoT) applications than traditional systems. The adaptive modulation tech-
nique, which changes data rate and latency based on channel conditions, can be efficiently
employed in 5G digital NR technology. The traditional adaptive modulation technique
is developed by assigning modulation formats based on the channel conditions since the
rule-based MC is unable to analyze transmission efficiency based on channel correlations
between antennas. The number of propagation modes is enhanced exponentially based
on the available number of modulations and antennas. So, these are not appropriate for
5G NR systems. The proposed adaptive modulation technique is learned by the training
data, which are generated by the feature extracted from the received signal. The DNN
application for adaptive modulation is the primary method of the main component analysis,
which improves the model efficiency. The simulation results on the optimal transmission
mode classification for the MIMO-OFDM signal show that the proposed model supports
adaptability according to the condition of the complex MIMO channel.

In [86], the authors here present a CNN-based MC approach for the identification of
OFDM signals, which is linked to a CNN that is trained on I and Q samples. The suggested
CNN-MC technique is made up of two parts: three convolutional layers and four fully
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connected layers. The number of subcarrier N = 16, CP length N, = 2, number of OFDM
symbol 6 and Rician channel are considered the simulation parameters for this technique.
The suggested technique outperforms existing modulation classification algorithms in
terms of accuracy and reliability. However, any parameters, such as number of subcarriers,
number of null subcarriers, STO, CFO, phase offset, and CP length, change these MC and
do not provide accuracy of more than 50% for adaptive OFDM systems.

The other approach described in [87] focuses on two-step training to enhance the
classification performance of CNN-based classifiers. Transfer learning is also introduced to
increase the performance of the retraining. A wider range of modulation formats for the
OFDM signal, such as BPSK, QPSK 8-PSK, 16-QAM, 32-QAM, and 64-QAM, is recognized
by the suggested technique.

In [88], the MC algorithm for the OFDM signal is developed by using an intelligent
pyramid model. This algorithm has four stages, i.e., pre-processing, feature extraction,
feature clustering, and classification. In the pre-processing step, the authors improve the
received signal quality, which involves two steps quality evaluation and quality augmen-
tation, using the bi-fold signal fortification (BFSF) approach. The number of subcarrier
N = 2048, CP length N, = 3, sampling frequency 5 MHz and AWGN channel are consid-
ered the simulation parameters for this technique. If the received signal quality is poor, then
quality augmentation is performed, taking into account noise reduction, equalization, quan-
tization, and CFO compensation. Then the feature extraction process is performed by the
gated feature pyramid network (GFP-Net). After that, the authors make the cluster from the
extracted feature by using an intelligent twin-functioned human mental search (TF-HMS)
optimizer to minimize the classification complexity. Finally, they offer the multi-distance-
based nearest centroid classifier (MDNCC) technique, as well as improved Q-learning
(IQL), to determine the correct modulation format for the received signal. However, this
technique only considers the CFO as the synchronization when performing the modulation
classification of the received signal.

In [89], a CNN long short-term memory (CNN-LSTM) based dual-stream structure
for MC is developed. The first stream extracts local raw temporal characteristics from
raw signals, while the second stream learns knowledge from amplitude and phase data.
To learn spatial and temporal information from each stream, CNN-LSTM is used, which
combines the spatial feature extraction ability of CNN and superior capacity of processing
time-series data of LSTM. Furthermore, the features learned from two streams interact in
pairs as a result of an effective operation, expanding the diversity of characteristics and,
therefore, improving the classification performance of the received signal.

In [90], a CNN-based MC is studied in order to classify SC and OFDM systems with
varying symbol lengths. The majority of older DL-based MC algorithms misinterpreted
OFDM-based signals with varying OFDM usable symbol lengths. To address this issue,
FFT window banks (FWB) are utilized as input to the CNN model to estimate the length of
an OFDM symbol. After estimating the OFDM symbol length, a CNN-based MC technique
is utilized to categorize the OFDM and SC modulation formats concurrently using FWB
and IQ samples as combined input. However, compared to the traditional DL-based MC,
this technique needed a longer received symbol to obtain the correct classification.

In [91], an OFDM signal identification technique based on a hybrid grey wolf opti-
mization (HGWO) algorithm to optimize with a deep neural network model is carried
out. This technique can distinguish the OFDM modulation signal from complex signals,
such as SC, OFDM signals, and wavelet packet signals (WPM) in a multipath channel.
In this technique, mixed order moment 129 = Muap () / M3 (), characteristics parameter
R =0?/p?, and N = % — 1 are extracted from the received signal. Then, a dataset is
prepared by using uyg, R, and N, which are the input of the classifier. Then the HGWO
algorithm is used to optimize the weights and thresholds of the DNN. The experimental
findings demonstrate that the suggested method significantly speeds and improves the con-
vergence speed of GWO. When compared to traditional methods, such as particle swarm
optimization (PSO) and whale optimization algorithm (WOA), this technique outperforms
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the two. However, the HGWO technique in this study is limited because it is only used
to improve the weight and threshold of the DNN model, and the network structure must
be chosen manually. The intelligent optimization technique applied to the structure of the
deep learning network may enhance classification accuracy.

In [92], the MC technique for OFDM VLC systems based on transfer learning (TL) is
developed. For virtually all SNR values, the suggested AlexNet/GoogLeNet-TL-based
strategy outperforms previous approaches in which the AlexNet/GoogLeNet is trained
from scratch (AlexNet/GoogLeNet-SC). In more practical, few-training-data circumstances,
AlexNet/GoogLeNet-TL outperforms AlexNet/GoogLeNet-SC by a wide margin.

In [93], the authors design and implement lightweight CNN (LCNN) based MC
methods, i.e., the ShuffleMC method for the IoT cyber—physical systems. The ShuffleMC
technique requires considerably fewer parameters and is far less computationally complex
than the CNN-based MC method but the classification performance of both is almost
the same at high SNR. Furthermore, the authors introduce the FFT to pre-process the
received OFDM signals for improved classification performance and training acceleration.
In addition, I, regularization is used in the training procedure to minimize over-fitting and
marginally enhance classification performance.

In [94], a hierarchical CNN-based MC is developed for the waveform and MC in radar
communications systems. Using time-frequency representation of the received signal from
the Fourier synchrosqueezing transformation (FSST) and deep CNN, the received signal is
categorized as either SC radar signals or multicarrier radar signals. Then the cyclic prefix
duration, the number of subcarriers, and subcarriers spacing are estimated for the received
OFDM signal. After that, the independent component analysis (ICA) operation is used to
make the I- and Q-components, which are fed into the CNN classifier for MC.

In [95], a spectrum interference-based two-level data augmentation method in CNN
for MC is studied. The short-time Fourier transform (STFT) and IFFT are used to assist
in the expansion of signals and the introduction of variations while maintaining the key
characteristics. The frequency-domain data are provided to radio signals to improve
modulation classification. Experimental results demonstrate that using a two-level data
augmentation approach based on spectrum interference may considerably enhance the
accuracy of the deep CNN for MC, especially when the SNR is low. This methodology
obtains state-of-the-art classification accuracy when compared to a range of data augmenta-
tion approaches and leading modulation classification algorithms using the public dataset
RadioML 2016.10a.

In [97], a CNN-based MC algorithm is designed, which used a novel data generation
technique allowing deep networks to compute correlations between samples inside each
OFDM symbol and between symbols. The authors construct a unique advanced processing
block that integrates attention and residual connections to boost the learning efficiency
of the model. This approach is tested on a synthetic OFDM signal dataset and shows
improved classification performance under various channel circumstances.

The cross-talk between sub-carrier has been addressed in terms of CFO. The errors in
CFO destroys the orthogonality among the subcarriers or subchannels, thereby introducing
ICI. Therefore, classification performance for the MC algorithm may degrade due to ICI or
the presence of CFO. Therefore, we need to estimate and compensate for the CFO before
MC [63]. In the paper [62], the amplitude moments and correlation properties are used
to classify the modulation scheme for OFDM systems. This technique considered the
presence of CFO, which is the cause of ICI in the amplitude moments of the received signal.
Therefore, the ICI component is estimated and eliminated by using the correlation between
the subcarriers. This approach achieves the desired classification accuracy at 30 dB SNR
for the normalized CFO for range 0.1 < € < 0.2. In [63], the authors use the DFT and
fourth-order cumulant to classify the modulation scheme in the presence of CFO. However,
this technique has good classification accuracy for the normalized carrier frequency offset
of range —0.5 < € < 0.5. In [90], a CNN-based MC is studied to classify modulation
format for OFDM systems in the presence of CFO. FFT window banks (FWB) are utilized
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as input to the CNN model to estimate the length of an OFDM symbol. After estimating
the OFDM symbol length, a CNN-based MC technique is utilized to categorize the OFDM
and SC modulation formats concurrently, using FWB and IQ samples as combined input.
The classification performance of this technique degrades to 87.3% in a minor CFO and
83.4% in a moderate CFO. However, it has a classification accuracy of 98.5% at high SNR in
the absence of CFO.

5. Challenges and Future Research Directions

Based on an exhaustive literature review, this paper summarizes the two major MC
approaches for the OFDM signal: statistics based and Al based, and also highlights their
advantages and disadvantages. In the statistics-based approach, the LB approach provides
optimal classification performance. As the number of unknown parameters increases,
it becomes more computationally complex to find a desired analytical solution for the
decision problem. If there is a closed-form solution made, it can be impractical because of
its high computational complexity. A sub-optimal classifier is obtained from the optimal
ML classifier to minimize computational complexity. In the FB algorithm, the expert
domain feature needs to be extracted first, then decisions are made for the classification.
FB algorithms are easier to implement, despite being sub-optimal. Many of the ML- and
DL-based MC first use the signal pre-processing step, which includes noise reduction,
parameter estimation, and making the signal synchronized, which enhances the quality
of the received signal. After that, proper selection of classification model that can reduce
the signal processing steps, increase the modulations classification accuracy and provide
more reliable and effective methods of modulation classification, compared to conventional
modulation methods.

Nevertheless, several studies are mainly based on ideal hypotheses and rely on a
large number of labeled signals. Most of the MC research is still focused on the simulation
stage. The communication environment is more sophisticated, and signal frame lengths are
varied in the realistic implementation scenario. However, with the increasing complexi-
ties of the communication environment and the increasing need for numerous particular
tasks, it is difficult to make sure that a huge training data set is generated effectively for
particular tasks. The development of semi-supervised algorithm systems is needed to solve
this problem. Effective semi-supervised algorithms may be able to fulfill the increasing
need for diverse signal processing demands by collecting a large amount of data, only
a small fraction of which is labeled data. Another potential task is to figure out how to
develop hardware platforms, implant applications, and evaluate algorithms employing
measured data.

Another challenge in the future is how to incorporate a DL-based transmission signal
modulation identifier for OFDM signals on a field-programmable gate array (FPGA), which
would necessitate further research into data quantization, model compression, and other
related studies. Finally, DL techniques have a wide range of applications and growth
potential as a powerful method for processing data and extracting features. In various
fields, combining the DL model with other intelligent algorithms will yield more efficient
results. Furthermore, traditional DL-based MC is challenging to implement in OFDM-
based narrow-band (NB)-IoT devices, as it requires high computational complexity and
more power as well as memory resources. However, implementing light-weight DL-based
blind MC for NB-IoT devices that need less computational, space, and power requirements
might be a difficult task for future adaptive transceiver systems. Another challenge in
the future is modulation classification for OQPSK, 7/4-QPSK, and MSK. Higher-order
modulation classification for OFDM, MIMO-OFDM system, and adaptive OFDM systems
over a randomized environment using a hybrid model need to be proposed in future
wireless communication. In addition, we have to extend to a large number of modulation
formats that work for all types of systems. MC can be implemented for massive MIMO
systems, such as intelligent reflective surfaces, to reduce the distortion due to the non-line-
of-sight (NLOS) component of the signal in future wireless communication.
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In OFDM-IM, the number of active subcarriers can be adjusted to achieve the desired
spectral efficiency and BER performance. Thus, the MC algorithm for OFDM-IM needs to
be explored. As compared to the OFDM system, the filter bank multicarrier (FBMC) system
does not require a CP, so it makes the use of radio resources more efficient. Therefore, MC
for FBMC can be a future problem. In NOMA, if a different user uses a different modulation
format, then MC for NOMA can be a challenging task. As compared to the OFDM system,
orthogonal time frequency space (OTFS) has significantly high error performance over
delay-Doppler channels with a wide range of Doppler frequencies. MC for OTFS can be a
future research problem for designing advanced wireless communication systems. Due
to the high peak-to-average power ratio (PAPR), it is difficult to use OFDM on the uplink.
To overcome this problem, single-carrier frequency division multiple access (SC-FDMA) is
used on the uplink. Therefore, the MC algorithm for SC-FDMA needs to be developed. MC
for multicarrier code-division multiple access (MC-CDMA) can also be a critical research
problem for future wireless communication.
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